SUPPLEMENTARY MATERIAL

Photorhabdus antibacterial Rhs polymorphic toxin inhibits translation through ADPribosylation of 23S ribosomal RNA

Dukas Jurėnas, Amaury Payelleville, Mohammad Roghanian, Kathryn J. Turnbull, Alain Givaudan, Julien Brillard, Vasili Hauryliuk, Eric Cascales

Supplementary Figures and Captions

Supplementary Figure 1. Type VI secretion genes in *Photorhabdus laumondii.* Schematic representation of the *Photorhabdus laumondii* subsp. *laumondii* TT01 T6SS clusters and associated islands. Gene identifiers are indicated above the arrows, predicted proteins are indicated below. Spike proteins (VgrG), effector-associated chaperones, putative effectors and putative immunity proteins are indicated in yellow, orange, red and green, respectively.

Supplementary Figure 2. Tre23 reduces the fraction of actively translating ribosomes. Polysome analysis of *E. coli* cells harboring the empty vector (green line) or producing Tre23 at time 0 (yellow line), 30 (orange line) or 60 min (red line) post-induction. Cell lysates were resolved by ultracentrifugation on 5-25% sucrose gradients and detected at A_{260} . The positions of the 30S, 50S, 70S and polysomes peaks are indicated on top.

Supplemental Table S1. Strains and Plasmids used in this study.

Strains	Description and genotype	Source/References
Escherichia coli K12		
DH5a	F-, $\Delta(argF-lac)$ U169 phoA supE44 lacZ Δ M15 recA relA endA thi hsdR gyr	Laboratory collection
BW25113	F-, $\Delta(araBAD) lacZ(del)::rrnB-3 rph1 \Delta(rhaD-rhaB) hsdR$	Barry Wanner
BL21(DE3)	dcm ompT hsdS gal $\lambda DE3$	Laboratory collection
WM3064	thrB pro thi rpsL hsdS lacZ Δ M15 RP4- Δ (araBAD) Δ dapA::[erm pir (wt)]	(1)
MRE600	rna, hsdM pColE1	(2)
Photorabdus laumon	<u>dii</u>	
TT01	WT Photorhabdus laumondii	(3)
TT01-contr.	Cam_Plac_GFP cassette (from pJQ200-glm-rpm) inserted at glmS/rpmE locus in TT01	(4)
TT01- ΔP_{T6SS}	Replacement of the T6SS-1 promoter region by the Cam_Plac_GFP cassette (from pJQ200- ΔP_{T6SS}) locus in TT01	This study
TT01- ΔP_{T6SS}	Replacement of the T6SS-1 <i>tre23-tri23</i> by the Cam_Plac_GFP cassette (from pJQ200-\DeltaMutEff) locus in TT01	This study
MRE600	<i>rna</i> , <i>hsdM</i> pColE1	(2)
Plasmid	Description and main characteristics	Source/References
nIO200	Mobilizable vector suicide in <i>P. laumondii</i> , Cm ^R	(5)
pJQ200 pJQ200 <i>alm</i> rpm	nIO200 yester to insert Com. Plac. GEP assetts into the <i>almS/mmE</i> loous by homologous recombination	(3)
pJQ200-gim-rpm	pJQ200 vector to insert Cam_1 ac_011 cassette into the gims/rpmE locus by homologous recombination	(+) This study
$pJQ200-\Delta I_{T6SS}$ $pJQ200-\Delta MutEff$	pJQ200 vector to exchange the 1053-1 promoter by the Cam_1 ac_011 cassette by homologous recombination	This study
nBAD33	Expression vector $AraC$ arabinose-inducible Cm^R	(6)
nBAD_Tre?3	<i>P. Jaumondii tra</i> ²³ (corresponding to Bbs amino-acids 13/3-1/71) cloped into pBAD33	(0) This study
pBAD-Tre23-H8A	His&-to-Ala (His-1350 in Rhs) substitution in nBAD-Tre23	This study
pBAD-Tre23-Y33A	Tyr33-to-Ala (Tyr-1375 in Rhs) substitution in pBAD-Tre23	This study
pBAD-Tre23-HY	Tyr33-to-Ala substitution in pBAD-Tre23-H8A	This study
pBAD-Tri23	P laumondii tri23 (nlu0352) cloned into nBAD33	This study
pNDM220	Mini-R1, single-copy vector, $LagI^{q}$, P_{AU0A03} , Amp^{R}	(7)
pNDM-Tre23	<i>P. laumondii tre23</i> (corresponding to Rhs amino-acids 1343-1471) cloned into pNDM220	This study
pET-Duet1	pBR322 ColE1 <i>ori</i> , T7 promoter, Amp ^R	Novagen

pET-His-VgrG	P. laumondiis vgrG gene (plu0355) under pT7 control in pET-Duet1, N-terminal 6×His tag, TEV cleavage	This study
pRSF-Duet1	RSF1030 (NTP1) <i>ori</i> , T7 promoter, Kan ^R	Novagen
pRSF-EagR-ST	P. laumondii eagR gene (plu0354) under pT7 control in pRSF-Duet1, C-terminal Strep-tag	This study
pCDF-Duet1	CloDF13 <i>ori</i> , T7 promoter, Strep ^R	Novagen
pCDF-Rhs*-FL	P. laumondii rhs gene (plu0353) under pT7 control in pCDF-Duet1, C-terminal FLAG tag, Tyr1351-to-Ala,	
	Tyr1375-to-Ala, and Asp1338-to-Asn substitutions	This study
pPJ23104-gfp-lva	GFP-lva cloned under synthetic constitutive promoter in pBAD33, Cm ^R	This study

Oligonucleotide	Sequence (5' to 3')	Purpose
Construction of mutations in <i>Photorhabdus</i> ^a		
MutClus_Left_F_Sall	GTGC GTCGAC CTGACGCTCTTTCCAGGAAC	amplify flanking regions for T6SS promoter mutation in <i>Photorhabdus</i>
MutClus_Left_R_AatII	GTGC GACGTC GCTGGAATCATCATGGCGTT	amplify flanking regions for T6SS promoter mutation in <i>Photorhabdus</i>
MutClus_Right_F_SacI	GCGTGAGCTCACTGTCTTCAACTTCTTTCAGCT	amplify flanking regions for T6SS promoter mutation in <i>Photorhabdus</i>
MutClus_Right_R_SpeI	GCGTACTAGTTCTTCACGCAAAACTCTGGC	amplify flanking regions for T6SS promoter mutation in <i>Photorhabdus</i>
MutEff_Left_F_SalI	GTGC GTCGAC TTCAACCGGTTCCATATGAA	amplify flanking regions for Tre23-Tri23 mutation in Photorhabdus
MutEff_Left_R_AatII	GTGC GACGTC TTAATAATTAACAAAGCCGG	amplify flanking regions for Tre23-Tri23 mutation in Photorhabdus
MutEff_Right_F_SacI	GCGTGAGCTCGGTCCGGTTCTCTTCATCCA	amplify flanking regions for Tre23-Tri23 mutation in Photorhabdus
MutEff_Right_R_SpeI	GCGTACTAGTCGTCATCCGCCTCAAAAGAG	amplify flanking regions for Tre23-Tri23 mutation in Photorhabdus
VerMutT6SS_PlumEff_LFwd	GAGAGCATGAGATGACAATAGCC	check mutations in Photorhabdus genome
VerMutT6SS_PlumEff_RRev	CAGGGAATTCAGGGGGTATT	check mutations in Photorhabdus genome
VerMutT6SS_PlumClus_LFwc	ITGTTTCAGCCAGGTGTTCAG	check mutations in Photorhabdus genome
VerMutT6SS_PlumClus_RRev	TCAGTGGTGGCAATTGTGAT	check mutations in Photorhabdus genome
VerMutT6SS_LRevCam	TGCTCATGGAAAACGGTGTA	check mutations in Photorhabdus genome
VerMutT6SS_RFwdGFP	CCACACAATCTGCCCTTTCG	check mutations in <i>Photorhabdus</i> genome

Plasmid construction ^{a,b}

R-pBAD-SD-Sal

GATCAGTCGACCCTCCTTCTAGAGGATCCCCGGGTACCG

introduce synthetic ribosome binding site into pBAD33

F-pBAD-MCS	CTGCAGGCATGCAAGCTTGGC	introduce synthetic ribosome binding site into pBAD33	
F-plART-sal	GACTGTCGACATGGCTGGTGAAAATGTATTTATTCAC		
•		clone tre23 into pBAD33 through SalI and HindIII sites	
R-plART-hind	GACTAAGCTTTTATTTTCCTCCGCACTTTCTG	clone tre23 into pBAD33 through SalI and HindIII sites	
F-imART-Sal	GACTGTCGACATGAAGCACGAATCTATTCAA	clone tri23 into pBAD33 through Sall and HindIII sites	
R-A-plART-hind	GACTAAGCTTCTACCACTTATATGGATATGCAT	ſĠ	
•		clone tri23 into pBAD33 through SalI and HindIII sites	
F-pBAD-bam	ACCCGGGGGATCCTCTAGAAG	amplify <i>tre23</i> from pBAD33 with RBS and clone into pNDM220 through <i>BamH</i> I and <i>EcoR</i> I sites	
R-pBAD-eco	CAGTGAATTCCCGCCAAAACAGCCAAGCTT	amplify <i>tre23</i> from pBAD33 with RBS and clone into pNDM220 through <i>BamH</i> I and <i>EcoRI</i> sites	
F-gfp-eco	ATGC GAATTC ATGAGTAAAGGAGAAGAACTTT	TCAC	
C I		clone gfp-lva through EcoRI and HindIII in pBAD33	
R-GFP-LVA-Hind	GGCCAAGCTTTTAAGCTACTAAAGCGTAGTTT	Celone gfp-lva through EcoRI and HindIII in pBAD33	
R-pBAD-sac	GGAG GAGCTC TTGGTAACGAATCAGACAAT	remove <i>araC</i> and <i>ara</i> promoter and introduce synthetic promoter J23104 in front of <i>gfp-lva</i> into pBAD33-GFP-LVA	
F-p33-J32104	TTGACAGCTAGCTCAGTCCTAGGTATTGTGCTA	GCACCCGTTTTTTTGGGCTA	
		remove <i>araC</i> and <i>ara</i> promoter and introduce synthetic promoter J23104 in front of <i>gfp-lva</i> into pBAD33-GFP-LVA	
F-pETd-synth	GCCAGGATCCGAATTCGAGCTC	introduce TEV protease site after 6×His-tag and <i>Bmt</i> I site for in frame cloning	
R-pETd-tev-bmt	ACAAGCTAGCGCCCTGGAAGTACAGGTTTTCG	TGGTGATGATGGTGATGGCTGCTG	
		introduce TEV protease site after 6×His-tag and <i>Bmt</i> I site for in frame cloning	
F-pRSFd-strep-sal	GACTGTCGACTGGAGCCACCCGCAGTTCGAAAA	ATAAAAGCTTGCGGCCGCATAATGC	
		introduce Streptag for in frame cloning at the C terminus	
F-pACYCd-flag-sal	GATCGTCGACGATTACAAGGACGACGATGACAA	<i>GTAA</i> AAGCTTGCGGCCGCATAATG	
D TDCE and		Introduce FLAG tag for in frame cloning at the C terminus	
K-pKSF-sac	GATCGAGUTCUTUTTATTAAAGTTAAACAAA	amplify Duet1 vectors for cloning in fusion with Strep of FLAG tags at the C terminus	
R-duet-strepTEV	ACTGGAGCTCAGACTGGAAGTACAGGTTTTCT	TTTTCGAACTGCGGGTGGCTCCACATGGTATATCTCCTTATTA	
	AAGT	amplify Duet1 vectors for cloning with Streptag and TEV protease cleavage site at the N terminus	
F-duet-sal	CATGGTCGACTAATGCTTAAGTCGAACAGAAA	amplify Duet1 vectors for cloning with Streptag and TEV protease cleavage site at the N terminus	

F-plVgrG-bmt	GGGCGCTAGCTCATTTCAGAAAAAAACCGCCA	clone <i>vgrG</i> into pET-Duet1 through <i>Bmt</i> I and <i>Hind</i> III sites fusing to 6×His-TEV site at the N terminus
R-plVgrG-hind	GACTAAGCTTTCAGTTCACATTGACCTGTTTG	clone $vgrG$ into pET-Duet1 through Bmt I and $Hind$ III sites fusing to $6 \times His$ -TEV site at the N terminus
F-p11795-Sac	GGAGGAGCTCATGGAAAACACAACCTATCAGA	clone <i>eagR</i> into pRSF-Duet1 through <i>SacI</i> and <i>SalI</i> sites fusing to Streptag at the C terminus
R-pl1795-Sal	GATC GTCGAC GGCTGCCTGAAAACTGTGGA	clone <i>eagR</i> into pRSF-Duet1 through <i>SacI</i> and <i>SalI</i> sites fusing to Streptag at the C terminus
F-plRhs-Sac	GGAG GAGCTC ATGTCACTTGGTGATGAAATCG	clone <i>rhs</i> into pCDF-Duet1 through <i>SacI</i> and <i>SalI</i> sites fusing to FLAG tag at the C terminus
R-plRhs-Sal	GATCGTCGACTTTTCCTCCGCACTTTCTGATT	clone <i>rhs</i> into pCDF-Duet1 through <i>SacI</i> and <i>SalI</i> sites fusing to FLAG tag at the C terminus
F-pl-Imm-Sac	GGAGGAGCTC ATGAAGCACGAATCTATTCAAT	T
		clone <i>tri23</i> immunity protein into pCDF-Duet1 through <i>SacI</i> and <i>SalI</i> sites in fusion with Streptag and TEV cleavage site at the N terminus
R-pl-Imm-Sal	GATC GTCGAC CCACTTATATGGATATGCAT	clone <i>tri23</i> immunity protein into pCDF-Duet1 through <i>SacI</i> and <i>SalI</i> sites in fusion with Streptag and TEV cleavage site at the N terminus or with Streptag at the C terminus
R-pl-ART-ATG-Sac	CATGGAGCTCATGGCTGGTGAAAATGTATTTA	TT
		in pair with above indicated R-plRhs-Sal, to clone Tre23 toxic protein domain into pRSF-Duet1 through <i>SacI</i> and <i>SalI</i> sites in fusion with Streptag at the C terminus
Site directed mutagenesis ^c		
F-plART-H8A	<u>GCG</u> TATACAAATAAAGCGGGTTTTG	introduce H8A substitution in <i>tre23</i>
R-plART-H8	AATAAATACATTTTCACCAGCC	introduce H8A substitution in tre23

R-plART-H8	AATAAATACATTTTCACCAGCC	introduce H8A substitution in <i>tre23</i>
F-plART-Y9A	<u>GCG</u> ACAAATAAAGCGGGTTTTGAC	introduce Y1351A substitution in rhs (Y9A at the Tre23)
R-plART-Y9	GTGAATAAATACATTTTCACCAGC	introduce Y1351A substitution in rhs (Y9A at the Tre23)
F-plART-Y33A	GCGATAACGGATGTACTAATGTCTC	introduce Y1375A substitution in rhs (Y33A at the Tre23)
R-plART-Y33	AACTTTTCCACTGACGTTTG	introduce Y1375A substitution in rhs (Y33A at the Tre23)
F-plRhs-D1338N	AACCCTCTAGGGCTTGCTGGT	introduce D1338N substitution in rhs
R-plRhs-D1338	AATAAATTTCGTGGGATTTTGCACATAGC	introduce D1338N substitution in rhs

DNA fragments for *in vitro* transcription-translation^b

3'UTR-plART GCGAATTAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATATGGCTGGTGAAAATGTATT amplify DNA fragment for *in vitro* synthesis of Tre23-Streptag

5'UTR-plART-strep

AAACCCCTCCGTTTAGAGAGGGGTTATGCTAGTTATTATTTTCGAACTGCGGGTGGCTCCATTTTCCTCCGCACTTTCTGA amplify DNA fragment for *in vitro* synthesis of Tre23-Streptag

5'UTR-GFP

3'UTR-GFP-strep

AAACCCCTCCGTTTAGAGAGGGGTTATGCTAGTTATTATTTTCGAACTGCGGGTGGCTCCATTTGTATAGTTCATCCATGCCA

amplify DNA fragment for *in vitro* synthesis of GFP-Streptag

rRNA library construction^a

Universal miRNA Linker	rAppCTGTAGGCACCATCAAT-NH2	Universal miRNA Cloning linker (NEB)
RT-uni-NEB-Hind	AGCCAAGCTTATTGATGGTGCCTACAG	Reverse transcription against universal cloning linker
ss-linker	PACTCTCTACTGTTTCTCCAT	second linker ligated to copy DNA
F-sslinker-Eco	GGAG GAATTC ATGGAGAAACAGTAGAGAGT	PCR primer to amplify copy DNA ligated to linkers, introduces <i>EcoR</i> I site
R-NEB-Hind	AGCCAAGCTTATTGATGGTG	PCR primer to amplify copy DNA ligated to linkers, introduces <i>Hind</i> III site
F-pKK-seq	GCACTCCCGTTCTGGATAAT	universal pKK223.3 oligo for sequencing
R-pKK-seq	GTTTCACTTCTGAGTTCGGCATG	universal pKK223.3 oligo for sequencing

Hybridization to 23S fragments

SRL-control	TCCACTCCGGTCCTCTCGTACTAGGAGCAG	hybridizes to 2647-2676 nucleotides of 238
23S-lib-L	AAATGATGGCTGCTTCTAAGCCAACATCCTGGCTGTCTGGG	
		hybridizes to 1043-1083 nucleotides of 23S
23S-lib-R	CGCGCAGGCCGACTCGACCAGTGAGCTATTACGCTTTCTTT	
		hybridizes to 1084-1124 nucleotides of 23S
23S-from1093	CGCAGGCCGACTCGACCAGTGAGCTATTAC	hybridizes to 1093-1122 nucleotides of 23S
23S-from1095	CGCGCAGGCCGACTCGACCAGTGAGCTATT	hybridizes to 1095-1124 nucleotides of 23S
23S-from1099	CTTCCGCGCAGGCCGACTCGACCAGTGAGC	hybridizes to 1099-1128 nucleotides of 23S

^a Restriction site in bold.

^b 6×His-, Strep- or FLAG-coding sequence italicized.

^c introduced mutation underlined.

References

- 1. Løbner-Olesen, A. and von Freiesleben, U. (1996) Chromosomal replication incompatibility in Dam methyltransferase deficient Escherichia coli cells. *EMBO J*, **15**, 5999–6008.
- Kurylo,C.M., Alexander,N., Dass,R.A., Parks,M.M., Altman,R.A., Vincent,C.T., Mason,C.E. and Blanchard,S.C. (2016) Genome Sequence and Analysis of Escherichia coli MRE600, a Colicinogenic, Nonmotile Strain that Lacks RNase I and the Type I Methyltransferase, EcoKI. *Genome Biol Evol*, 8, 742–752.
- 3. Duchaud, E., Rusniok, C., Frangeul, L., Buchrieser, C., Givaudan, A., Taourit, S., Bocs, S., Boursaux-Eude, C., Chandler, M., Charles, J.-F., *et al.* (2003) The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. *Nat Biotechnol*, **21**, 1307–1313.
- 4. Payelleville, A., Blackburn, D., Lanois, A., Pagès, S., Cambon, M.C., Ginibre, N., Clarke, D.J., Givaudan, A. and Brillard, J. (2019) Role of the Photorhabdus Dam methyltransferase during interactions with its invertebrate hosts. *PLoS One*, **14**, e0212655.
- 5. Quandt, J. and Hynes, M.F. (1993) Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria. Gene, 127, 15–21.
- 6. Guzman,L.M., Belin,D., Carson,M.J. and Beckwith,J. (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. *J Bacteriol*, **177**, 4121–4130.
- 7. Gotfredsen, M. and Gerdes, K. (1998) The Escherichia coli relBE genes belong to a new toxin-antitoxin gene family. *Mol Microbiol*, **29**, 1065–1076.