Zeitschrift für anorganische und allgemeine Chemie

Supporting Information

Metal complexes of Tridentate Schiff base: Synthesis, Characterization, Biological Activity and Molecular Docking Studies with COVID-19 Protein Receptor

Gehad G. Mohamed, M. M. Omar, and Yasmin M. Ahmed*

Figure S1. Structures of Schiff base metal complexes.

Figure S2. ¹H NMR spectra of (a) H_2L , (b) Zn(II) and (c) Cd(II) complexes.

Figure S8. Activity index of Schiff base ligand (H_2L) and its metal complexes against (A) different fungal (B) different Gram (+ve) and Gram (-ve) bacteria.

Figure S9 . Anticancer effects of Schiff base ligand and its metal complexes in terms of % cell inhibition at 100 μ g/ml concentration.

Figure S11. 3D Molecular docking simulation studies of the interaction between (A) Schiff base ligand H_2L and (B) Cr(III), (C) Mn(II), (D) Fe(III), (E) Ni(II), (F) Cu(II), (G) Zn(II) and (H) Cd(II) complexes with the active site of the receptor of PDB ID: 6XBH. The docked conformation of the compound is shown in ball and stick representation.

Bond lengths (Å)	H_2L	$[Cd(H_2L)(H_2O)Cl_2]$	
C(1) - N(2)	1.46	1.47	
C(1) - O(24)	1.25	1.33	
N(2) - N(3)	1.41	1.43	
N(2) - C(4)	1.47	1.47	
N(3) - C(15)	1.47 1.47		
N(3) - C(19)	1.50	1.49	
C(25) - N(26)	1.46	1.50	
N(26) - C(27)	1.31	1.31	
C(29) - O(40)	1.43	1.45	
C(34) - O(42)	1.43	1.43	
O(40) -,H(41)	0.96	0.96 0.96	
O(42)- H(43)	0.96	0.96	
C(44) - O(45)	1.26	1.26	
Cd(50) - Cl(51)		2.40	
Cd(50) - Cl(52)		2.40	

Table S3. The different optimized and quantum chemical parameters of H_2L and its $Cd(I$	I)
complex.	

Cd(50) - O(53)		3.11					
O(40) - Cd(50)		3.06					
N(26) - Cd(50)		3.06					
O(24) - Cd(50)		3.08					
Bond angles (°)							
O(24)- Cd(50)- O(40)		114					
O(24) -Cd(50) - Cl(52)		89					
N(26) - Cd(50) - Cl(52)		93					
O(40) - Cd(50) - Cl(51)		90					
O(40) - Cd(50) - O(53)		94					
Cl(51) - Cd(50) - O(53)		86					
The calculated quantum chemical parameters							
E (a.u.)	-1270.99	-7705.93					
Dipole moment	4.60	13.75					
(Debye)	4.00						
E _{HOMO} (eV)	-5.51	-6.10					
E _{LUMO} (eV)	-1.70	-2.30					
$\Delta E (eV)$	3.81	3.80					
χ(eV)	-3.61	-4.20					
$m(\mathbf{a}\mathbf{V})$	-5.01						
η (ev)	1.91	1.90					
$\frac{\eta (ev)}{\sigma (eV)^{-1}}$	<u> </u>	1.90 0.53					
$\frac{\sigma (eV)^{-1}}{Pi (eV)}$	<u>1.91</u> 0.52 3.61	1.90 0.53 4.20					
$ \frac{\eta (ev)}{\sigma (eV)^{-1}} Pi (eV) S (eV)^{-1} $	1.91 0.52 3.61 0.26	1.90 0.53 4.20 0.26					
$ \frac{\sigma (eV)^{-1}}{\sigma (eV)} $ Pi (eV) S (eV)^{-1} $\omega (eV)$	1.91 0.52 3.61 0.26 3.41	$ \begin{array}{r} 1.90 \\ 0.53 \\ 4.20 \\ 0.26 \\ 4.64 \end{array} $					

		Inhibition zone diameter (mm/mg sample)			
Sample		Bacterial species		- Fungal species	
		G ⁺ G ⁻			
		Staphylococcus aureus	Escherichia coli	Aspergillus flavus	Candida albicans
Control: DMSO		0.0	0.0	0.0	0.0
dard	Amikacin Antibacterial agent	10	6		
Stan	ketokonazole Antifungal agent			8	9
	H_2L	12	14	0	10
[Cr(H	$_{2}L)(H_{2}O)_{2}Cl]Cl_{2}\cdot 2H_{2}O$	9	9	0	0
[Mn(H	$H_2L)(H_2O)_2Cl]Cl \cdot 2H_2O$	10	11	0	0
[Fe(H	$_{2}L)(H_{2}O)_{2}Cl]Cl_{2}$	11	13	14	12
[Ni(H	$_{2}L)(H_{2}O)]Cl_{2}\cdot 4H_{2}O$	16	15	0	19
[Cu(H	$[_{2}L)Cl]Cl\cdot 2H_{2}O$	14	14	0	0
[Zn(H	$(H_2O)Cl_2] \cdot 2H_2O$	14	14	0	10
[Cd(H	$[_{2}L)(H_{2}O)Cl_{2}]$	20	24	11	20

Table S7. Biological activity of Schiff base ligand (H_2L) and its metal complexes.