Supplementary Material

Article title: Ancient gene duplications, rather than polyploidization, facilitate diversification of petal pigmentation patterns in *Clarkia gracilis* (Onagraceae)

Authors: Rong-Chien Lin, Mark D. Rausher

Table S1. Primers used in this study.

Table S2. Anthocyanin genes identified from the transcriptomes of *Clarkia gracilis albicaulis*.

Table S3. Synonymous substitution rate (d_s) along the branches leading to *Clarkia gracilis* and to its progenitor species, *C. amoena huntiana* and *C. lassenensis*.

Table S4. Voucher information for the *Clarkia* plants used in this study.

Fig. S1. Alignment of *Clarkia R2R3-MYB* sequences (*A*) *MYB1*, (*B*) *MYB6*, (*C*) *MYB11* and (*D*) *MYB12* from *C. gracilis sonomensis*, *C. g. albicaulis*, *C. amoena huntiana* and *C. lassenensis*.

Fig. S2. Spatiotemporal expression of *MYB1*, *MYB6*, *MYB11* and *MYB12* in the petals of (*A*) *Clarkia amoena huntiana*, (*B*) *C. lassenensis*, (*C*) pink-cupped *C. gracilis sonomensis*, (*D*) white-cupped *C. g. sonomensis*, (*E*) *C. g. albicaulis*.

Fig. S3. Gene tree used to estimate d_S (synonymous substitution rate) along branches.

Methods S1. Transcriptomics

Table S1. Primers used in this study. [†]Primers from Martins *et al.* 2017. [‡]Primers from Lin and Rausher 2021. ^aSemi-qPCR primers used for *Clarkia lassenensis*.

Primers for coding region sequencing

Primer Name	Primer Sequence (5'-3')
cMYB1-F [†]	ATGAATAAGGTAGGACTTAGAAAGG
$cMYB1-R^{\dagger}$	TTAAAATATGTCATCAAAATAAAGCTCATCC
cMYB6-3F [‡]	TGCTACAGAAAGTCTAACGT
cMYB6-1R [‡]	ACCGCTGATTTATTTGAAACCCT
cMYB11-5F [‡]	AAAAACCAGAAGAAAAACCCA
cMYB11-6R	AATTTCACAGTTTAATCATTTG
cMYB12-9F	AATGAAGGAAGGTCTAAGGAA
cMYB12-5R	CTACAACTGAAATATGTCGTGATC

Target species: Clarkia amoena huntiana

Target species: Clarkia lassenensis

Primer Name	Primer Sequence (5'-3')
cMYB6-4F	CATGGGTGGTGTTCCTTGGA
cMYB6-5R	TTACAGAGAGTTATTCCACAGATCG
cMYB11-7F	AATGAAGGGAGAATTAAGGAAG
cMYB11-5R	TTACTTGGAAATATGATTCTACACA
cMYB12-11F	ATGCACGCTCTACAATAAAACG
cMYB12-6R	TTTAGTATAACGGCATAATTTCT

Target species: Clarkia gracilis albicaulis

Primer Name	Primer Sequence (5'-3')
cMYB6-3F [‡]	TGCTACAGAAAGTCTAACGT
cMYB6-1R [‡]	ACCGCTGATTTATTTGAAACCCT
cMYB11-3F	GTGAGTCGCATGGCTGT
cMYB11-2R [‡]	CACAGTTTAATCATTTGATTC

Primers for semi-quantitative assessment

Primer Name	Primer Sequence (5'-3')
cMYB1-gF [†]	TGGTCACTCATAGCAGGAAGA
cMYB1-Q1R	TCATCAACCAGTCCGACCAA

ClMYB1-1R ^a	GGGTTATACCCACTCTCAGTTCC
cMYB6-Q1F [‡]	GACGAACCCACCGAATCAAG
cMYB6-Q1R [‡]	CAGATCGTCCCAGTCCCATT
ClMYB6-Q1F ^a	CGGTGTCGGTCTTGGAGATA
ClMYB6-Q1R ^a	TCATCCCAATCCCATTTTCTGC
cMYB11-Q1F [‡]	GACAAGGAGGTGATGAATTGGT
cMYB11-Q1R [‡]	ATTCTACACATTCATGGAGTCGA
cMYB12-Q1F [‡]	GAGCAAGATTCGGTCAAAGT
cMYB12-1R [‡]	TATTCCGTTACAATGAGGCT
GAPDH-Q1F [‡]	GAGGCATCAGAGACCCACAT
GAPDH-Q1R [‡]	CACGACACGAGCTTCACAAA

Table S2. Anthocyanin genes identified from the transcriptomes of *Clarkia gracilis albicaulis*. The transcriptomes were obtained from pink background and white band of the *C. g. albicaulis* petals, following the protocol described in supplementary methods S1. Gene expression levels were estimated as FPKM values by mapping reads to the transcriptome references of pink background and white band, separately.

		Expression (FPKM)		
Contin ID	C	Pink	White	
Contig ID	Gene	background	band	
Pink background referend	се			
RCL6_27068_c0_g1	Chs	1350.66	1138.03	
RCL6_21692_c0_g1	Chi	74.56	26.34	
RCL6_23311_c0_g4	F3h	45.94	50.03	
RCL6_27159_c0_g1	F3 'h	15.98	27.28	
RCL6_23784_c0_g1	F3 '5 'h	649.53	381.47	
RCL6_23661_c0_g1	Dfr	757.58	121.86	
RCL6_26489_c1_g1	Dfr3	66.31	1140.31	
RCL6_26565_c4_g2	Ans	628.81	45.37	
RCL6_22269_c2_g4	Uf3gt	216.18	154.25	
RCL6_24035_c1_g1	MYB6	858.87	595.14	
RCL6_21823_c2_g1	MYB11	121	46.94	
RCL6_28257_c0_g1	bHLH1	39.6	34.93	
RCL6_20240_c0_g1	bHLH2	4.88	5.04	
RCL6_23159_c0_g2	WDR1	20.9	14.74	
RCL6_21868_c0_g1	WDR2	14.88	13.33	
White band reference				
RCL7_26363_c0_g2	Chs	1372.81	846.27	
RCL7_20945_c0_g1	Chi	108.08	25.05	
RCL7_20216_c0_g4	F3h	78.11	70.13	
RCL7_26446_c0_g1	F3 'h	16.34	22.74	
RCL7_23161_c0_g1	F3 '5 'h	639.85	290.18	
RCL7_28129_c1_g1	Dfr1	610.03	77.41	
RCL7_20076_c4_g1	Dfr3	52.54	705.62	
RCL7_23829_c0_g1	Ans	579.14	35.97	
RCL7_20317_c4_g2	Uf3gt	189.3	107.65	

RCL7_23760_c0_g1	MYB6	664.67	354.33
RCL7_25096_c3_g1	MYB11	117.44	36.33
RCL7_27788_c0_g4	bHLH1	37.33	25.92
RCL7_20277_c0_g2	bHLH2	1.85	1.52
RCL7_22704_c0_g1	WDR1	19.48	11.32
RCL7_22679_c0_g1	WDR2	10.62	7.38

	Branch(es)		
Clade	C. gracilis	C. amoena huntiana	C. lassenensis
MYB6	0.0371	NA	0.1415
MYB1	0.0218	0.0031	NA
MYB11	0.0248	0.0025	NA
MYB12	0.0085	0.0025	NA

Table S3. Synonymous substitution rate (d_S) along the branches leading to *Clarkia gracilis* and to its progenitor species, *C. amoena huntiana* and *C. lassenensis*. NA, not applicable.

Table S4. Voucher information for the *Clarkia* plants used in this study. RSABG, seeds obtained from Rancho Santa Ana Botanical Garden (Claremont, CA, USA). NFW, seeds from the collection of Norman F. Weeden. TRM, seeds provided by Talline R. Martins (University of Florida, Gainesville, FL, USA). LDG, seeds from the collection of Leslie D. Gottlieb.

Specimen	Voucher	Location	Phenotype
C. amoena huntiana	RSABG 15875	Mendocino County, CA	Central-spotted, pink-cupped
C. amoena huntiana	RSABG 15876	Marin County, CA	Central-spotted, pink-cupped
C. lassenensis	NFW 84b	Shasta County, CA	Basal-spotted, white-banded
C. lassenensis	NFW 152	Shasta County, CA	Basal-spotted, white-banded
C. gracilis sonomensis	TRM 14.6 (LDG 8513)	Sonoma County, CA	Central-spotted, pink-cupped
C. gracilis sonomensis	TRM 14.26 (LDG 8513)	Sonoma County, CA	Central-spotted, white-cupped
C. gracilis albicaulis	TRM 040 (Butte12)	Butte County, CA (Collected by B. Barringer)	Basal-spotted, white-banded

	٨
•	٦

Α		
CgsMYB1	ATGAATAAGGTAGGAGTTAGAAAGG <mark>GTG</mark> GTTGGAC <mark>T</mark> GCAAA <mark>T</mark> GAAGATGC	50
CgaMYB1	ATGAATAAGGTAGGACTTAGAAAGG <mark>GT</mark> GGTTGGAC <mark>T</mark> GCAAA <mark>T</mark> GAAGATGC	50
CahMYB1	ATGAATAAGGTAGGACTTAGAAAGG <mark>GTG</mark> GTTGGAC <mark>T</mark> GCAAAT <mark>G</mark> AAGATGC	50
ClMYB1	GT <mark>A</mark> GTTGGAC <mark>A</mark> GCAAA <mark>A</mark> GAAGATGC	25
CgsMYB1	C C T A C T C A A G C A A T G C G T T C A A A C T T A T G G A A A G G C A A C T G G C A T C T A G	100
CgaMYB1 CgaMYB1	CCTACTCAAGCAATGCGTTCAAACTTATGGAGAAGGCAACTGGCATCTAG CCTACTCAAGCAATGCATTCAAACTTATGGAGAAGGCAATTGGCATCTAG	100
CahMYB1	CCTACTCAAGCAATGCGTTCAAACTTATGGAGAAGGCAACTGGCATCTAG	100
C1MYB1	CCTACTGAAGCAATGC <mark>G</mark> TTCAAAC <mark>C</mark> TATGGAGAAGGTAA <mark>C</mark> TGGCATCTAG	75
CgsMYB1	TCCCCGAT <mark>A</mark> GAGCAGGTTTGAATAGGTGCAGAAAA <mark>A</mark> GTTGC <mark>C</mark> GATT <mark>A</mark> AGG	150
CgaMYB1	TCCCCGATCGAGCAGGTTTGAATAGGTGCAGAAAAAAGTTGCCGATTAAGG	150
CahMYB1	TCCCCGATAGAGCAGGTTTGAATAGGTGCAGAAAAAGTTGCCGATTAAGG	150
ClMYB1	TCCCCGAT <mark>A</mark> GAGCAGGTTTGAATAGGTGCAGAAAA <mark>G</mark> GTTGC <mark>A</mark> GATT <mark>G</mark> AGG	125
CgsMYB1	TGGCTTAACTATCT <mark>G</mark> AA <mark>A</mark> CCAGGC <mark>T</mark> TAAA <mark>C</mark> CGAG <mark>A</mark> AGAGTTCCAAGAAGA	200
CgaMYB1	TGGCTTAACTATCTGAAACCAGGCTTAAACCGAGAAGAGTTCCAAGAAGA	200
CahMYB1	TGGCTTAACTATCT <mark>G</mark> AA <mark>G</mark> CCAGGC <mark>T</mark> TAAA <mark>C</mark> CGAG <mark>A</mark> AGAGTTCCAAGAAGA	200
ClMYB1	TGGCTTAACTATCT <mark>A</mark> AA <mark>G</mark> CCAGGC <mark>A</mark> TAAA <mark>T</mark> CGAG <mark>G</mark> AGAGTTCCAAGAAGA	175
Cachtyp1		250
CgsMYB1 CgaMYB1	TGAAAT <mark>T</mark> GACTTGATTATTAGGCTTCACAAGCTTTT T GGCAA T AAATGGT TGAAAT <mark>C</mark> GACTTGATTATTAGGCTTCACAAGCTTTT <mark>C</mark> GGCAA A AAATGGT	250
CahMYB1	TGAAATTGACTTGATTATTAGGCTTCACAAGCTTTTCGGCCAAAAATGGT	250
C1MYB1	TGAAATTGACTTGATTATTAGGCTTCACAAGCTTTTTGGCAAAAAATGGT	225
CgsMYB1	CACTCATAGCAGGAAGACTTCC <mark>T</mark> GGAAGAACAA <mark>G</mark> CAA <mark>T</mark> GATATAAA <mark>G</mark> AAT	300
CgaMYB1	CACTCATAGCAGGAAGACTTCC <mark>T</mark> GGAAGAACAA <mark>A</mark> CAA <mark>T</mark> GATATAAA <mark>A</mark> AAT	300
CahMYB1	CACTCATAGCAGGAAGACTTCC <mark>T</mark> GGAAGAACAA <mark>G</mark> CAA <mark>T</mark> GATATAAA <mark>G</mark> AAT	300
ClMYB1	CACTCATAGCAGGAAGACTTCC <mark>C</mark> GGAAGAACAA <mark>G</mark> CAA <mark>C</mark> GATATAAA <mark>G</mark> AAT	275
CgsMYB1	TACTGGTACACCCATATTGCCAAGAAATTACCTGCAGAACC	341
CgaMYB1	TACTGG <mark>T</mark> ACACCCATATTG <mark>CCAAGAAATTACC</mark> TGCAGAACC	341
CahMYB1	TACTGG <mark>T</mark> A <mark>CA</mark> CC <mark>CATATTG</mark> CCAAGAAATTACATGCAGAACC	341
ClMYB1	TACTGG <mark>A</mark> ATA <mark>GT</mark> CATATTG <mark>T</mark> CAAGAAATTA <mark>GCCAAAGCTGC</mark> TGCA <mark>C</mark> AACC	325
CgsMYB1	AGTTATATCGCAGGAAAATTCAGTCAAACACCACGCCATAATAAGGCCTA	391
CgaMYB1 CgaMYB1	AATTATATCGCAGGAAAATTCAGTCAAACACCACGCCATAATAAGGCCTA AATTATATCGCAGGAAAATTCAGTCAAACACCACGCCATAATAAGGCCTA	391
CahMYB1	AATTATATCGCAGGAAAATTCAGTCAAACACCACGCCATAATAAGGCCTA	391
ClMYB1	AATTAT <mark>T</mark> TCGCAGGAAAATTCAGTCAAA <mark>G</mark> AACACG <mark>T</mark> CATAATA <mark>AAACCTA</mark>	375
CgsMYB1	TTGCAGGAAGA CCGACCAAAGGGATGCAGTTTGGTATGAA	431
CgaMYB1		431
CahMYB1	TTGCAGGAAGACCGACCAAAGGGATGCAGTTTGGTATGAA TTGCAGGAAGACTTACCAAAGGGATGAAGTTTGGCATGAATATCGTCTTA	431
ClMYB1	TIGCAGGAAGACTIACCAAAGGGATGAAGTIIGGCAIGAATAICGICTIA	425
CgsMYB1	TGTCACCTCTGATCAGCCTCCACCACCT <mark>CT</mark> GGAGAATTGGTCGGACTG	479
CgaMYB1	TGTCACCTCTGATCAGCCTCCACCACCT <mark>CT</mark> GGAGAATTGGTCGGACTG	479
CahMYB1	TG <mark>T</mark> CACCTCTGATCAGCCTCCACCACCT <mark>CT</mark> GGAGAATTGGT <mark>C</mark> GGAC <mark>T</mark> G	479
ClMYB1	GG TG <mark>C</mark> CACCTCTGATCAGCCTCCACCACCT <mark>TG</mark> GGAGAATTGGT <mark>G</mark> GGAC <mark>A</mark> G	475
CCOMVD1	GTTGATGATGG <mark>AC</mark> GATGATA <mark>T</mark> TAATTATTATGA <mark>TAA</mark> TGGTGGTGGTTGTT	529
CgsMYB1 CgaMYB1		529 529
CgaMIBI CahMYB1		529
C1MYB1	GTTGATGATGG <mark>GT</mark> GATGATAATAATTATTATGA TTT TGGTGGTGGTTGTT	525

Fig. S1. (to be continued on the next page)

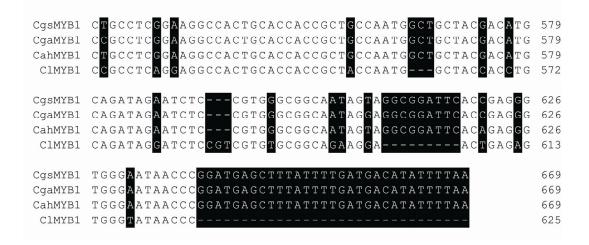


Fig. S1. (to be continued on the next page)

В		
CgsMYB6	A T G G G T G G T G T T C C T T G G A C T G A G A G A G A G A G C T T C T G C T T A G A A A T G	50
CgaMYB6	ATGGGTGGTGTTCCTTGGACTGAAGAAGAGGGATCTTCTGCTTAAGAAATG	50
CahMYB6	A T G G G T G G T G T T C C T T G G A C T G A A G A G A G A G A G A G A G A G A	50
C1MYB6	CTGAAGAAGA <mark>A</mark> GATCTTCTGCTTAAGAAATG	31
	-	
CgsMYB6	CGTCGAGCAGTTCGGCGAAGGGAAATGGCACCGGGTTCCGCTTTTAGCCG	100
CgaMYB6	CGTCGAGCAGTTCGGCGAAGGGAAATGGCACCGGGTTCCGCTTTTAGCCG	100
CahMYB6 ClMYB6	CGTCGAGCAGTTCGG <mark>C</mark> GAAGGGAAATGGCACCGGGTTCCGCTTTTAGCCG CGTCGAGCAGTTCGG <mark>T</mark> GAAGGGAAATGGCACCGGGTTCCGCTTTTAGCCG	100 81
CIMIDO	CGICGAGCAGIICGG GAAGGGAAAIGGCACCGGGIICCGCIIIIAGCCG	01
CgsMYB6	G T C T C A A C A G G T G C A G G A G A G A G T T G C A G A C T G A G G T G G C T G A A T T A T C T T	150
CgaMYB6	G T C T A A A C A G G T G C A G G A A G A G T T G C A G A C T G A G G T G G C T G A A T T A T C T T	150
CahMYB6	GTCT <mark>G</mark> AACAGGTGCAGGAAGAGTTGCAGACTGAGGTGGCTGAA <mark>T</mark> TA <mark>T</mark> CT <mark>T</mark>	150
C1MYB6	G T C T A A C A G G T G C A G G A A G A G T T G C A G A C T G A G G T G G C T G A A <mark>C</mark> T A <mark>C</mark> C T <mark>C</mark>	131
CgsMYB6	CGACCGAATATCAAGAGAGGGAGCTT ACTCAAGATGAAGTCGAGCTCAT	200
CgaMYB6 CahMYB6	CGACCGAATATCAAGAGAGGGAGCTTCACTCAAGATGAAGTCGAGCTCAT AGACCGAATATCAAGAGAGGGAGCTTCACTCAAGATGAAGTCGAGCTCAT	200 200
ClMYB6	CGACCGAATATCAAGAGAGGGAGCTTCACTCAAGATGAAGTCGAGCTCAT	181
CIMIDO	CACCOARTATCAAGAGAGGGAGGTTCAAGATGAAGTCGAGCTCAT	101
CgsMYB6	CATCAAGCTCCA T AAGCTTGTCGGGAATCGGTGGTC <mark>G</mark> ATGATTGC <mark>C</mark> GGAA	250
CgaMYB6	CATCAAGCTCCA <mark>T</mark> AAGCTTGTCGGGAATCGGTGGTC <mark>G</mark> ATGATTGC <mark>C</mark> GGAA	250
CahMYB6	CATCAAGCTCCA <mark>T</mark> AAGCTTGTCGGGAATCGGTGGTC <mark>A</mark> ATGATTGC <mark>C</mark> GGAA	250
C1MYB6	CATCAAGCTCCA <mark>C</mark> AAGCTTGTCGGGAATCGGTGGTC <mark>C</mark> ATGATTGC <mark>T</mark> GGAA	231
a		
CgsMYB6 CgaMYB6	GACTCCC <mark>G</mark> GGAAGAACAGC <mark>TAAC</mark> GATGTCAAGAACTTTTGGAACTG <mark>T</mark> CAT GACTCCCTGGAAGAACAGC <mark>T</mark> AATGATGTCAAGAACTT <mark>C</mark> TGGAACTGTCAT	300 300
CgaM1B6 CahMYB6	GACTCCCGGGAAGAACAGCTAACGATGTCAAGAACTTTTGGAACTGTCAT	300
C1MYB6	GACTCCCCGGAAGAACAGCGAACGATGTCAAGAACTTTTGGAACTGCCAT	281
CgsMYB6	CT <mark>AAGCAAAAAGCTGACTGCCGAACAAATGAGCATCGACCCTGAAC</mark> AG	350
CgaMYB6	CTAAGCAAAAAGCTGACTGCCGAACAAATGAGCATCGACCCTGAAC <mark>GA</mark> AG	350
CahMYB6	CTAAGCAAAAAGCTGACTGCCGAACAAATGAGCATCGACCCTGAACAGAG	350
C1MYB6	CT <mark>G</mark> AGCAAAAAGCTGACTGCCGAACAAATGAGCATCGACCCTGAAC <mark>GG</mark> AG	331
CqsMYB6	AATAGACAACCTAGTCCCGATAATAATGCCCCAACCGCGAAACCCTACAT	400
CgaMYB6	CATAGATAGCCTAGTCCCG <mark>GTC</mark> ATA <mark>ATGCCACAACCC</mark> C <mark>GAAACC</mark> CTGGAT	400
CahMYB6	AATAGACAACCTAGTCCCGATCATA <mark>ATG</mark> CC <mark>CAACCA</mark> C <mark>GAAA</mark> CCCTACAT	400
C1MYB6	CATAGA <mark>C</mark> AGTCTAGTCCCGGTCATAATG <mark>GCACAACCGCT</mark> AAA <mark>AT</mark> C <mark>GGT</mark> AT	381
CgsMYB6	CCGTCTCAAGAAAACCGAACAAAAGAGACCCAAGAAGTTGGGACTTCTATA	450
CgaMYB6 CahMYB6	CCATCTCGAGAAAACCGAACAAAAGAGACCAAGAAGTTGGTACCTCTATA CCGTCTCGAGAAAACCGAACAAAAGAGACCAAGAAGTTGGGACTTCTATA	450 450
ClMYB6	CCGTCTCGAGAAAACCGAACAAAAGAGAGCCAAGAAGTIGGGACTICTATA CCGTCTCGAGAAAACTGAACAAAAGAGAGCAAGAAGTTGGGACTTCTATA	430
OTHEDO		101
CgsMYB6	GTGACACTTCCAAG <mark>T</mark> GTCGGTGAAGATGG <mark>A</mark> GCAATGAA <mark>C</mark> GCA <mark>G</mark> TTCAAGT	500
CgaMYB6	GTGACACTTCCAAG <mark>T</mark> GTCGGTGAAGATGG <mark>A</mark> GCAATGAA <mark>C</mark> GCA <mark>G</mark> TTCAAGT	500
CahMYB6	GTGACACTTCCAAG <mark>T</mark> GTCGGTGAAGATGG <mark>A</mark> GCAATGAA <mark>C</mark> GCA <mark>G</mark> TTCAAGT	500
C1MYB6	GTGACACTTCCAAG <mark>C</mark> GTCGGTGAAGATGG <mark>G</mark> GCAATGAA <mark>T</mark> GCA <mark>A</mark> TTCAAGT	481
Cashyp		EEO
CgsMYB6 CgaMYB6	TATCGAT <mark>G</mark> ATGGAAAGA <mark>CG</mark> AACCC <mark>AC</mark> CGAATCAAGAACACAGTGTC <mark>A</mark> GTC TATCGATGATGGAAAGA <mark>CA</mark> AACCC <mark>AC</mark> CGAATCAAGAACACGGTGTCGGTC	550 550
CgaM1B6 CahMYB6	TATEGATGATGGAAAGACAAAGACCAACCGAATCAAGAACACGGIGICGGIC TATEGATGATGGAAAGACGAACCCACCAAATCAAGAACACGGIGICGGIC	550
C1MYB6	TATCGATCATGGAAAGACGAACCCTGCAACTCAAGAACACGGTGTCGGTC	531
0		

Fig. S1. (to be continued on the next page)

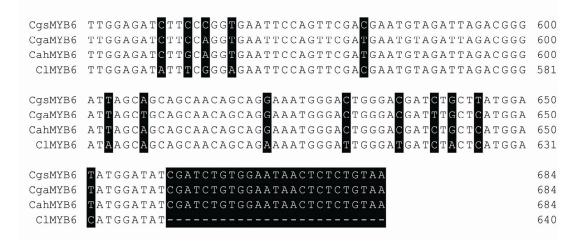


Fig. S1. (to be continued on the next page)

С		
CqsMYB11	A T G A A G G G A G A A T T A A G G A A G G G T G T	50
CqaMYB11	ATGAAGGGAGAATTAAGGAAGGGTGCTTGGAATGCAGAAGAAGATGCTCT	50
CahMYB11	A T G A A G G G A G A A T T A A G G A A G G G T G C T T G G A A T G C A G A A G A T G C T C T	50
ClMYB11	GGTG <mark>CA</mark> TGGAATGCAGAAGAAGATGCTCT	29
CgsMYB11	CCTCAAGCAATGCATTCAAACTTATGGAGAAGG <mark>A</mark> AAATGG <mark>C</mark> ATCTTGTTC	100
CgaMYB11	CCTCAAGCAATGCATTCAAACTTATGGAGAAGG <mark>A</mark> AAATGG <mark>C</mark> ATCTTGTTC	100
CahMYB11	CCTCAAGCAATGCATTCAAACTTATGGAGAAGG <mark>A</mark> AAATGG <mark>C</mark> ATCTTGTTC	100
ClMYB11	CCTCAAGCAATGCATTCAAACTTATGGAGAAGG <mark>C</mark> AAATGG <mark>H</mark> ATCTTGTTC	79
CgsMYB11	C T G C A A G A A C A G G A C T C A A T A G G T G C A G A A A A A G T T G C A G G T T G A G G T G G	150
CgaMYB11	CTACAAGAACAGGACTCAATAGGTGCAGAAAAGTTGCAGGTTGAGGTGG	150
CahMYB11	CTGCAAGAACAGGACTCAATAGGTGCAGAAAAAGTTGCAGGTTGAGGTGG	150
ClMYB11	C C G C T A G A A C A G G G C T G A A T A G G T G C A G A A A A G T T G C A G A T T G A G G T G G	129
CgsMYB11	CTCAACTATCT <mark>G</mark> AA <mark>G</mark> CCGGGCATAAACCGTA <mark>G</mark> AGAG <mark>T</mark> TTCAAGAAGATGA	200
CgaMYB11	CTCAACTATCT <mark>C</mark> AA <mark>C</mark> CCGGGCATAAACCGTA <mark>G</mark> AGAGCTTCAAGAAGATGA	200
CahMYB11	CTCAACTATCT <mark>C</mark> AA <mark>G</mark> CCGGGCATAAACCGTA <mark>G</mark> AGAGCTTCAAGAAGATGA	200
ClMYB11	CTCAACTATCTTAA <mark>A</mark> CCGGGCATAAACCGTA <mark>A</mark> AGAG <mark>C</mark> TTCAAGAAGATGA	179
CqsMYB11	AGTTGACTTG <mark>A</mark> TCATCAGGCTTCATAAGCTTCTTGG <mark>C</mark> AATAGATGGTCAC	250
CgaMYB11 CgaMYB11	AGTIGACTIGGTCATCAGGCTICATAAGCTICTIGGCAATAGATGGTCAC	250
CahMYB11	AGTTGACTTGATCATCAGGCTTCATAAGCTTCTTGGCAATAGATGGTCAC	250
ClMYB11	AGTTGACTTGATCATCAGGCTTCATAAGCTTCTTGGAAATAGATGGTCAC	229
CgsMYB11	TTATTGC <mark>A</mark> GGAAG <mark>G</mark> CT <mark>A</mark> CC <mark>G</mark> GGAAGAACATCCACCCA <mark>A</mark> GTAAAGAATTAC	300
CgaMYB11	TTATTGC <mark>G</mark> GGAAG <mark>CCTT</mark> CC <mark>G</mark> GGAAGAACATCCACCCA <mark>A</mark> GTAAAGAATTAC	300
CahMYB11	TTATTGCAGGAAGGCTTCCGGGAAGAACATCCACCCAAGTAAAGAATTAC	300
ClMYB11	TTATTGC <mark>A</mark> GGAAG <mark>A</mark> CT <mark>T</mark> CC <mark>C</mark> GGAAGAACATCCACCCA <mark>C</mark> GTAAAGAATTAC	279
CgsMYB11	T G G A A T G C C C <mark>A</mark> T A T A G C T A A A A A G T G G A G A T C G T C A T C <mark>C</mark> A A G C T G C A C C	350
CgaMYB11	T G G A A T G C C C <mark>G T A C</mark> A G C T A A A A G T G G A G A T C G T C A T C C A A T C T G C A G C	350
CahMYB11	T G G A A T G C C C <mark>A</mark> T A T A G C T A A A A A G T G G A G A T C G T C A T C C A A G C T G C A G C	350
ClMYB11	TGGAATGCCC <mark>A</mark> TA <mark>T</mark> AGCTAAAAAGTGGAGATCGTCATC <mark>A</mark> AA <mark></mark> A <mark>GT</mark>	323
CgsMYB11 CgaMYB11	TGCAGAATCAAAATCATCATCTTATAAAGGAAAACAGCAAGAATATT TGCAGAATCAAAATCATCATCTAAAGGAAAACAACAACAATATT	397 394
CahMYB11 CahMYB11	TGCAGAATCAAAATCATCATCTAAAGGAAAACAGCAAGAATATT	394
ClMYB11	TGCAGAATCAAAATCATCATCATC	370
		0.0
CgsMYB11	CAGTAAACGT <mark>C</mark> ATA <mark>AGCCTATTGCTAGAAGA</mark> GCTCCCAAAATGATC <mark>G</mark> AT	447
CgaMYB11	CAGT <mark>A</mark> AACGT <mark>T</mark> ATA <mark>AGGCCTATTGCTAGAAGA</mark> GCTCCCAAAATGATC <mark>G</mark> A <mark>T</mark>	444
CahMYB11	CAGT <mark>A</mark> AACGT <mark>C</mark> ATA <mark>AGCCTATTGCTAGAAGA</mark> GCTCCCAAAATGATC <mark>G</mark> A <mark>T</mark>	444
ClMYB11	CAGT <mark>C</mark> AACGT <mark>C</mark> ATAA <mark>GGCCTATTGCTAGAAGA</mark> GCTCCCAAAATGATC <mark>A</mark> AG	420
CgsMYB11	TTTGGT <mark>ATGACC</mark> ATGAAT <mark>A</mark> A <mark>C</mark> AATAATATATGCAGCA <mark>T</mark> GTCCACCTCTCA	497
CgaMYB11	TTTGGT <mark>ATGATC</mark> ATGAATAACAATAATATATGCAGCAGGTCCACCTCTCA	494
CahMYB11	TTTGGT <mark>ATGATC</mark> ATGAATAACAATAATATATGCAGCATGTCCACCTCTCA	494
ClMYB11	TTTGGT <mark></mark> ATGAAT <mark>G</mark> A <mark>T</mark> AATAATA <mark>A</mark> ATGCAGCA <mark>G</mark> GTCCACCTCTCA	464
CgsMYB11	GCTGCCGCCTCATCTAGATTGTACCGGAATAATAAATACAG	538
CgaMYB11	GCTGCCGCCTCATCTAGATTGTACCGAAATAATAAATACAG	535
CahMYB11	GCTGCCGCCTCATCTAGATTGTACCGAAATAATAAATACAG	535
ClMYB11	GC <mark>C</mark> GCCGC <mark>CGCCTCCAT</mark> CTCATCT <mark>T</mark> GATTGTA <mark>A</mark> CG <mark>A</mark> AATAATAAATGAAG	514

Fig. S1. (to be continued on the next page)

CgsMYB11	ACAA <mark>G</mark> GAGGTGATGAATTGGTTG <mark>C</mark> AGAG <mark>A</mark> TTATTGGACGATGATGATTTA	588
CgaMYB11	ACAAGGAGGTGATGAATTGGTTGGAGAGATTATTGGACGATGATGATTTA	585
CahMYB11	ACAAGGAGGTGATGAATTGGTTGCAGAGATTATTGGACGATGATGATTTA	585
ClMYB11	ACAA <mark>C</mark> GAGGTGATGAATTGGTTG <mark>G</mark> AGAG <mark>G</mark> TTATTGGACGATGATGATTTA	564
CgsMYB11	ATTGGT <mark>TTT</mark> GGAGGAGAC <mark>G</mark> GTGGCTC <mark>T</mark> GCCGCCTCAGAAGGCCACTGTAC	638
CgaMYB11	ATTGGT <mark>GGT</mark> GGAGGAGAC G GTGGCT C TGCCGCCTCAGAAGGCCACTGTAC	635
CahMYB11	ATTGGT <mark>GGT</mark> GGAGGAGAC <mark>G</mark> GTGGCT <mark>C</mark> TGCCGCCTCAGAAGGCCACTGTA <mark>C</mark>	635
ClMYB11	ATTGGT <mark>GGA</mark> GGAGGAGACAGTGGCT G TGCCGCCTCAGAAGGCCACTGTAT	614
CasMYB11	CACCGTAGGTGGGTATATGTCGACTCCATGA	672
CgaMYB11	C <mark>AC</mark> CGTAG <mark>GT</mark> GGTGGGTA <mark>TAT</mark> GTCGACT <mark>C</mark> CATGA	669
CahMYB11	CACCGTAG <mark>GTGGGTGGGTAC</mark> ATGTCGACTCCATGA	669
ClMYB11	C <mark>GT</mark> CGTAGAA <mark>GGTGGGTATATATCGACTG</mark> CATGA	648

Fig. S1. (to be continued on the next page)

D		
CgsMYB12	ATGAAGGAAGGTCTAAGGAAGGGGGGGTGCTTGGAGTGCAGAAGAAGATGCTCT	50
CgsMYB12W	ATGAAGGAAGGTCTAAGGAAGGGTGCTTGGAGTGCAGAAGAAGATGCTCT	50
CahMYB12	GGGTGCTTGGAGTGCAGAAGAAGATGCTCT	30
ClMYB12	ATGAACGGAGGTCTAAGGAAGGGGGGCTTGGAGTG <mark>A</mark> AGAAGAAGATGCTCT	50
CgsMYB12	CCTCAAGCAATGTATTCAAATTTATGGAGAAGGCAAATGGCATCTTGTTC	100
CgsMYB12W	CCTCAAGCAATGTATTCAAATTTATGGAGAAGGCAAATGGCATCTTGTTC	100
CahMYB12	CCTCAAGCAATGTATTCAAATTTATGGAGAAGGCAAATGGCATATTGTTC	80
ClMYB12	ACTCA <mark>G</mark> GCAATGCATTCAAACTTATGGAGAAGGCAAATGGCATCTTGTTC	100
CHENNEL 1		1 5 0
CgsMYB12 CgsMYB12W	CCGCCAGAGCCAGGGCTAAATAGGTGTAGAAAAGGTTGCAGATTGAGGTGG CCGCCAGAGCCAGGGCTAAATAGGTGTAGAAAAGGTTGCAGATTGAGGTGG	150 150
CahMYB12W CahMYB12	CCGCCAGAGCAGGGCTAAATAGGTGTAGAAAAGGTTGCAGATTGAGGTGG CCGCCAGAGCCAGGGCTAAATAGGTGTAGAAAAGGTTGCAGATTGAGGTGG	130
ClMYB12	CCGCTAGATCAGGGCTGAATAGGTGCAGAAAAGGTTGCAGGTGGG CCGCTAGATCAGGGCTGAATAGGTGCAGAAAAGGTTGCAGGTGGG	150
CINIDIZ		100
CgsMYB12	CTCAACTAT <mark>CTGAAGCCA</mark> GGCATAAACCTAA <mark>A</mark> AGAGCTTCAA <mark>G</mark> ATGATGA	200
CgsMYB12W	CTCAACTAT <mark>CTGAAGCC</mark> AGGCATAAACCTAA <mark>A</mark> AGAGCTTCAA <mark>G</mark> ATGATGA	200
CahMYB12	CTCAACTAT <mark>CTGAAGCC</mark> AGGCATAAACCTAA <mark>A</mark> AGAGCTTCAA <mark>G</mark> ATGATGA	180
ClMYB12	CTCAACTAT <mark>T</mark> TGAAGCC <mark>C</mark> GGCATAAACCTAA <mark>C</mark> AGAGCTTCAA <mark>C</mark> ATGATGA	200
CgsMYB12	AGTTGACTTGATCCTCAAACTTCACAAGCTTCTTGGCAACAAATGGTCAC	250
CgsMYB12W	AGTTGACTTGATCCTCAAACTTCACAAGCTTCTTGGCAACAAATGGTCAC	250
CahMYB12	AGTTGACTTGATCCTCAAACTTCACAAGCTTCTTGGCAACAAATGGTCAC	230
ClMYB12	ACTTGACTTGATCTTCAAACTTCACAAGCTTCTTGGCAACAAATGGTCAC	250
CqsMYB12	TTATAGCAGGAAGACTTCCGGGAAGAACATGCAATTATATAAAGAATTAC	300
CgsMYB12W	TTATAGCAGGAAGACTTCCGGGAAGAACATGCAATTATATAAAGAATTAC	300
CahMYB12	TTATAGCAGGAAGACTTCCAGGAAGAACATGCAATTATATAAAGAATTAC	280
ClMYB12	TTAT <mark>T</mark> GCAGGAAGACTTCC <mark>C</mark> GGAAGAACATGCAA <mark>C</mark> TA <mark>C</mark> ATAAAGAATTAC	300
a		250
CgsMYB12 CgsMYB12W	TGGAACTCCAATATTGCTGCTAAAAAGTGGAAATCAAGAGAAAAGCAGCA TGGAACTCCAATATTGCTGCTAAAAAGTGGAAATCAAGAGAAAAAG-AGCA	350 349
CahMYB12W CahMYB12	TGGAACTCCAATATTGCTGCTAAAAAGTGGAAATCAAGAGAAAAGGAGAAAAG	330
ClMYB12	TGGAACTCCCATTTTACTGCTAAAAAGTGTAAATCAAGAAAAAAGCTGAA	350
01111011		000
CgsMYB12	AGATTCGGTCAAAGTTAAAGCCATAAGGCCTATTGTA <mark>CGAAGAGCTC</mark> CCA	400
CgsMYB12W	AGATTCGGTCAAAGT <mark>TAAAGC</mark> CA <mark>TAA</mark> GGCCTATTGTACGAAGAGCTC <mark>CC</mark> A	399
CahMYB12	AGATTCGGTCAAAGT <mark>CAAAGC</mark> CATAAGGCCTATTGTA <mark>CGAAGAGCTC</mark> CCA	380
ClMYB12	CGATTCGGTCAAAGT <mark></mark> CATAAGGCCTATTGTA <mark>CGAAGAGCTC</mark> ATA	394
G		4 4 1
CgsMYB12	AAATAATCAACTTTGGAATGAATAATAATAATATAGGAACC AAATGATCAACTTTGGAATGAATAATAATAATATAGGAACC	441 440
CgsMYB12W CahMYB12	AAATGATCAACTTTGGAATGAATAATAATAATAATAATAATAACAATAATGGGAACC AAATGATCAACTTTGGAATGAATAATAATAATAATAACAATAATGGAAGC	440 430
ClMYB12	AAATGATCAAGTTCGGTAATAATAATAATAATAATAATAATAACAATAATGGAAGC AAATGATCAAGTTCGGTAATAATAATAATAATAATAATAATAAC	430
CIIIDI2		111
CgsMYB12	ACCTCTCAGCCTCATTGTAACGG	464
CgsMYB12W	ACCTCTCAGCCTCATTGTAACGG	463
CahMYB12	ACCTCTCAGCCTCATTGTAACGG	453
ClMYB12	ACCTCTC <mark>GGCCGCCGTCACTGCCGCCAACACCTCC</mark> GCCTCATTGTAACGG	491
CgsMYB12	AATAACTAGGGACGAGGTGATGAATTGGTTGGATAGGTTACTAATGG	514
CgsMYB12W	AATAACTTGGGACGACGAGGTGATGAATTGGTTGGATAGGTTACTAATGG	513
CahMYB12 ClMYB12	AATAACTACAGACGACGAGGTGATGAATTGGTTGGATAGGTTACTAATGG AATAAATACAGACGACGAGGTGGTGGAATTGGTTGGATAGGTTACTAGTGG	503 541
CIMIBIS	AATAAMIACAGACGACGICGICAATIGGTTGGATAGGTTACTAGTGG	J41

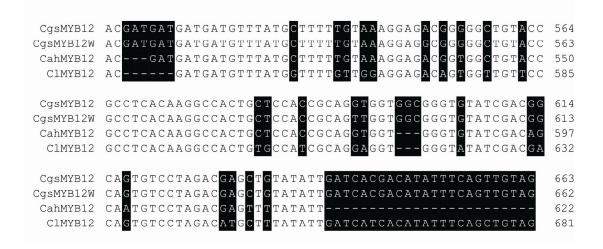


Fig. S1. Alignment of *Clarkia R2R3-MYB* sequences (*A*) *MYB1*, (*B*) *MYB6*, (*C*) *MYB11* and (*D*) *MYB12* from *C. gracilis sonomensis*, *C. g. albicaulis*, *C. amoena huntiana* and *C. lassenensis*. If the nucleotides at each column are not identical, this column is highlighted in a black background. The sequences retrieved from GenBank are: *CgsMYB1* (KX592432), *CgaMYB1* (KX592431), *ClMYB1* (KX592428), *CgsMYB6* (MT425534), *CgsMYB11* (MT425536), *CgsMYB12* (MT425538) and *CgsMYB12*^W (MT425537). Other sequences were generated in this study and were deposited in GenBank under the accession numbers MT796894-MT796902. *CgsMYB12*^W is the nonfunctional copy of *CgsMYB12*, with the presence of a deletion (highlighted in a gray background) that creates a premature stop codon (highlighted in a red background). The conserved MYB DNA-binding domain, consisting of R2 and R3 repeats, is indicated in pink and blue letters. The fragment corresponding to the conserved amino acid motif specific to the anthocyanin-regulating *R2R3MYBs* is indicated in orange letters.

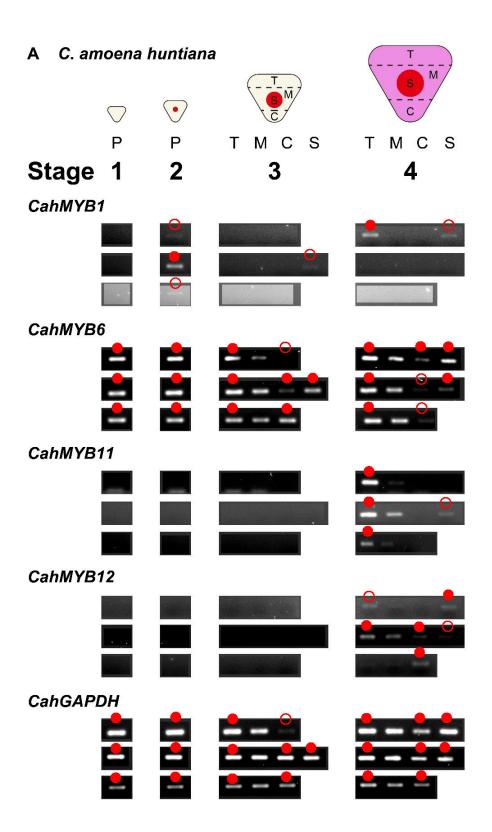


Fig. S2. (to be continued on the next page)

B C. lass	enensis	T
\langle		M
ł	РР	TMS
Stage '	12	4
CIMYB1		
CIMYB6		
CIMYB11		
CIMYB12		
	•	
CIGAPDH		

Fig. S2. (to be continued on the next page)

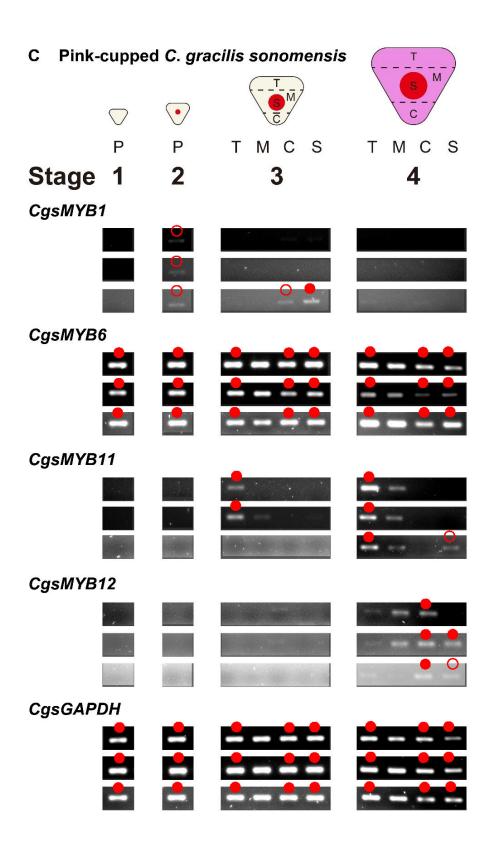


Fig. S2. (to be continued on the next page)

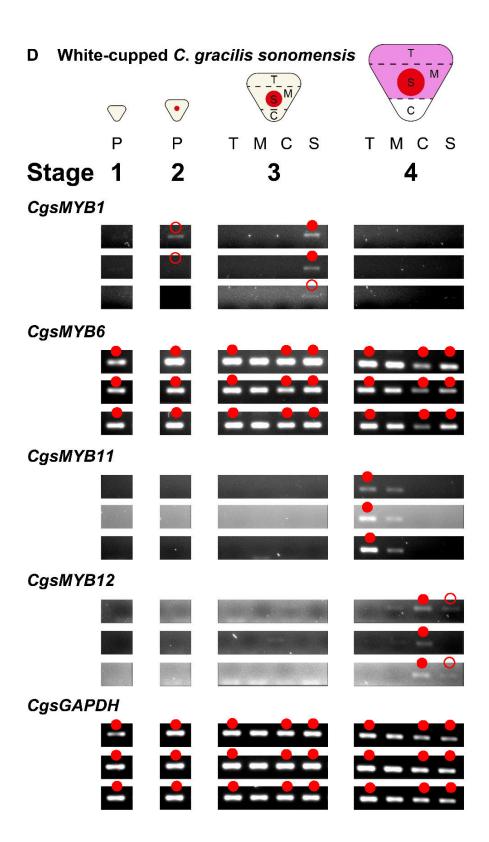


Fig. S2. (to be continued on the next page)

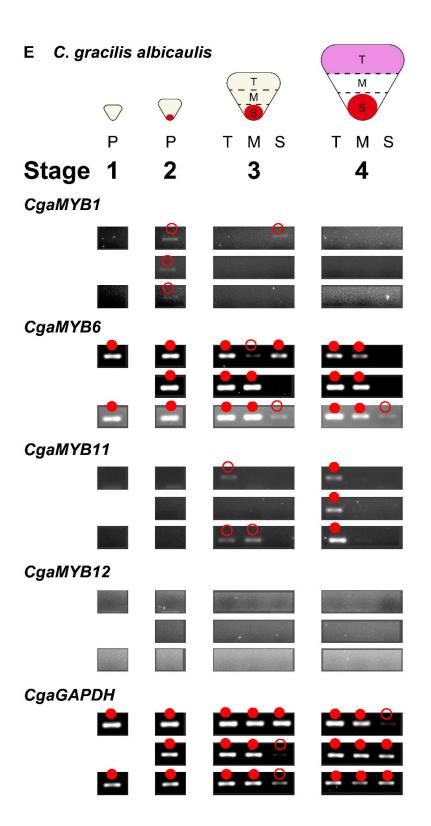


Fig. S2. Spatiotemporal expression of *MYB1*, *MYB6*, *MYB11* and *MYB12* in the petals of (A) *Clarkia amoena huntiana*, (B) C. *lassenensis*, (C) pink-cupped C. gracilis sonomensis, (D)

white-cupped *C. g. sonomensis*, (*E*) *C. g. albicaulis*. Flower buds were collected from three plants from each (sub)species/phenotypes. For Stages 1 and 2, the whole petals (P) were used. For Stages 3 and 4, the petals were dissected into sections according to coloration: T (top), M (middle, excluding the spot), C (cup) and S (spot). For *C. lassenensis*, Stages 2 and 3 were combined into Stage 2 due to a small petal size. A constitutively expressed gene *GAPDH* was included for cDNA quality control. Red circles indicate detected bands. Filled circles correspond to "+" and open circles to "(+)" in fig. 4.

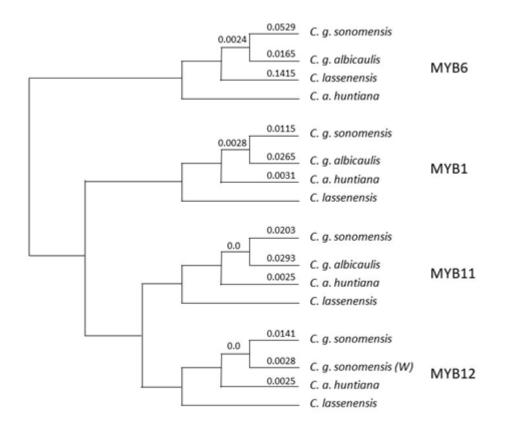


Fig. S3. Gene tree used to estimate d_s (synonymous substitution rate) along branches. Numbers above branches indicated estimated d_s . (W) indicates the nonfunctional allele of *MYB12* in *Clarkia gracilis sonomensis*.

Methods S1. Transcriptomics

To perform a comprehensive survey on which transcripts were expressed differentially between the pink background (the most distal portion) and the white band (the central portion) of the *Clarkia gracilis albicaulis* petals, we sequenced RNA extracted from these two petal regions. The petal regions were collected by dissecting flower buds (approximately 1 day before flowering) from four plants. Total RNA of pink background and white band was individually extracted using Spectrum Plant Total RNA Kit (Sigma-Aldrich, St. Louis, MO, USA). RNA samples of the two petal regions for library construction were prepared by pooling equal amounts of RNA from each plant. Prior to library construction, RNA quality was examined using Bioanalyzer Agilent RNA 6000 Nano Kit (Agilent Technologies, Santa Clara, CA, USA). We followed the protocol described in Supporting Information Methods S2 in Lin and Rausher (2021) to construct, barcode and sequence the libraries.

Bioinformatic analyses, including transcriptome assembling, identification of candidate genes for anthocyanin production and estimation of gene expression, were conducted as described in Lin and Rausher (2021).

Raw sequence reads generated in this study were deposited under NCBI Bioproject PRJNA721169 (Sequence Read Archive accessions: SRR14226355 and SRR14226356). The assembled transcriptomes were deposited at the NCBI Transcriptome Shotgun Assembly under the accessions GJDS0000000 and GJDT00000000. FPKM data are available at http://doi.org/10.5281/zenodo.4699974.

References cited in Supplementary Material

- Lin R-C, Rausher MD. 2021. *R2R3-MYB* genes control petal pigmentation patterning in *Clarkia* gracilis ssp. sonomensis (Onagraceae). New Phytol. 229(2):1147–1162.
- Martins TR, Jiang P, Rausher MD. 2017. How petals change their spots: *cis*-regulatory re-wiring in *Clarkia* (Onagraceae). *New Phytol.* 216(2):510–518.