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1. Introduction

This Section provides details on the data extraction and cleaning processes that has
been performed to compare and select data on coronavirus. In addition, it provides fur-
ther detail on the cross-validation procedure used to compare the predictive performance
of disaggregated models. All operations (both computing and graphics) are carried out in
the statistical software R [1] and can be downloaded from the Harvard dataverse platform
(https://doi.org/10.7910/DVN/SMGG9R).

2. COVID-19 data selection

Data on coronavirus-infected cases are provided by various sources, including individual-
level data from national, provincial, and municipal health reports, as well as additional
information from online reports. A reference source of province-level data is provided
by John Hopkins University CSSE (JHU) [2] through an interactive web platform, whose
data can be downloaded using GitHub [3]. For cases in China, the sources used include
Twitter feeds, online news services. The reported cases are confirmed with regional and
local health departments, including centers for disease control and prevention of China,
Taiwan, and Europe, the Hong Kong Department of Health, the Macau Government,
and the World Health Organization (WHO), as well as city-level and state-level health
authorities.

For the disaggregated datasets, we extracted city-level observations from the GitHub
platform of the news agency Pengpai, which we refer to as “The Paper” [4,5] (09 April
2020). We added city names in English, spatial coordinates of the cities (centroid),
and dates in English. Furthermore, we removed events without or with wrong spatial
coordinates. The cleaned dataset counts observations from 11 January 2020 to the end
of February 2020.

In addition to The Paper dataset, we extracted data from healthmap.org’s GitHub (09
April 2020), which includes COVID-19 cases in China in Hubei province [6] and outside
Hubei province [7]). We refer to this second dataset as Xu et al. data. The entire dataset
(events without dates are removed) contains observations from January 18 to end of
February 2020. The authors have provided the geolocalization of the data using google
map and a variable that indicates the level of spatial accuracy, which can be used to
subset the data. Xu et al. data has been aggregated through official government sources,
peer-reviewed papers, and online reports. Various procedures have been applied by the
authors to increase accuracy and comprehensiveness of the data. Therefore, we did not
clean the original dataset since the provider used various robust procedures to ensure that
the data is accurate and comprehensible, which include checking records and potential
duplicates with peer-reviewed research articles.
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3. Model validation

3.1 Out-of-sample predictions

Good in-sample performance may be the results of overfitting and are therefore not
necessarily informative about the true performance of models. In order to assess the
external validity of our model and to obtain more realistic estimations of performance
metrics, we performed an out-of-sample cross-validation procedure by taking into ac-
count the spatial nature of the data and the model specifications [8–10]. While meth-
ods to evaluate out-of-sample performance of downscaling approaches have been devel-
oped (e.g. [11,12]), their relevance has been essentially drawn from the results of studies
based on simulated data, which may not necessarily apply to our case study. Also, since
province-level is the finer spatial resolution of our reference data (JHU data [2]), a cross-
validation approach based on spatial blocks [13] would not be applicable.

As a result, we fit the downscaling models using data in all provinces except one
(hold-out province), predicted the expected cases in the hold-out province, and reported
performance metrics (RMSE, MAE) based on the expected cases from JHU. Through an
iterative process, the data from the hold-out province is not used during the fitting pro-
cess to ensure that the predictive performance of the models is assessed exclusively on
new data. We performed the out-of-sample procedure on various model specifications,
similarly to the in-sample procedure except that we did not consider models with i.i.d
random polygon-specific effects since we opted for a procedure that remove data from
province in an iterative way. In this case, province-specific effects cannot be used to
inform the model.

The model specifications (Model spec) are the following: (1) include all covariates,
(2) include only anthropogenic covariates (Socio. cov.), (3) include only environmental
covariates (Env. cov.), (4-7) using alternative penalised complexity (PC) priors on the
spatial parameters ρ min and σζ max. In total, this cross-validation computes predictive
performance metrics for a total of 33 provinces multiplied by 7, which corresponds to a
total of 231 runs. The results are illustrated in Table S1.

In Table S1, we report the MAE and RMSE (MAE all, RMSE all) for each model
specification, based on the out-of-sample predictions in all provinces. Since the out-of-
sample predictions in some provinces appear far more challenging in some provinces
(see Xingiang and Hubei in Fig S5), we also present the MAE and RMSE results with
predictions excluded in Xingjiang (MAE no Xingjiang, RMSE no Xingjiang) and Hubei
(MAE no Hubei, RMSE no Hubei) to compare the model performance in different areas.

To select the model we favor the model performance metric RMSE over MAE since
large errors are particularly undesirable in our context. Table S1 shows that the model
using only anthropogenic covariates (mod spec.: soc) has a better out-of-sample pre-
dictive ability. It has the lowest RMSE value overall (when all provinces are included)
and also when we exclude predictions in Hubei province. If we exclude predictions in
Xingjiang province, model sigma2 with all covariates and alternative penalised complex-
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mod. MAE RMSE MAE RMSE MAE RMSE
spec. all all no Xingjiang no Xingjiang no Hubei no Hubei
all 10974.7 48166.9 2910.9 11443.3 9338.3 47614.8
soc 4480.0 13392.6 3761.6 12703.9 2620.6 7552.5
env 5515.6 19581.3 2803.7 11366.5 3705.8 16422.0
rho1 10456.4 45445.9 2878.5 11418.8 8803.7 44771.5
rho2 8665.0 36137.1 2766.3 11345.0 6956.1 34947.0
sigma1 17617.4 82994.3 3421.0 12008.9 16188.2 83533.7
sigma2 3805.9 13860.3 2423.4 11223.7 1945.9 8531.8

Table S1: Performance metrics computed at province-level from an out-of-sample procedure. Perfor-
mance metrics computed from an out-of-sample procedure (iteratively remove each of the 33 provinces) to
compare different model specifications used to predict COVID-19 counts using a downscaling approach.
We compare a total of seven model specifications (without i.i.d random effects): (1) include all covari-
ates (all), (2) include only anthropogenic covariates (soc), (3) include only environmental covariates (env),
and models that include all covariates but using alternative penalised complexity (PC) priors on the spatial
parameters (rho1,rho2,sigma1,sigma2).

ity (PC) prior on the spatial parameter sigmamax = 10 shows the lowest RMSE values.
Therefore, we select model soc, which has the best predictive performance overall.

Model Socio. Env. iid. ρ σζ Nobs Nobs MAE MAE RMSE RMSE
spec. cov. cov. random min. max. Xu Paper Xu Paper Xu Paper

1 yes yes yes 1 5 301 234 183.3 242.6 980.3 2644.5
2 yes no yes 1 5 301 234 186.0 254.0 861.0 2889.8
3 no yes yes 1 5 301 234 200.3 359.4 801.7 3733.4
4 yes yes no 1 5 301 234 192.8 149.7 2382.4 945.1
5 yes yes yes 10 5 301 234 183.0 240.0 995.8 2620.2
6 yes yes yes 5 5 301 234 182.9 239.8 996.6 2619.0
7 yes yes yes 1 10 301 234 182.9 240.0 996.3 2619.4
8 yes yes yes 1 2 301 234 183.6 248.2 942.7 2705.6

Table S2: Performance metrics computed at district-level with several model specifications. Perfor-
mance metrics computed to compare the discrepancies on the COVID-19 counts of the spatially disaggre-
gated datasets from Xu et al. and The Paper with predicted (mean) values from the downscaling approach
at district-level (340 districts) using different model specifications.

3.2 In-sample predictions

Note that the out-of-sample predictions approach that remove in an iterative way
each province (hold-out province) cannot be used to assess the predictive performance of
models with province-specific i.i.d random effects. However, random effects can account
for important differences we observe among provinces that cannot be informed by the
covariates. Therefore, our final selected model is based on the selected specification
(model using only anthropogenic covariates (mod spec.: soc)), by including an i.i.d
random effects to account for province-specific characteristics.

4



Province 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Obs.rate 0.016 0.020 0.019 0.009 0.003 0.014 0.005 0.004 0.021 0.004 0.012 0.013 0.053 1.098 0.015 0.000
Pred.rate 0.016 0.020 0.019 0.009 0.003 0.014 0.005 0.004 0.021 0.004 0.012 0.013 0.052 1.098 0.015 0.000

Province 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
Obs.rate 0.008 0.020 0.003 0.003 0.011 0.003 0.006 0.008 0.015 0.004 0.006 0.002 0.010 0.003 0.000 0.004 0.022
Pred.rate 0.008 0.020 0.003 0.003 0.011 0.003 0.006 0.008 0.015 0.004 0.006 0.002 0.010 0.003 0.000 0.004 0.022

Table S3: Results of in-sample predictions of the incidence rates (per 1000) at province-level. Com-
parison of the observed incidence rate (per 1000) at province-level (second row) with the average predicted
incidence rate (per 1000) (third row). The predictions are carried out in a total of 33 Chinese provinces are
included.

To assess the in-sample predictive ability of the model, we compare the predicted
incidence rate at province-level with the observed incidence rate computed as the num-
ber of reported COVID-19 cases from JHU [2] divided by the population size [14] of the
province. For each province, the average incidence rate predicted by the downscaling is
given by the sum of the mean predicted incidence rate multiplied by population size for
each grid-cell within the province. A brief look at the results in Table S3 indicates that in
all provinces, the predicted incidence rate (per 1000) is equal to the observed incidence
rate (per 1000) within 2 decimals. We can conclude that the in-sample predictions of the
model are of sufficient accuracy.

3.3 Model convergence assessment
The disaggregation model necessitates relatively few evaluations of the posterior

density compared to MCMC methods since the former only requires to maximise the
posterior and identify the posterior mode. However, a faster approximation may po-
tentially reduce the accuracy of the estimation of the posterior samples [15]. Here, we
assess the convergence of the selected downscaling model by comparing the parame-
ter estimation with a self-tuning variant of Hamiltonian Monte Carlo (HMC) method,
called no-U-turn sampler (NUTS) [16] implemented in the R package tmbstan [17]. The
main principle is to run multiple Markov chains that are randomly initialised, remove
warm-up samples, split into half the remainder of each chain to detect non-stationarity
in each individual chain, and assess model convergence using the potential scale reduc-
tion statistic R̂. This metric computes the ratio of the average variance of samples within
each chain to the variance of the pooled samples across chains. A value of R̂ below 1.1
suggests that the distribution of the chains has converged [18].

NUTS is applied to the TMB output object resulting from the downscaling model with
a number of iterations set to 800 (half of them used as warm-up) for 6 chains. Based on
the Hamiltonian dynamics, a new momentum vector is sampled for a given number of
iterations, which updates the current state of the parameters using the leapfrog integra-
tor with discretization time (step size) and number of leapfrog steps (nb.leapfrog). To
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account for numerical errors during integration, a Metropolis acceptance step is required
to to either accept or reject a particular step. The standard Metropolis acceptance proba-
bility (acceptance) has values close to 1 to improve sampling efficiency and is computed
from multinomial sampling over the states for each Hamiltonian trajectory. A cap on the
tree depth is set to 10 (default value), so that nb.leapfrog is capped to 210 − 1 = 1023
in order to reduce the work while keeping a sufficiently long trajectory for each itera-
tion. [16].

NUTS Disaggregation
Parameters mean std R̂ mean std
βW.access -0.52 0.22 1.000 -0.55 0.21
βaccess -0.37 0.33 1.000 -0.39 0.32
intercept -4.69 2.10 1.001 -4.74 2.08
spatial effect (log(σ)) 0.30 0.024 1.001 0.34 0.48
spatial effect (log(ρ)) 5.55 0.83 1.001 5.11 0.54
i.i.d. effects (log(τ)) -0.66 0.32 1.002 -0.54 0.31

Table S4: Convergence assessment: summary. We compare the parameter estimation (mean and standard
deviation) on the final model specifications between a Hamiltonian Monte Carlo (HMC) method: no-U-
turn sampler (NUTS) [16] and the posterior approximation method used in the disaggregation model. The
disaggregation model took about 25 minutes to run. NUTS took about 24 hours to run for six chains with
800 iterations each (Win 10, CPU i5/3GHz, 6 cores (1 chain per core)). NUTS convergence metric is
provided by R̂.

Table S4 compares results of the selected disaggregation model with the results of
the NUTS (800 iterations, 6 chains). The sign and order of magnitude of the mean and
standard deviation of the parameters are consistent between the NUTS and the posterior
approximation method used in the disaggregation model. Fig S6 shows the histogram
of the NUTS estimation of the parameters. The convergence of NUTS is reached, with
R̂ < 1.003 obtained for the estimation of the intercept, covariate coefficients (βW.access

and βaccess), the i.i.d. effects (log(τ)), the standard deviation (log(σ)) and range (log(ρ))
of the spatial effect. Fig S7 illustrates the trace plot for the NUTS parameter estimation.
It took about 24 hours to run 6 chains with 800 iterations per chain using the following
computer specifications: Windows 10, CPU i5/3GHz, 6 cores (1 chain per core).
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Figure S1: Parameter estimation of the downscaling model. The graphic shows the mean and 95%
credible intervals (x-axis) of the estimated parameters (fixed-effects and random effects) in the model
(y-axis). It includes (from bottom to top), the log precision of the i.i.d effects (polygon-level), intercept,
spatial hyperparameters log ρ and log σζ , and the β coefficients associated with each covariate (access
and W. access).
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Figure S2: Posterior distribution of the model parameters estimated by the downscaling model. The
graphic shows the posterior distribution (y-axis) of the estimated parameters (fixed-effects and random
effects) (x-axis) in the model. It includes the log precision of the i.i.d effects (polygon-level), intercept,
spatial hyperparameters log ρ and log σζ , and the β coefficients associated with each covariate (access
and W. access).
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Figure S3: Assessment of consistency of reported cases from The Paper and Xu et al. with estimated
cases from downscaling (natural log scale) JHU data in high-impacted districts. The figure shows
the number of (natural log) COVID-19 infected cases for January and February 2020 at district-level (340
districts) in China from the Paper (blue triangles), Xu et al. (red points), along with an estimation of the
(natural log) mean (white squares), 95% credible intervals (grey segments) of the infected cases based on
the downscaling approach. For each district, the color of the symbol is faded for the corresponding dataset
(Xu et al. or The Paper) that exhibit values less close to the predicted (natural log) mean.
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Figure S4: Assessment of consistency of reported cases from The Paper and Xu et al. with estimated
cases from downscaling (natural log scale) JHU data in low-impacted districts. The figure shows the
number of (natural log) COVID-19 infected cases for January and February 2020 at district-level (340
districts) in China from the Paper (blue triangles), Xu et al. (red points), along with an estimation of the
(natural log) mean (white squares), 95% credible intervals (grey segments) of the infected cases based on
the downscaling approach. For each district, the color of the symbol is faded for the corresponding dataset
(Xu et al. or The Paper) that exhibit values less close to the predicted (natural log) mean.
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Figure S5: JHU original COVID-19 data and out-of-sample estimated cases (January-February 2020)
with downscaling (natural logarithm scale). The maps show the original dataset of JHU of (natural log)
COVID-19 infected cases for January and February 2020 at province-level in China (bottom-right), along
with an estimation of the (natural log) infected cases based on the aggregation of all out-of-sample predic-
tions in each of the 33 hold-out provinces from seven model specifications without i.i.d random effects: (1)
include all covariates (all), (2) include only anthropogenic covariates (soc), (3) include only environmen-
tal covariates (env), and models that include all covariates but using alternative penalised complexity (PC)
priors on the spatial parameters (rho1,rho2,sigma1,sigma2).
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Figure S6: Histogram of the NUTS parameter estimation. The NUTS parameter estimation from MCMC
draws using 800 (400 warm-up) iterations and 6 chains. The parameters are: the intercept, the covariate co-
efficients (W.access and access), the i.i.d. effects (log(τ)), and the parameters of the spatial effect (standard
deviation log(σ) and range log(ρ). Warm-up samples are excluded.
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Figure S7: Trace plot NUTS parameter estimation. The NUTS parameter estimation from MCMC draws
using 800 (400 warm-up) iterations and 6 chains. The parameters are: the intercept, the covariate coeffi-
cients (W.access and access), the i.i.d. effects (log(τ)), and the parameters of the spatial effect (standard
deviation log(σ) and range log(ρ). Warm-up samples are not shown.
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