

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Association of Long-term Exposure to PM2.5 with Blood Pressure and Hypertension Prevalence in China

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-050159
Article Type:	Original research
Date Submitted by the Author:	18-Feb-2021
Complete List of Authors:	Song, Jiali; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases Gao, Yan; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases Hu, Shuang; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases Medda, Emanuela; Istituto Superiore di Sanità, Reference Centre for Behavioural Sciences and Mental Health Tang, Guigang; Ministry of Ecology and Environment of the People's Republic of China, China National Environmental Monitoring Centre Zhang, Di; Ministry of Ecology and Environment of the People's Republic of China, China National Environmental Monitoring Centre Zhang, Wenbo; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases Li, Xi; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases Li, Jing; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases Li, Jing; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases Renzi, Matteo; Department of Epidemiology of the Regional Health Service Lazio, Epidemiology, Stazi, Maria Antonietta; Istituto Superiore di Sanità, Reference Centre for Behavioural Sciences and Mental Health Zheng, Xin; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases
Keywords:	Epidemiology < TROPICAL MEDICINE, Public health < INFECTIOUS DISEASES, Hypertension < CARDIOLOGY

1 2 3 4 5 6 7	SCHOLARONE [™] Manuscripts
8 9 10 11 12 13 14 15	
16 17 18 19 20 21 22 23 24	
24 25 26 27 28 29 30 31 32	
33 34 35 36 37 38 39	
40 41 42 43 44 45 46 47	
48 49 50 51 52 53 54 55	
56 57 58 59 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review on

TITLE PAGE

Association of Long-term Exposure to PM_{2.5} with Blood Pressure and Hypertension Prevalence in China

Authors:

Jiali Song*, MD; Yan Gao*, MSc; Shuang Hu, PhD; Emanuela Medda, MSc; Guigang Tang, MSc; Di Zhang, MSc; Wenbo Zhang, MPH; Xi Li, MD, PhD; Jing Li, MD, PhD; Matteo Renzi, MSc; Maria Antonietta Stazi, MSc; Xin Zheng[†], MD, PhD

*Joint first authors

[†]Corresponding author

Author Affiliations:

National Clinical Research Center for Cardiovascular Diseases, NHC Key Laboratory of Clinical Research for Cardiovascular Medications, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases (Song, Gao, Hu, W. Zhang, X. Li, J. Li, Zheng); Reference Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy (Medda, Stazi); Department of Epidemiology of Lazio Region, Rome, Italy (Renzi); China National Environmental Monitoring Centre, State Environmental Protection Key Laboratory of Quality Control in Environmental Monitoring, Ministry of Ecology and Environment of the People's Republic of China (Tang, D. Zhang)

Correspondence: Dr. Xin Zheng, National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, 167 Beilishi Road, Beijing 100037, People's Republic of China; Tel: +86 010 6086 6719; Email: xin.zheng@fwoxford.org

Word count: 2,814 words (main text)

Number of figures: 4

to per terien on

ABSTRACT

Objective: We aim to assess associations of long-term exposure to $PM_{2.5}$ with hypertension prevalence and blood pressure, especially in populations exposed to high $PM_{2.5}$ concentrations in China.

Methods: We studied 883,827 participants aged 35–75 years in the China Patient-Centered Evaluative Assessment of Cardiac Events (PEACE) Million Persons Project. The 1-year average concentration of daily-specific PM_{2.5} from monitoring stations was calculated to estimate the PM_{2.5} exposure. The associations of PM_{2.5} exposure with hypertension prevalence and blood pressure were investigated by generalized linear models. PM_{2.5} was included through either linear or spline functions to assess evidence of nonlinearity. **Results**: On average, each 10 µg/m³ increase in the PM_{2.5} exposure was associated with increased odds of hypertension prevalence (adjusted OR: 1.09, 95% CI: 1.08–1.10), systolic blood pressure (0.50 mmHg, 95% CI: 0.41–0.59), and diastolic blood pressure (0.23 mmHg, 95% CI: 0.18–0.28). The concentration-response curves for hypertension prevalence and systolic blood pressure showed a consistent increase with increasing PM_{2.5} concentration, with steeper slopes at high PM_{2.5} levels; while the curve for diastolic blood pressure was U-shaped. The elderly, men, and non-current smokers were more prone to adverse effects of PM_{2.5}.

Conclusions: Long-term exposure to $PM_{2.5}$ is associated with higher blood pressure and an increased risk of hypertension prevalence. The effects of $PM_{2.5}$ become more pronounced at higher $PM_{2.5}$ levels. These findings emphasize the need to reduce air pollution, especially in areas with severe air pollution.

Keywords: Air pollution; Blood pressure; Hypertension

tor peer teries only

Strengths and limitations of this study

- The large size of our study allowed us to comprehensively assess these associations among a diverse spectrum of population across a wider range of PM_{2.5} concentrations in China.
- The large number of participants with hypertension and high level of PM_{2.5} exposure (e.g. >35 µg/m³), enabled us to examine these assocations with greater precision and sufficient statistical power.
- Given the nature of the cross-sectional study design, the causal relationship could not be established.
- A selection bias is possible because our analysis was restricted to participants with available PM_{2.5} data.

1 INTRODUCTION

Hypertension is the leading modifiable risk factor for death globally.¹ Although hypertension is a worldwide public health concern, three guarters of the world's population with the condition are living in low- and middle-income countries (LMICs).² The causes of hypertension are complex. Apart from genetic predisposition, social determinants, and lifestyle factors, air pollution, especially fine particulate matter with an aerodynamic diameter of 2.5 µm or less (PM_{2.5}), may also contribute to increased risk for hypertension.^{3,4} Over the past few years, a growing body of epidemiological evidence indicated the association of long-term exposure to PM_{2.5} with blood pressure and hypertension.⁵⁻¹⁴ However, such studies were mostly undertaken in high-income contries.⁹⁻¹⁴ Compared with high-income coutries, exposure to PM_{2.5} is substantially higher in LMICs; and genetic characteristics as well as lifestyle also differ,^{15,16} limiting direct extrapolation of risk estimates from high-income countries to LMICs. Several studies have been performed in LMICs, but they were largely confined to specific populations (such as reproductive-aged adults) or regions.^{5-8,17} Therefore, further studies are needed to assess the associations of $PM_{2.5}$ with blood pressure and prevalence of hypertension among a wider spectrum of populations with high PM_{2.5} concentrations, especially in LMICs. China is experiencing a growing epidemic of hypertension and is estimated to have 300 million individuals with hypertension by 2025.¹⁸ Meanwhile, outdoor PM_{2.5} has become one of China's most serious environmental problems with provincial population-weighted means of

 $PM_{2.5}$ ranging from 19.1 μ g/m³ to 79.3 μ g/m³ in 2015.¹⁵ A deeper understanding of the

22 chronic health effects of PM_{2.5} on hypertension prevalence and blood pressure in moderate

23	to high $PM_{2.5}$ concentrations will help to support policy making of air quality improvement and
24	combat the hypertension epidemic in China.
25	Accordingly, incorporating $PM_{2.5}$ data with a large-scale population-based screening
26	project in China, the China Patient-Centered Evaluative Assessment of Cardiac Events
27	(PEACE) Million Persons Project, we aimed to: (1) explore the association of long-term $PM_{2.5}$
28	exposure with blood pressure level and the hypertension prevalence, and evaluate
29	subpopulation differences in these associations; (2) assess the concentration-response
30	relationships of long-term PM _{2.5} exposure with hypertension prevalence and blood pressure.
31	
32	METHODS
33	Study population
34	Our study population is derived from the China PEACE Million Persons Project, which
35	has been described previously. ¹⁹ In brief, we selected sites (rural counties or urban districts)
36	using a convenience sampling strategy in all 31 provinces in mainland China from
37	September 2014 to March 2019. At each site, participants were enrolled if they were aged
38	35 to 75 years, currently registered in the selected region's Hukou (a record officially
39	identifying a person as a resident of an area), or had lived in the region for at least 6 of the
40	previous 12 months. This project was registered on www.clinicaltrials.gov (NCT02536456).
41	In the present study, we included 897,937 participants with more than 330 valid $PM_{2.5}$ values
42	for assessing long-term exposure. After excluding participants with missing data on
43	education level (n=13,714), body mass index (n=321), or blood pressure measurement
44	(n=2), we further excluded participants with systolic blood pressure (SBP) \geq 250 mmHg or

2
3
4
4
5
6
7
8
-
9
10
11
12
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1

diastolic blood pressure (DBP) ≥150 mmHg to minimize the potential bias due to 45 measurement errors in blood pressure values (n=73). Finally, we included 883,827 46 47 participants in the study sample. The central ethics committee at the China National Center for Cardiovascular Diseases approved this project. All enrolled participants provided written 48 49 informed consent. Data collection and variable definitions 50 51 Data collection for each participant was performed by trained personnel with a 52 standardized in-person interview and a physical examination. Information on 53 sociodemographic status (age, gender, and education level), lifestyle (smoking and alcohol 54 use), medical history, and medication use were collected. Medication use was determined by 55 asking participants whether they had taken prescribed medications for antiplatelet or 56 controlling blood pressure, lipid, or glucose in the past 2 weeks. Those who answered "yes" 57 and knew the drug names were asked to report the name, dose, and frequency of each 58 drug. Those who did not remember the exact dose stated the number of pills or tablets 59 taken. 60 The blood pressure of each participant was measured twice on the right upper arm after 5 minutes of rest in a seated position with a standardized electronic blood pressure monitor 61 62 (Omron HEM-7430). If the difference between the 2 systolic blood pressure readings was 63 greater than 10 mmHg, a third measurement was obtained, and the average of the last 2 readings was used. Hypertension was defined as systolic blood pressure of 140 mmHg or 64 65 higher, diastolic blood pressure of 90 mmHg or higher, or use of antihypertensive 66 medications, which is consistent with the US Joint National Committee and Chinese

BMJ Open

definitions²⁰⁻²². Body mass index (BMI) was defined as weight in kilograms divided by height in square meters. Obesity was defined as 28.0 kg/m² or higher, on the basis of recommendations from the Working Group on Obesity in China.23 **Exposure Assessment** Each participant's address (either rural county or urban district) was geocoded into latitude and longitude data. We identified all air monitors located within 10 kilometers from the participants' addresses (Table S1). These monitors were mandated to be away from major roads, industrial sources, buildings, or residential sources of emissions from the combustion of coal, waste, or oil so that the measurements from these monitors were more likely to reflect the background air pollution level rather than those from local sources, such as traffic or industrial combustion. The measurements from these monitors strictly followed the methodological standards set by the State Environmental Protection Administration of China. For each partcipant, daily-specific PM_{2.5} data measured at the nearest monitors to their residence was used to estimate PM_{2.5} exposure. The 1-year average concentration before the medical examination was calculated and treated as an indicator of long-term exposure to $PM_{2.5}$. **Statistical Analysis** Continuous variables were reported as means with standard deviation; categorical variables were presented as percentages. We modeled SBP and DBP using linear regressions with township-specific random intercepts to investigate the independent effect of

- 87 long-term exposure to PM_{2.5} on these two blood pressure measures. We also developed
- 88 generalized linear models with a logit link function and township-specific random intercepts

 36 37 38 39 40 41 42 43 44 45 46 47 48 40 	$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\2\\13\\14\\15\\16\\17\\18\\9\\20\\21\\22\\23\\24\\25\\26\\27\\28\\29\\30\\31\\23\\34\\35\end{array}$	
	 37 38 39 40 41 42 43 44 45 46 47 	

89	to assess the association of long-term exposure to $PM_{2.5}$ with hypertension prevalence. For
90	each of these analyses, we started with a model (Model 1) which only included age and sex.
91	We then incrementally adjusted for additional covariates. The second model (Model 2)
92	included Model1 and socioeconomic factors (education level and urbanity). The third model
93	(Model 3) included Model 2 and cardiovascular disease risk factors (BMI, smoking status,
94	alcohol consumption, and diabetes). Models of blood pressure were additionally controlled
95	for hypertensive medication use; while models of hypertension were not, as hypertension
96	medication use was a component of the outcome definition.
97	We also used restricted cubic splines to graphically characterize the concentration-
98	response (C-R) relationships of $PM_{2.5}$ exposure with blood pressure and hypertension
99	prevalence. ²⁴ Additionally, to examine effect modification by age, gender, smoking status,
100	alcohol consumption, diabetes, and obesity, each potential modifier was tested by adding an
101	interaction term in the regression model separately and testing its statistical significance as
102	well as the association per categories of the tested variable through subgroup analyses.
103	Analyses were conducted with SAS version 9.4, 64-bit Windows (SAS Institute Inc.,
104	Cary, North Carolina). All tests of significance were 2-tailed, with a level of significance set at
105	an alpha of 0.05.
106	
107	RESULT
108	Study population and baseline characteristics
109	A total of 883,827 participants were included in the study sample. Summary statistics
110	and baseline characteristics of the study population are shown in Table S2 . The mean age
	10 / 23

1 2		
3 4 5	111	was 55.5 years, 60.4% were wowen, 43.1% had hypertension, mean SBP was 143.5 mmHg,
6 7	112	mean DBP was 83.1 mmHg, and 19.4% were taking antihypertensive medications. The 1-
8 9 10	113	year $PM_{2.5}$ exposure of total study population ranged from 8.8 to 93.8 µg/m ³ . There were
11 12 13	114	864,119 (97.8%), 842,356 (95.3%), and 706,415 (79.9%) participants with 1-year PM _{2.5}
14 15	115	exposure higher than 15 μ g/m ³ [World Health Organization (WHO) Interim Target 3 (IT-1)],
16 17 18	116	25 μg/m³ [WHO Interim Target 2 (IT-2)], and 35 μg/m³ [WHO Interim Target 3 (IT-3)],
19 20	117	respectively.
21 22 23	118	
24 25	119	Associations of long-term PM _{2.5} exposure with hypertension prevalence
26 27 28	120	We found a positive association of long-term PM _{2.5} exposure with hypertension
29 30 31	121	prevalence, which was consistent across different model specifications. In the crude model
32 33	122	(Model 1), each 10 μ g/m ³ increase in PM _{2.5} was associated with an 10% increased odds of
34 35 36	123	hypertension prevalence [odds ratio (OR): 1.10; 95% confidence interval (CI): 1.09-1.11)].
37 38	124	After adjusting for a wide range of potential confounders, the OR of hypertension was 1.09
39 40 41	125	(95% CI: 1.08-1.10) for each 10 μ g/m ³ increase in PM _{2.5} . (Table S3) The C-R relationships
42 43 44	126	between long-term $PM_{2.5}$ exposure and hypertension prevalence were nonlinear with steeper
45 46	127	slopes at higher PM _{2.5} exposure levels. Compared to individuals with the lowest level of
47 48 49	128	$PM_{2.5}$ exposure (8.8 µg/m ³), the adjusted ORs for hypertension of individuals with 15, 25, and
50 51	129	35 $\mu\text{g/m}^3$ of $\text{PM}_{2.5}\text{exposure}$ were 1.01 (95% CI: 1.01-1.02), 1.03 (95% CI: 1.02-1.04), and
52 53 54	130	1.05 (95% CI: 1.03-1.07), respectively. (Figure 1)
55 56 57	131	
58 59	132	Associations of long-term $PM_{2.5}$ exposure with systolic and diastolic blood pressure
60		11 / 23
l .		

Page 14 of 34

133	$PM_{2.5}$ exposures were positively associated with SBP and DBP. Adjustment for
134	antihypertensive medications led to small increase in the effect estimate of $PM_{2.5}$ exposure.
135	Among potentially confounding variables, adjustment for cardiovascular disease risk factors
136	(Model 3 vs. Model 2) had the largest impact on effect estimates with a decrease in the
137	positive association with SBP and DBP. In the fully adjusted model (Model 4), each 10 $\mu\text{g}/\text{m}^3$
138	increment was associated with increases of 0.50 mmHg (95% CI: 0.41-0.59) in SBP and
139	0.23 mmHg (95% CI: 0.18-0.28) in DBP. (Table S4) We found that the shapes of the C-R
140	associations of PM _{2.5} exposure with SBP and DBP were different, as presented in Figure 2 .
141	For SBP, the fitted C-R functions had upward trends with greater effect estimates of $PM_{2.5}$
142	at higher concentrations. For DBP, the C-R relationships were generally U-shaped.
143	
144	Stratified analysis and effect modification
145	The associations of long-term $PM_{2.5}$ exposure with hypertension and blood pressure
145 146	The associations of long-term $PM_{2.5}$ exposure with hypertension and blood pressure across different subgroups are provided in Figure 3 and Figure 4 . The associations of $PM_{2.5}$
	4
146	across different subgroups are provided in Figure 3 and Figure 4 . The associations of PM _{2.5}
146 147	across different subgroups are provided in Figure 3 and Figure 4 . The associations of $PM_{2.5}$ exposure with hypertension were stronger among the elderly (\geq 65 years of age), men, and
146 147 148	across different subgroups are provided in Figure 3 and Figure 4 . The associations of $PM_{2.5}$ exposure with hypertension were stronger among the elderly (\geq 65 years of age), men, and non-current smokers compared with younger subjects, women, and current smokers,
146 147 148 149	across different subgroups are provided in Figure 3 and Figure 4 . The associations of $PM_{2.5}$ exposure with hypertension were stronger among the elderly (\geq 65 years of age), men, and non-current smokers compared with younger subjects, women, and current smokers, respectively. Gender significantly modified the effects of $PM_{2.5}$ exposure on all three
146 147 148 149 150	across different subgroups are provided in Figure 3 and Figure 4 . The associations of $PM_{2.5}$ exposure with hypertension were stronger among the elderly (\geq 65 years of age), men, and non-current smokers compared with younger subjects, women, and current smokers, respectively. Gender significantly modified the effects of $PM_{2.5}$ exposure on all three outcomes (all p for interaction <0.05) with stronger associations among men; while these
146 147 148 149 150 151	across different subgroups are provided in Figure 3 and Figure 4 . The associations of $PM_{2.5}$ exposure with hypertension were stronger among the elderly (\geq 65 years of age), men, and non-current smokers compared with younger subjects, women, and current smokers, respectively. Gender significantly modified the effects of $PM_{2.5}$ exposure on all three outcomes (all p for interaction <0.05) with stronger associations among men; while these associations were not modified by alcohol consumption (all p for interaction >0.05). Although
146 147 148 149 150 151 152	across different subgroups are provided in Figure 3 and Figure 4 . The associations of $PM_{2.5}$ exposure with hypertension were stronger among the elderly (>65 years of age), men, and non-current smokers compared with younger subjects, women, and current smokers, respectively. Gender significantly modified the effects of $PM_{2.5}$ exposure on all three outcomes (all p for interaction <0.05) with stronger associations among men; while these associations were not modified by alcohol consumption (all p for interaction >0.05). Although age and smoking status were also found to be effect modifiers in the associations of $PM_{2.5}$

1		
2 3		
4 5	155	$PM_{2.5}$ exposure for SBP and hypertension, while smaller estimates for DBP among the
6 7	156	elderly (≥65 years of age) and non-current smokers.
8 9 10	157	
10 11 12	158	DISCUSSION
13 14	159	In this study, we investigated the associations between long-term exposure to $PM_{2.5}$ and
15 16		
17 18	160	hypertension prevalence, SBP, and DBP. We found that PM _{2.5} was associated with
19 20 21	161	increased risk of hypertension prevalence and elevation of blood pressure. Nonlinearity in
22 23	162	these associations was also observed. With increasing higher $PM_{2.5}$ concentrations, the C-R
24 25 26	163	curves for $PM_{2.5}$ -hypertension and $PM_{2.5}$ -SBP showed consistent increase with steeper
20 27 28	164	slopes at higher $PM_{2.5}$ concentrations; while the C-R curve for $PM_{2.5}$ –DBP was U-shaped.
29 30 31	165	The elderly, men, and non-current smokers appeared to be more vulnerable to the exposure
32 33	166	of PM _{2.5.}
34 35	167	Our study contributes to the existing scientific literature in several ways. First, the large
36	107	Our study contributes to the existing scientific interative in several ways. First, the large
37 38 39	168	size of our study allowed us to comprehensively assess the associations of $PM_{2.5}$ with
40 41	169	hypertension prevalence and blood pressure among a wide spectrum of population in China.
42 43 44	170	Our study included 0.8 million participants aged 35–75 years across a large and
45 46	171	geographically diverse country, making the results more generalizable. In addition, the large
47 48	172	population included in the present study also reflected different $PM_{2.5}$ exposure levels, and
49 50 51	173	thus it adds to our understanding about these associations across a wider range of $PM_{2.5}$
52 53		
54 55	174	concentrations (8.8–93.8 μ g/m ³) than reported previously. ⁵⁻¹⁴ Furthermore, the large sample
56 57	175	size, especially the large number of participants with hypertension and high level of $\mathrm{PM}_{2.5}$
58 59 60	176	exposure (e.g. >35 μ g/m ³), enabled us to examine these assocations with greater precision
		13 / 23

and sufficient statistical power.

1 2	
3 4 5	177
6 7 8	178
9 10	179
11 12 13	180
14 15	181
16 17 18	182
19 20 21	183
22 23	184
24 25 26	185
27 28	186
29 30 31	187
32 33 34	188
35 36	189
37 38 39	190
40 41	191
42 43 44	192
45 46	193
47 48 49	194
50 51 52	195
53 54	196
55 56 57	197
58 59	198
60	

	•
178	Second, we provided new information on the C-R relationship between long-term $\ensuremath{PM_{2.5}}$
179	exposure and hypertension prevalence. Previous research reported a U-shaped relationship
180	between long-term exposure to $PM_{2.5}$ and hypertension prevalence with a threshold $PM_{2.5}$ of
181	47.9 μ g/m ^{3.5} However, in our study, we found no evidence of a discernible threshold — the
182	concentration at which the C-R functions of hypertension prevalence begin to flatten out —
183	at concentrations ranging from as low as 8.8 μ g/m ³ to as high as 93.8 μ g/m ³ . In fact, PM _{2.5}
184	exposure was associated with consistent high risk of hypertension throughout the entire
185	exposure range and the effects became even more pronounced when $PM_{2.5}$ exposure was
186	extended to higher levels. This result suggests that per unit decrease in the concentration of
187	PM _{2.5} can be translated to a greater reduction in excess hypertension prevalence in highly
188	polluted regions compared with regions with low to moderate levels of $PM_{2.5}$ exposure.
189	Third, we found evidence of nonlinearity relationship of $PM_{2.5}$ exposure with blood
190	pressure, including SBP and DBP. Interestingly, the shapes of nonlinear C-R association
191	were different between $PM_{2.5}$ exposure-SBP and $PM_{2.5}$ exposure-SBP associations.
192	Although we observed a modest-sized change of blood pressure across the full range of
193	$PM_{2.5}$ concentrations, it is still of great public health importance. Since hypertension is the
194	most important risk factor for death, even a small change in blood pressure at population
195	level can potentially lead to an increase in attributable disease burden. ²⁵ The mechanism by
196	which the shapes between the associations of $PM_{2.5}$ exposure-SBP vs. $PM_{2.5}$ exposure-DBP
197	are different is unclear. Pathophysiological changes, such as systemic inflammation,
198	atherosclerosis, endothelial dysfunction, and increased arterial stiffness,4,26 may have
	14 / 23

Page 17 of 34

BMJ Open

	199	contributed to the observed patterns. The increased arterial stiffness induced by $PM_{2.5}$ would
	200	initially lead to elevation in SBP and decline in DBP, creating an increased pulse pressure. ²⁷
0	201	While with further increase of arterial stiffness, the heart rates got higher to maintain the
1 2	202	stroke volume, which could result in the rise of DBP afterwards. In addition, prior studies
3 4 5	203	have reported the effects of $PM_{2:5}$ exposure on pulse pressures showing a tendency of rising
6 7	204	up first and then declining at higher $PM_{2.5}$ levels, which partially supports this hypothesis. ^{11,28}
8 9 0	205	Fourth, we identified the vulnerable subgroups to the exposure of $PM_{2.5}$. In stratified
1 2 3	206	analyses, we observed the large effect estimates of $PM_{2.5}$ on hypertension among the
4 5	207	elderly. Elderly subjects may commonly represent higher prevalence of preexisting
6 7 8	208	cardiovascular and respiratory diseases, which may confer susceptibility to PM _{2.5} . Also, the
9 0	209	results showed that $PM_{2.5}$ exposure had larger effects on hypertension in men, which is
1 2 3	210	consistent with a previous study.6 Such increased susceptibility may be related to sex-
4 5 6	211	related differences in the deposition localization and rates of air pollutants; ²⁹ specifically,
7 8	212	men have larger airways and slightly lower airway reactivity. ³⁰ Additionally, smoking status
9 0 1	213	was found to be an effect modifier with smaller effects on hypertension among current
2 3	214	smokers. This finding is also supported by prior research. ^{10,28} One possible explanation is
4 5 6	215	that smoking and PM _{2.5} exposure may share the same pathways in mediating cardiovascular
7 8 9	216	effects and smoking may play a dominant role in smokers. Thus, the exposure to $\mathrm{PM}_{2.5}$
0 1	217	might not exert additional harmful effect via the same pathway.28
2 3 4	218	Our study should also be interpreted in the context of several limitations. First, given the
5 6	219	nature of the cross-sectional study design, the causal relationship could not be established.
7 8 9	220	Additional research is needed to examine these relationships in a prospective manner.
0		

Page 18 of 34

	BMJ Open
221	Second, a selection bias is possible because our analysis was restricted to participants with
222	available $PM_{2.5}$ data. Third, while we included a number of potential confounders in the
223	analyses, there might be unmeasured confounders that affected the observed associations.
224	In particular, we were unable to control for other confounders such as diet and physical
225	activity, because these data were only available in a subset of the China PEACE Million
226	Persons Project cohort. Fourth, for $PM_{2.5}$ exposure assessment, we used the data from the
227	monitor located nearest to the residence of each subject and did not account for individual
228	time-activity patterns and indoor-related characteristics, which would likely result in
229	nondifferential measurement errors and may cause underestimates in our results ³¹ .
230	However, this approach is commonly used in prior studies ³¹ and previous research have
231	indicated that PM _{2.5} exposure estimated by the nearest monitor was highly correlated with
232	other sophisticated approaches ³² . Fifth, other gaseous pollutants, such as NOx and ozone,
233	temperature, and noise were not included in this study. As a result, we were not able to
234	determine whether the observed effects were specifically attributable to $PM_{2.5}$ or to the
235	combined effects of these factors.
236	In conclusion, our study demonstrated that long-term exposure to $PM_{2.5}$ was significantly
237	associated with increased risk of blood pressure elevation and hypertension prevalence. The
238	effect of $PM_{2.5}$ on hypertension prevalence was more pronunced at higher $PM_{2.5}$
239	concentration. Our findings reinforce the need to develop comprehensive strategies for
240	addressing air pollution problems, especially for areas with severe air pollution.
241	
	16 / 23

1 ว		
2 3 4	242	ACKNOWLEDGMENTS
5 6 7	243	We thank all study individuals for their participation and appreciate the contributions
8 9 10	244	made by project teams at the National Center for Cardiovascular Diseases in the realms of
11 12	245	project design and operations, particularly data collection.
13 14 15	246	
16 17	247	PATIENT AND PUBLIC INVOLVEMENT
18 19 20	248	Patients and/or the public were not involved in the design, or conduct, or reporting, or
21 22 23	249	dissemination plans of this research.
23 24 25	250	
26 27 28	251	FUNDING SOURCES
28 29 30	252	This project was supported by the National Key Research and Development Program
31 32 33	253	(2016YFE0103800) from the Ministry of Science and Technology of China, the CAMS
34 35	254	Innovation Fund for Medical Science (2016-I2M-1-006), the Major Public Health Service
36 37 38	255	Project from the Ministry of Finance and National Health and Family Planning Commission of
39 40	256	China and the 111 Project (B16005) from the Ministry of Education of China.
41 42 43	257	
44 45	258	DISCLOSURES
46 47 48	259	All authors have completed and submitted the ICMJE Form for Disclosure of Potential
49 50	260	Conflicts of Interest and declared no competing interests.
51 52 53	261	
54 55	262	CONTRIBUTORS
56 57 58 59	263	JS and XZ conceived of this article. JS and YG wrote the manuscript with further
60		17 / 23

1 2		
3 4 5	264	contributions from XZ, XL, EM, MR, GT, DZ, WZ, JL and MA. JS and SH completed all the
6 7	265	statistical analysis. All authors interpreted data, contributed to critical revisions and approved
8 9 10	266	the final version of the article.
11 12	267	
13 14 15	268	
16 17		
18 19		
20 21		
22 23		
24 25 26		
26 27 28		
29 30		
31 32		
33 34		
35 36 27		
37 38 39		
40 41		
42 43		
44 45		
46 47		
48 49 50		
51 52		
53 54		
55 56		
57 58		
59 60		18 / 23
		10 / 23

1 2			
3 4 5	269	REFE	RENCES
6 7	270	1.	Stanaway JD, Afshin A, Gakidou E, et al. Global, regional, and national comparative
8 9 10	271		risk assessment of 84 behavioural, environmental and occupational, and metabolic
11 12 13	272		risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic
14 15	273		analysis for the Global Burden of Disease Study 2017. Lancet (London, England).
16 17 18	274		2018;392(10159):1923-1994.
19 20 21	275	2.	Mills KT, Bundy JD, Kelly TN, et al. Global Disparities of Hypertension Prevalence and
22 23	276		Control. Circulation. 2016;134(6):441-450.
24 25 26	277	3.	Rajagopalan S, Al-Kindi SG, Brook RD. Air Pollution and Cardiovascular Disease:
27 28	278		JACC State-of-the-Art Review. J Am Coll Cardiol. 2018;72(17):2054-2070.
29 30 31	279	4.	Carey RM, Muntner P, Bosworth HB, Whelton PK. Prevention and Control of
32 33 34	280		Hypertension: JACC Health Promotion Series. J Am Coll Cardiol. 2018;72(11):1278-
35 36	281		1293.
37 38 39	282	5.	Xie X, Wang Y, Yang Y, et al. Long-Term Effects of Ambient Particulate Matter (With
40 41 42	283		an Aerodynamic Diameter =2.5 mum) on Hypertension and Blood Pressure and</td
43 44	284		Attributable Risk Among Reproductive-Age Adults in China. Journal of the American
45 46 47	285		<i>Heart Association.</i> 2018;7(9).
48 49	286	6.	Li N, Chen G, Liu F, et al. Associations between long-term exposure to air pollution
50 51 52	287		and blood pressure and effect modifications by behavioral factors. Environmental
53 54 55	288		research. 2020;182:109109.
56 57	289	7.	Dong GH, Qian ZM, Xaverius PK, et al. Association between long-term air pollution
58 59 60	290		and increased blood pressure and hypertension in China. Hypertension (Dallas, Tex :
			19 / 23

2 3 4	291		<i>1979).</i> 2013;61(3):578-584.
5 6 7	292	8.	Liu C, Chen R, Zhao Y, et al. Associations between ambient fine particulate air
8 9 10	293		pollution and hypertension: A nationwide cross-sectional study in China. The Science
11 12	294		of the total environment. 2017;584-585:869-874.
13 14 15	295	9.	Fuks K, Moebus S, Hertel S, et al. Long-term urban particulate air pollution, traffic noise,
16 17	296		and arterial blood pressure. Environmental health perspectives. 2011;119(12):1706-
18 19 20	297		1711.
21 22 23	298	10.	Fuks KB, Weinmayr G, Foraster M, et al. Arterial blood pressure and long-term
24 25 26	299		exposure to traffic-related air pollution: an analysis in the European Study of Cohorts
27 28	300		for Air Pollution Effects (ESCAPE). Environmental health perspectives.
29 30 31	301		2014;122(9):896-905.
32 33	302	11.	Honda T, Pun VC, Manjourides J, Suh H. Associations of long-term fine particulate
34 35 36	303		matter exposure with prevalent hypertension and increased blood pressure in older
37 38 39	304		Americans. Environmental research. 2018;164:1-8.
40 41	305	12.	Schwartz J, Alexeeff SE, Mordukhovich I, et al. Association between long-term
42 43 44	306		exposure to traffic particles and blood pressure in the Veterans Administration
45 46 47	307		Normative Aging Study. Occupational and environmental medicine. 2012;69(6):422-
48 49	308		427.
50 51 52	309	13.	Sorensen M, Hoffmann B, Hvidberg M, et al. Long-term exposure to traffic-related air
53 54	310		pollution associated with blood pressure and self-reported hypertension in a Danish
55 56 57	311		cohort. Environmental health perspectives. 2012;120(3):418-424.
58 59 60	312	14.	Chan SH, Van Hee VC, Bergen S, et al. Long-Term Air Pollution Exposure and Blood
			20 / 23

1 2

BMJ Open

3 4 5	313		Pressure in the Sister Study. Environmental health perspectives. 2015;123(10)						
6 7	314		958.						
8 9 10	315	15.	Cohen AJ, Brauer M, Burnett R, et al. Estimates and 25-year trends of the global						
11 12 13	316		burden of disease attributable to ambient air pollution: an analysis of data from the						
14 15	317		Global Burden of Diseases Study 2015. The Lancet. 2017;389(10082):1907-1918.						
16 17 18	318	16.	Kato N. Ethnic differences in genetic predisposition to hypertension. 2012;35(6):574-						
19 20	319		581.						
21 22 23	320	17.	Curto A, Wellenius GA, Milà C, et al. Ambient Particulate Air Pollution and Blood						
24 25 26	321		Pressure in Peri-urban India. Epidemiology (Cambridge, Mass). 2019;30(4):492-500.						
27 28	322	18.	Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of						
29 30 31	323		hypertension: analysis of worldwide data. Lancet (London, England).						
32 33	324		2005;365(9455):217-223.						
34 35 36	325	19.	Kaufman JD, Adar SD, Barr RG, et al. Association between air pollution and coronary						
37 38 39	326		artery calcification within six metropolitan areas in the USA (the Multi-Ethnic Study of						
40 41	327		Atherosclerosis and Air Pollution): a longitudinal cohort study. Lancet (London,						
42 43 44	328		England). 2016;388(10045):696-704.						
45 46	329	20.	James PA, Oparil S, Carter BL, et al. 2014 evidence-based guideline for the						
47 48 49	330		management of high blood pressure in adults: report from the panel members						
50 51 52	331		appointed to the Eighth Joint National Committee (JNC 8). Jama. 2014;311(5):507-						
53 54	332		520.						
55 56 57	333	21.	Chobanian AV, Bakris GL, Black HR, et al. The Seventh Report of the Joint National						
58 59 60	334		Committee on Prevention, Detection, Evaluation, and Treatment of High Blood						

1 2			
3 4 5	335		Pressure: the JNC 7 report. JAMA. 2003;289(19):2560-2572.
6 7	336	22.	Liu LS, Writing Group of Chinese Guidelines for the Management of H. [2010 Chinese
8 9 10	337		guidelines for the management of hypertension]. Zhonghua xin xue guan bing za zhi.
11 12 13	338		2011;39(7):579-615.
14 15	339	23.	Zhou BF. Predictive values of body mass index and waist circumference for risk factors
16 17 18	340		of certain related diseases in Chinese adultsstudy on optimal cut-off points of body
19 20 21	341		mass index and waist circumference in Chinese adults. Biomedical and environmental
22 23	342		sciences : BES. 2002;15(1):83-96.
24 25 26	343	24.	Desquilbet L, Mariotti F. Dose - response analyses using restricted cubic spline
27 28 29	344		functions in public health research. <i>Statistics in medicine</i> . 2010;29(9):1037-1057.
30 31	345	25.	Chobanian AV, Bakris GL, Black HR, et al. Seventh report of the Joint National
32 33 34	346		Committee on Prevention, Detection, Evaluation, and Treatment of High Blood
35 36	347		Pressure. Hypertension (Dallas, Tex : 1979). 2003;42(6):1206-1252.
37 38 39	348	26.	Zanoli L, Lentini P, Granata A, et al. A systematic review of arterial stiffness, wave
40 41 42	349		reflection and air pollution. <i>Molecular Medicine Reports</i> . 2017;15(5):3425-3429.
43 44	350	27.	Bavishi C, Goel S, Messerli FH. Isolated systolic hypertension: an update after SPRINT.
45 46 47	351		The American journal of medicine. 2016;129(12):1251-1258.
48 49	352	28.	Zhang Z, Guo C, Lau AKH, et al. Long-Term Exposure to Fine Particulate Matter, Blood
50 51 52	353		Pressure, and Incident Hypertension in Taiwanese Adults. Environmental health
53 54 55	354		<i>perspectives.</i> 2018;126(1):017008.
56 57	355	29.	Sacks JD, Stanek LW, Luben TJ, et al. Particulate matter-induced health effects: who
58 59 60	356		is susceptible? <i>Environmental health perspectives</i> . 2011;119(4):446-454.
			22 / 23

3 4 5	357	30.	Yunginger JW, Reed CE, O'Connell EJ, Melton L, O'Fallon WM, Silverstein MD. A
6 7	358		community-based study of the epidemiology of asthma. Am Rev Respir Dis.
8 9 10	359		1992;146(4):888-894.
11 12 13	360	31.	Li H, Cai J, Chen R, et al. Particulate matter exposure and stress hormone levels: a
14 15	361		randomized, double-blind, crossover trial of air purification. Circulation.
16 17 18	362		2017;136(7):618-627.
19 20	363	32.	Miller KA, Spalt EW, Gassett AJ, et al. Estimating ambient-origin PM2.5 exposure for
21 22 23	364		epidemiology: observations, prediction, and validation using personal sampling in the
24 25 26	365		Multi-Ethnic Study of Atherosclerosis. Journal of exposure science & environmental
27 28	366		epidemiology. 2019;29(2):227-237.
29 30 31	367		
32 33	368		
34 35 36			
37 38			
39 40 41			
42 43			
44 45			
46 47			
48 40			
49 50			
51			
52			
53 54			
55			
56			
57 58			
59			
60			23 / 23

Figure 1. Concentration-response functions of the long-term exposure to PM2.5 with hypertension prevalence.

Effect estimates were presented as adjusted odds ratios for hypertension prevalence compared to individuals with PM2.5 exposure 8.8 µg/m3.

The dashed lines represent the air-quality standards for annual average concentrations of PM2.5 according to the World Health Organization (WHO) Interim Target 1 (IT-1), WHO Interim Target 2 (IT-2), WHO Interim Target 3 (IT-3).

Covariates used within the multivariate-adjusted models included age, sex, education level, urbanity, smoking status, alcohol consumption, obesity, and diabetes

169x127mm (300 x 300 DPI)

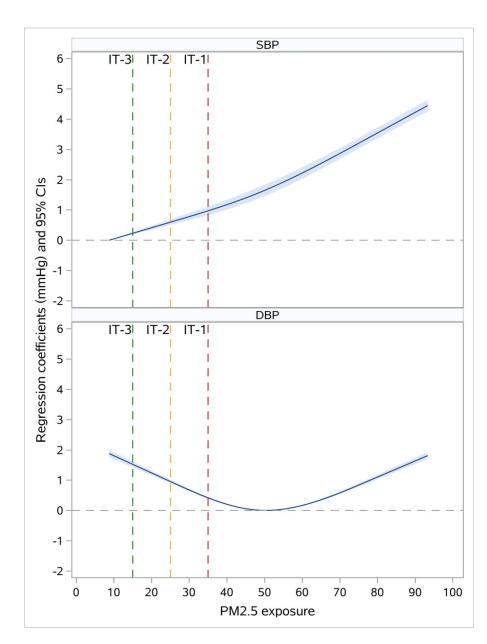
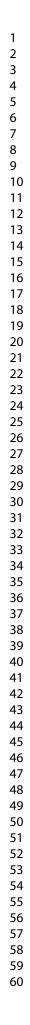



Figure 2. Concentration-response functions of the long-term exposure to PM2.5 with systolic blood pressure (SBP) and diastolic blood pressure (DBP)

Effect estimates (regression coefficients) were presented as changes in SBP compared to individuals with PM2.5 exposure 8.8 μ g/m3 and changes in DBP compared to individuals with PM2.5 exposure 50 μ g/m3. The dashed lines represent the air-quality standards for annual average concentrations of PM2.5 according to the World Health Organization (WHO) Interim Target 1 (IT-1), WHO Interim Target 2 (IT-2), WHO Interim Target 3 (IT-3).

Covariates used within the multivariate-adjusted models included age, sex, education level, urbanity, smoking status, alcohol consumption, obesity, diabetes, and use of antihypertensive medications.

127x169mm (300 x 300 DPI)

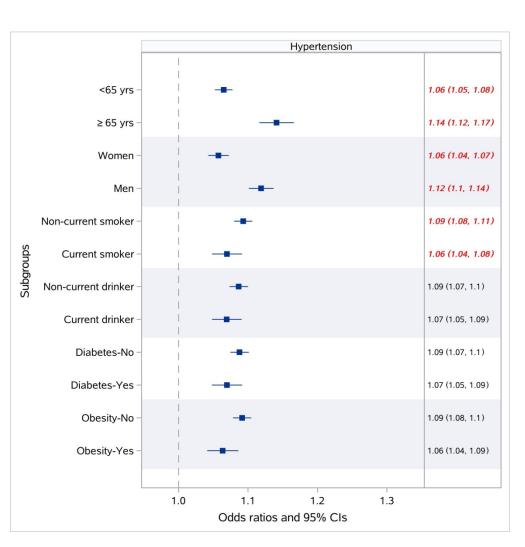


Figure 3. Stratified analysis of the association of long-term exposure to PM2.5 with hypertension prevalence Red texts with italics indicated that p-value for interaction terms<0.05.

Effect estimates (regression coefficients) were presented as adjusted odds ratios for hypertension prevalence for each 10 μg/m3 increment in the 1-year PM2.5 exposure.

Covariates used within the multivariate-adjusted models included age, sex, education level, urbanity, smoking status, alcohol consumption, obesity and diabetes.

158x158mm (300 x 300 DPI)

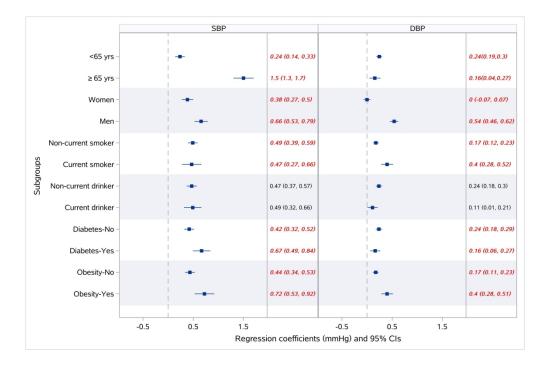


 Figure 4. Stratified analysis of the association of long-term exposure to PM2.5 with blood pressure Red texts with italics indicated that p-value for interaction terms<0.05.
 Effect estimates (regression coefficients) were presented as changes in systolic blood pressure (SBP) or diatolic blood pressure (DBP) for each 10 μg/m3 increment in the 1-year PM2.5 exposure deriving from multivariable linear regression. Covariates used within the multivariate-adjusted models included age, sex, education level, urbanity, smoking status, alcohol consumption, obesity, diabetes, and use of antihypertensive medications.

238x158mm (300 x 300 DPI)

1 APPENDICES

5

6 7

Table S1. Summary statistics for daily PM_{2.5} (μg/m³) at 83 monitoring stations in China between 2015 and 2018.

between 2015 and 2018.								
Station	Mean	Median	P25	P75	Maximum	Minimum	SD	Missing (days)
1	67.90	50	26	88	540	5	62.47	22
2	65.48	48	23	85	515	3	61.39	25
3	56.39	40	19	76	448	2	53.72	18
4	69.26	50	27	88	529	4	65.93	10
5	57.73	41	20	77	446	4	54.56	9
6	64.46	51	32	79.5	350	6	49.30	13
7	62.85	50	30	78	409	4	50.02	38
8	68.35	54	34	83.5	408	7	54.03	37
9	64.46	51	32	79.5	350	6	49.30	13
10	65.52	51	32	81	410	7	52.07	34
11	86.31	61	38	107	708	5	77.17	37
12	63.99	52	37	76	421	6	43.18	18
13	61.01	50	30	79	290	2	44.39	24
14	60.51	49	32	76	390	7	42.41	70
15	46.19	49 40	29	55	276	7	26.03	44
16								
	22.90	18	12	29	187	3	17.44	59
17	54.55	41	26	68	932	3	48.40	14
18	40.93	32	20	50	450	5	32.88	16
19	44.97	35	22	56	353	6	35.16	39
20	48.80	37	24	59	508	6	42.08	15
21	45.30	31	19	55	612	3	45.58	27
22	30.54	22	14	39	308	2	26.22	17
23	45.36	34	21	58	378	3	36.92	24
24	54.24	33	21	66	730	5	59.99	24
25	39.52	29	18	49	502	3	35.05	78
26	42.91	36	22	55	235	4	29.42	24
27	44.22	36	22	58	225	5	30.20	60
28	44.97	38	24	58	218	5	29.10	22
29	44.32	37	23	57	224	6	29.52	12
30	49.23	40	28	62	271	10	32.35	665
31	52.70	42	27	67	284	7	37.07	9
32	51.19	43	28	64	250	3	33.85	40
33	49.98	44	31	61	259	6	28.45	26
34	47.59	40	27	59	233	3	30.88	30
35	27.35	25	17	35	114	2	14.53	46
36	26.16	22	14	34	233	2	16.88	5
37	32.18	25	14	45	155	4	24.63	826
38	45.33	40	29	43 57	209	9	24.05	32
39	49.12	40 44	29 31	62	356	3	26.44	27
39 40						3 7		
	74.08	60 40	40	92	431		50.63	22
41	56.81	46	31	70	327	7	38.51	44
42	70.49	57	40	82	514	6	51.28	720
43	56.69	46	34	65	257	14	35.08	870
44	69.96	53	35	88	548	5	54.64	57
45	62.00	50	31	81	275	3	44.29	20
46	44.01	38	26	56	195	5	26.01	31
47	48.13	43	29	61	478	6	27.90	43
48	51.57	43	29	65	289	5	33.64	10

Page 1 of 5

1									
2									
3	49	39.33	33	23	50	214	6	22.99	12
4	50	32.84	29	20	42	121	5	17.51	22
5	51	32.48	28	18	43	149	5	19.23	35
6	52	27.19	24	14	36	120	3	17.16	31
7	53	38.01	33	21	49	192	5	23.72	16
8	54	35.67	30	19	46	269	3	22.90	13
9	55	50.36	42	27	64	286	6	32.32	23
10	56	44.34	35	23	56	333	5	32.18	6
11	57	35.14	29	16	47	202	3	25.68	22
12	58	22.10	18	10	27	123	3	13.22	31
13	59	15.14	13	9	18	68	2	9.22	12
14 15	60	37.75	29	18	47	183	5	28.96	708
16	61	49.89	41	30	61	222	8	31.21	27
17	62	60.72	49	32	77	353	5	42.85	8
18	63	42.87	36	24	55	215	5	25.98	16
19	64	49.35	40	24	65	235	3	35.52	13
20	65	32.64	28	18	42	195	4	20.30	23
21	66	30.96	28	21	39	123	7	14.39	10
22	67	29.79	28	20	36	102	7	12.89	23
23	68	13.86	14	12	15	51	3	5.05	109
24	69	25.99	19	13	32	187	5	20.21	33
25	70	24.49	19	13	30	124	2	17.69	156
26	71	11.95	10	7	15	88	2	7.71	87
27	72	51.21	42	30	63	239	10	30.49	238
28	73	10.62	9	7	13	73	4	5.10	46
29	74	53.80	41.5	28	64	328	5	40.55	19
30	75	38.88	32	23	47	169	4	24.72	27
31	76	44.45	36	24	57	581	4	35.96	59
32	77	44.10	36	25	53	287	5	29.00	44
33	78	44.04	38	27	56	139	9	23.42	1000
34 35	79	55.15	45	30	68	363	5	38.57	14
35 36	80	44.69	36	24	55	219	5	30.52	50
37	81	65.37	34	20	85	447	5	68.86	97
38	82	57.76	29	19	70	414	3	62.93	58
39	83	51.70	26	10	65	406	3	58.30	42
10									

4 Note: Missing: Number of days with missing PM_{2.5} value during 2015-2018

Page 31 of 34

3
4
5
6
7
8
9
10
11
12
13 14
14
15
16
16 17 18
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
30
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
50

1 2

6 **Table S2. Characteristics of the study population.**

Variable	Total (n=883,827)
Socio-demographics	
Age, mean (SD), years	55.5 (10.1)
Female, n (%)	533897 (60.4)
Urban residence, n (%)	657608 (74.4)
Han ethnic group, n (%)	805479 (91.1)
College or above	102764 (11.6)
Regions, n (%)	· · · · ·
Eastern	325253 (36.8)
Central	178435 (20.2)
Western	311599 (35.3)
NorthEastern	68540 (7.8)
Cardiovascular risk factors, n (%)	
Obesity	142150 (16.1)
Current drinker	194967 (22.1)
Diabetes	173950 (19.7)
Current smoker	161006 (18.2)
Hypertension	381223 (43.1)
Blood pressures	001220 (40.1)
Systolic blood pressure, mean (SD)	143.5 (22.2)
Diastolic blood pressure, mean (SD)	83.1 (12.3)
PM _{2.5} exposures	00.1 (12.0)
1-y average PM _{2.5} exposure, mean (SD)	49.2 (16.4)
Above WHO Interim Target 1 (IT-1, 35 µg/m ³), n (%)	706415 (79.9)
Above WHO Interim Target 2 (IT-2, 25 µg/m ³), n (%)	842356 (95.3)
Above WHO Interim Target 3 (IT-3, 15 µg/m ³), n (%)	864119 (97.8)
	804119 (97.8)

Model	lodol	Per 10 µg/m ³ PM _{2.5} increment		
	OR (95% CI)	p-Valu		
H	lypertension pre	evalence		
Ν	Nodel 1	1.10 (1.09-1.11)	< 0.00	
Ν	Aodel 2	1.10 (1.09-1.11)	<0.00	
	Aodel 3	1.09 (1.08-1.10)	< 0.00	
	odel 1: Included a			
		education level and urbanity;		
		smoking status, alcohol consumption	on, obesity, and d	
		6 CI: 95% confidence intervals.		
Ŭ				

Model Systolic blood pressure Model 1 Model 2 Model 3 Model 4 Diastolic blood pressure Model 1 Model 2	mmHg (95% Cl) 0.58 (0.49-0.67) 0.57 (0.48-0.66) 0.45 (0.36-0.54) 0.50 (0.41-0.59)	³ PM _{2.5} increment p-value <0.001 <0.001			
Model 1 Model 2 Model 3 Model 4 Diastolic blood pressure Model 1 Model 2	0.57 (0.48-0.66) 0.45 (0.36-0.54) 0.50 (0.41-0.59)				
Model 2 Model 3 Model 4 Diastolic blood pressure Model 1 Model 2	0.57 (0.48-0.66) 0.45 (0.36-0.54) 0.50 (0.41-0.59)				
Model 3 Model 4 Diastolic blood pressure Model 1 Model 2	0.45 (0.36-0.54) 0.50 (0.41-0.59)	<0.001			
Model 4 Diastolic blood pressure Model 1 Model 2	0.50 (0.41-0.59)				
Diastolic blood pressure Model 1 Model 2		<0.001			
Model 1 Model 2		<0.001			
Model 2					
	0.29 (0.23-0.34)	<0.001			
	0.28 (0.23-0.34)	<0.001			
Model 3	0.21 (0.15-0.26)	<0.001			
Model 4	0.23 (0.18-0.28)	<0.001			
Model 1: Included age and					
Model 2: Model 1 + educati	Model 2: Model 1 + education level and urbanity;				
Model 3: Model 2 + smoking status, alcohol consumption, obesity, and c					
Model 4: Model 3 + use of antihypertensive medications					

Table S4. The effect of $PM_{2.5}$ exposure on blood pressure. 14

1 2

Page 5 of 5

	Item No	Recommendation	Pag No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	3
		(<i>b</i>) Provide in the abstract an informative and balanced summary of what was done and what was found	3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	6
Objectives	3	State specific objectives, including any prespecified hypotheses	7
Methods			
Study design	4	Present key elements of study design early in the paper	7
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	7
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods of selection of participants	7
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	8
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	7-8
Bias	9	Describe any efforts to address potential sources of bias	9
Study size	10	Explain how the study size was arrived at	8
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	9
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	9-1
		(b) Describe any methods used to examine subgroups and interactions	10
		(c) Explain how missing data were addressed	8
		(<i>d</i>) If applicable, describe analytical methods taking account of sampling strategy	9-1
		(e) Describe any sensitivity analyses	10
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	10
		(b) Give reasons for non-participation at each stage	7-8
		(c) Consider use of a flow diagram	7-8
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,	10-
		social) and information on exposures and potential confounders	11
		(b) Indicate number of participants with missing data for each variable of interest	7-8
Outcome data	15*	Report numbers of outcome events or summary measures	10-
			11

Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted	
		estimates and their precision (eg, 95% confidence interval). Make clear	
		which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were	
		categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute	
		risk for a meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions,	
		and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	
Limitations	19	Discuss limitations of the study, taking into account sources of potential	
		bias or imprecision. Discuss both direction and magnitude of any potential	
		bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	
		limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	
		\bigcirc	
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study	
		and, if applicable, for the original study on which the present article is	
		based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Association of long-term exposure to PM_{2.5} with hypertension prevalence and blood pressure in China: a cross-sectional study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-050159.R1
Article Type:	Original research
Date Submitted by the Author:	20-Jul-2021
Complete List of Authors:	Song, Jiali; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases Gao, Yan; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases Hu, Shuang; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases Medda, Emanuela; Istituto Superiore di Sanità, Reference Centre for Behavioural Sciences and Mental Health Tang, Guigang; Ministry of Ecology and Environment of the People's Republic of China, China National Environmental Monitoring Centre Zhang, Di; Ministry of Ecology and Environment of the People's Republic of China, China National Environmental Monitoring Centre Zhang, Di; Ministry of Ecology and Environment of the People's Republic of China, China National Environmental Monitoring Centre Zhang, Wenbo; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases Li, Xi; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases Li, Jing; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases Renzi, Matteo; Department of Epidemiology of the Regional Health Service Lazio, Epidemiology, Stazi, Maria Antonietta; Istituto Superiore di Sanità, Reference Centre for Behavioural Sciences and Mental Health Zheng, Xin; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases
Primary Subject Heading :	Public health
Secondary Subject Heading:	Epidemiology, Public health
Keywords:	Epidemiology < TROPICAL MEDICINE, Public health < INFECTIOUS DISEASES, Hypertension < CARDIOLOGY

SCHOLARONE [™] Manuscripts
For noar roviow only http://bmionan.hmi.com/site/about/guidalines.yhtml
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

TITLE PAGE

Association of long-term exposure to PM_{2.5} with hypertension prevalence and blood pressure in China: a cross-sectional study

Authors

Jiali Song*, MD; Yan Gao*, MSc; Shuang Hu, PhD; Emanuela Medda, MSc; Guigang Tang, MSc; Di Zhang, MSc; Wenbo Zhang, MPH; Xi Li, MD, PhD; Jing Li, MD, PhD; Matteo Renzi, MSc; Maria Antonietta Stazi, MSc; Xin Zheng[†], MD, PhD

oet tevie

*Joint first authors

[†]Corresponding author

Author Affiliations

National Clinical Research Center for Cardiovascular Diseases, NHC Key Laboratory of Clinical Research for Cardiovascular Medications, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases (Song, Gao, Hu, W. Zhang, X. Li, J. Li, Zheng); Reference Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy (Medda, Stazi); Department of Epidemiology of Lazio Region, Rome, Italy (Renzi); China National Environmental Monitoring Centre, State Environmental Protection Key Laboratory of Quality Control in Environmental Monitoring, Ministry of Ecology and Environment of the People's Republic of China (Tang, D. Zhang)

Page 1 of 25

Correspondence

Dr. Xin Zheng, National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital,

167 Beilishi Road, Beijing 100037, People's Republic of China; Tel: +86 010 6086 6719; Email:

xin.zheng@fwoxford.org

Inde time Word count: 2,931 words (main text)

Number of figures: 4

BMJ Open

ABSTRACT

Objective: Evidence of the effects of long-term fine particulate matter ($PM_{2.5}$) exposure on hypertension and blood pressure is limited for populations exposed to high levels of $PM_{2.5}$. We aim to assess associations of long-term exposure to $PM_{2.5}$ with hypertension prevalence and blood pressure, and further explore the subpopulation differences and effect modification by participant characteristics in these associations in China.

Methods: We analyzed cross-sectional data from 883,827 participants aged 35–75 years in the China Patient-Centered Evaluative Assessment of Cardiac Events (PEACE) Million Persons Project. Data from the monitoring station was used to estimate the one-year average concentration of $PM_{2.5}$. The associations of $PM_{2.5}$ exposure with hypertension prevalence and blood pressure were investigated by generalized linear models, with $PM_{2.5}$ included as either linear or spline functions.

Results: The 1-year $PM_{2.5}$ exposure of the study population ranged from 8.8 to 93.8 µg/m³ (mean 49.2 µg/m³). The adjusted odds ratio of hypertension prevalence related to a 10 µg/m³ increase in one-year $PM_{2.5}$ exposure was 1.09 (95% confidence interval, 1.08–1.10). Each 10 µg/m³ increment in $PM_{2.5}$ exposure was associated with increases of 0.50 mmHg (95% confidence interval, 0.41–0.59) and 0.23 mmHg (95% confidence interval, 0.18–0.28) in systolic blood pressure and diastolic blood pressure, respectively. The concentration-response curves for hypertension prevalence and systolic blood pressure showed steeper slopes at higher $PM_{2.5}$ levels; while the curve for diastolic blood pressure was U-shaped. The elderly, men, and non-current smokers were o be more susceptible to the exposure of $PM_{2.5}$. **Conclusions:** Long-term exposure to $PM_{2.5}$ is associated with higher blood pressure and

Page 3 of 25

increased risk of hypertension prevalence. The effects of PM_{2.5} on hypertension prevalence become more pronounced at higher PM_{2.5} levels. These findings emphasize the need to reduce air pollution, especially in areas with severe air pollution.

Keywords: Air pollution; Blood pressure; Hypertension

<text>

Strengths and limitations of this study

- The large size of our study allowed us to comprehensively assess these associations among a diverse spectrum of population across a wider range of PM_{2.5} concentrations in China.
- The large number of participants with hypertension and high level of PM_{2.5} exposure (e.g. >35 µg/m³), enabled us to examine these associations with greater precision and sufficient statistical power.
- Given the nature of the cross-sectional study design, the causal relationship could not be established.

A selection bias is possible because our analysis was restricted to participants with available PM_{2.5} data.

Hypertension is the leading risk factor for death globally.¹ Although hypertension is a
worldwide public health concern, three-quarters of the world's population with the condition
are living in low- and middle-income countries (LMICs).² The causes of hypertension are
complex. Apart from genetic predisposition, social determinants, and lifestyle factors, air
pollution, especially fine particulate matter with an aerodynamic diameter of 2.5 µm or less
(PM_{2.5}), may also contribute to increased risk for hypertension.^{3, 4}

Over the past few years, a growing body of epidemiological evidence indicated the association of long-term exposure to PM_{2.5} with blood pressure and hypertension.⁵⁻¹⁰ However, most of the studies were undertaken in high-income countries.^{8, 10} Compared with high-income countries, exposure to PM_{2.5} is substantially higher in LMICs. Although several studies have been performed in LMICs, they were largely confined to specific populations (such as reproductive-aged adults) or regions.⁵⁻⁷ Therefore, further studies are needed to assess the associations of $PM_{2.5}$ with blood pressure and prevalence of hypertension among a wider spectrum of populations with high PM_{2.5} concentrations, especially in LMICs.

China is experiencing a growing epidemic of hypertension and is estimated to have 300
million individuals with hypertension by 2025.¹¹ Meanwhile, outdoor PM_{2.5} has become one
of China's most serious environmental problems with population-weighted annual means of
PM_{2.5} ranging from 19.1 µg/m³ to 79.3 µg/m³ in 2015.¹² A deeper understanding of the
chronic health effects of PM_{2.5} on hypertension prevalence and blood pressure in moderate
Page 6 of 25

BMJ Open

2 3		
4 5	23	to high $PM_{2.5}$ concentrations will help to develop policies to improve air quality and combat
6 7 8	24	the hypertension epidemic in China.
9 10	25	
11 12 13	26	Accordingly, incorporating $PM_{2.5}$ data with a large-scale population-based screening project
14 15	27	in China, the China Patient-Centered Evaluative Assessment of Cardiac Events (PEACE)
16 17 18	28	Million Persons Project, we aimed to: (1) explore the association of long-term $PM_{2.5}$
19 20	29	exposure with blood pressure level and hypertension prevalence, and evaluate
21 22 23	30	subpopulation differences and effect modification by characteristics of participants in these
24 25	31	associations; (2) assess the concentration-response relationships of long-term $PM_{2.5}$
26 27 28	32	exposure with hypertension prevalence and blood pressure.
29 30 31	33	
32 33	34	METHODS
34 35 36	35	Study population
37 38	36	Our study population is derived from the China PEACE Million Persons Project, which has
39 40 41	37	been described previously. ¹³ In brief, we selected county-level regions using a convenience
42 43 44	38	sampling strategy in all 31 provinces in mainland China from September 2014 to March
45 46	39	2019. These regions are designated as rural counties or urban districts according to urban-
47 48 49	40	rural division codes of the National Bureau of Statistics of China. ¹⁴ Local residents aged 35
50 51	41	to 75 years, who were currently registered in the selected region's Hukou (a record officially
52 53 54	42	identifying a person as a resident of an area) or had lived in the region for at least 6 of the
55		
56 57	43	previous 12 months, were enrolled in this project. After excluding participants with missing

Page 7 of 25

measurement (n=2), we further excluded participants with systolic blood pressure (SBP) ≥
250 mmHg or diastolic blood pressure (DBP) ≥150 mmHg to minimize the potential bias due
to measurement errors in blood pressure values (n=73). Finally, we included 883,827
participants in the study sample. The central ethics committee at the China National Center
for Cardiovascular Diseases approved this project. All enrolled participants provided written
informed consent.

52 Data collection and variable definitions

Data collection for each participant was performed by trained personnel with a standardized in-person interview and a medical examination. Information on sociodemographic status (age, gender, and education level), lifestyle (smoking and alcohol use), medical history, and medication use were collected. Medication use was determined by asking participants whether they had taken prescribed medications for controlling blood pressure or glucose in the past 2 weeks. Those who answered "yes" and knew the drug names were asked to report the name, dose, and frequency of each drug. Those who did not remember the exact dose stated the number of pills or tablets taken (Supplement 1).

The blood pressure of each participant was measured twice on the right upper arm after 5
minutes of rest in a seated position with a standardized electronic blood pressure monitor
(Omron HEM-7430). If the difference between the two SBP readings was greater than 10
mmHg, a third measurement was obtained, and the average of the last 2 readings was used.
Hypertension was defined as SBP of 140 mmHg or higher, DBP of 90 mmHg or higher, or

Page 8 of 25

BMJ Open

use of antihypertensive medications, which is consistent with the US Joint National Committee and Chinese definitions^{15, 16}. Body mass index (BMI) was defined as weight in kilograms divided by height in square meters. Obesity was defined as 28.0 kg/m² or higher, based on recommendations from the Working Group on Obesity in China.¹⁷ Exposure Assessment We geocoded each participant's current address (either rural counties or urban districts) into latitude and longitude data and identified air monitors located within 10 kilometers (Supplement 2). The average distance between the address of participants and assigned monitors was 2.7 (interguartile range 1.2, 3.5) kilometers. The measurements from these monitors strictly followed the methodological standards set by the State Environmental Protection Administration of China. For each participant, daily average PM_{2.5} concentrations measured at the nearest monitors to the residence were used to estimate PM_{2.5} exposure. The 1-year average concentration before the medical examination was calculated and treated as an indicator of long-term exposure to PM_{2.5}. In the present study, we included participants with more than 330 valid PM_{2.5} values for assessing long-term exposure, to ensure that, for each participant, the missing rate of PM_{2.5} data in the preceding one year of medical examination is less than 10%.18 **Statistical Analysis** Continuous variables were reported as means with standard deviation; categorical variables were presented as percentages. We developed mixed models with a logit link function to

Page 9 of 25

2	
3 4 5	8
6 7	ç
8 9 10	ç
11 12 13	ç
12 13 14 15	ç
16 17 18	ç
19 20	ç
21 22 23	ç
24 25	ç
19 20 21 22 23 24 25 26 27 28 29	ç
30	ç
31 32 33	10
34 35 36	10
36 37 38	10
39 40 41	10
42 43	10
44 45 46	10
47 48 49	10
50 51	10
52 53 54	10
55 56	1(
57 58 59	11
60	

1

89	assess the effect of long-term exposure to $PM_{2.5}$ on hypertension prevalence. To assess the
90	association of $PM_{2.5}$ and blood pressure, SBP and DBP were modeled using linear
91	regressions with township-specific random intercepts. For each of these analyses, we
92	started with a model (Model 1) which only included age and sex. We then incrementally
93	adjusted for additional covariates. The second model (Model 2) included Model1 and
94	socioeconomic factors (education level and urbanity). The third model (Model 3) included
95	Model 2 and cardiovascular disease risk factors (BMI, smoking status, alcohol consumption,
96	and diabetes). Models of blood pressure were controlled for hypertensive medication use;
97	while models of hypertension were not, as hypertension medication use was a component of
98	the outcome definition. For sensitivity analysis, we additionally adjusted for the day of week
99	(one indicator variable per day) and season of measurement (summer: June–August; fall:
100	September–November; winter: December–February; spring: March–May) to account for
101	potential time-variant factors. We also used restricted cubic splines to characterize the
102	concentration-response (C-R) relationships of PM _{2.5} with hypertension prevalence and blood
103	pressure. ¹⁹ In addition, to examine effect modification by age, gender, smoking status,
104	alcohol consumption, diabetes, and obesity, each potential modifier was tested by adding an
105	interaction term in the regression model separately and testing its statistical significance as
106	well as the association per categories of the tested variable through subgroup analyses.
107	
108	Analyses were conducted with SAS version 9.4, 64-bit Windows (SAS Institute Inc., Cary,
109	North Carolina). All tests of significance were 2-tailed, with a level of significance set at an
110	alpha of 0.05.

Page **10** of **25**

1		
2 3		
4 5	111	
6 7 8	112	Patient and public involvement
9 10	113	Patients and/or the public were not involved in the design, or conduct, or reporting, or
11 12 13	114	dissemination plans of this research.
14 15	115	
16 17 18	116	RESULT
19 20 21	117	Study population and baseline characteristics
22 23	118	We included a total of 883,827 participants distributed in 83 county-level regions of mainland
24 25 26	119	China (Supplement 3). The mean age was 55.5 years, 60.4% were women, 43.1% had
27 28	120	hypertension, mean SBP was 143.5 mmHg, mean DBP was 83.1 mmHg, and 19.4% were
29 30 31	121	taking antihypertensive medications. The 1-year PM _{2.5} exposure of the total study population
32 33 34	122	ranged from 8.8 to 93.8 µg/m³ (mean 49.2 µg/m³). There were 864,119 (97.8%), 842,356
35 36	123	(95.3%), and 706,415 (79.9%) participants with 1-year $PM_{2.5}$ exposure higher than 15 µg/m ³
37 38 39	124	[World Health Organization (WHO) Interim Target 3 (IT-1)], 25 µg/m ³ [WHO Interim Target 2
40 41	125	(IT-2)], and 35 µg/m³ [WHO Interim Target 3 (IT-3)], respectively. (Supplement 4)
42 43 44	126	
45 46	127	Associations of long-term PM _{2.5} exposure with hypertension prevalence
47 48 49	128	After adjusting for sociodemographic characteristics and cardiovascular risk factors, the
50 51	129	odds ratio (OR) of hypertension was 1.09 (95% CI: 1.08–1.10) for each 10 μ g/m ³ increase in
52 53 54	130	$PM_{2.5}$. The association of $PM_{2.5}$ exposure with hypertension prevalence remained consistent
55 56 57	131	across different model specifications (Supplement 5). For the C-R relationship, the curve
58 59	132	showed steeper slopes at high $PM_{2.5}$ exposure levels (i.e., higher than ~50 µg/m ³), and this
60		Page 11 of 25

133	trend was also evident in the sensitivity analysis with further adjustment for day of week and
134	season of blood pressure measurements (Supplement 6). Compared to individuals with the
135	lowest level of $PM_{2.5}$ exposure (8.8 µg/m ³), the adjusted ORs for hypertension of individuals
136	with 15, 25, and 35 μ g/m ³ of PM _{2.5} exposure were 1.01 (95% CI: 1.01–1.02), 1.03 (95% CI:
137	1.02–1.04), and 1.05 (95% CI: 1.03–1.07), respectively. (Figure 1)
138	
139	Associations of long-term $PM_{2.5}$ exposure with systolic and diastolic blood pressure
140	In the adjusted Model 4, each 10 μ g/m ³ increment was associated with increases of 0.50
141	mmHg (95% CI: 0.41–0.59) in SBP and 0.23 mmHg (95% CI: 0.18–0.28) in DBP. After
142	adjustment for the day of week and season, these positive associations were also observed
143	[0.19 mmHg (95% CI: 0.10–0.28) in SBP; 0.13 mmHg (95% CI: 0.08–0.18) in DBP].
144	(Supplement 7) In addition, we found that the shapes of the C-R curves for SBP and DBP
145	were different. The fitted C-R functions showed upward trends with greater effect estimates
146	of PM _{2.5} at higher concentrations for SBP but were generally U-shaped for DBP. (Figure 2)
147	These C-R relationships for blood pressure remained robust after accounting for time-variant
148	factors. (Supplement 8)
149	
150	Subpopulation difference and effect modification
151	The associations of $PM_{2.5}$ exposure with hypertension were stronger among the elderly (>
152	65 years), men, and non-current smokers compared with their counterparts (Figure 3).
153	Gender significantly modified the effects of $PM_{2.5}$ exposure on all three outcomes (all p for
154	interaction <0.05) with stronger associations among men [e.g., OR for hypertension per 10

Page 12 of 25

BMJ Open

	155	μ g/m ³ increase in PM _{2.5} of 1.06 (95% CI: 1.04–1.06) for women, and 1.12 (95% CI: 1.1–1.14)
	156	for men]; while these associations were not modified by alcohol consumption (all p for
C	157	interaction >0.05). Although age and smoking status were also found to be effect modifiers
1 2	158	in the associations of $PM_{2.5}$ exposure with SBP, DBP, and hypertension, the impacts of the
5 4 5	159	two effect modifiers on these associations differed depending on the outcome. We observed
5 7 8	160	greater effect estimates of $PM_{2.5}$ exposure for SBP and hypertension [e.g., OR for
9 0	161	hypertension per 10 μ g/m ³ increase in PM _{2.5} of 1.14 (95% CI: 1.12–1.17) for the elderly, and
1 2 3	162	1.06 (95% CI: 1.05–1.08) for their younger counterparts], while smaller estimates for DBP
4 5	163	among the elderly and non-current smokers [e.g., elevation in DBP per 10 μ g/m ³ increase in
5 7 8	164	PM _{2.5} of 0.16 mmHg (95% CI: 0.04–0.27) for the elderly, and 0.24 mmHg (95% CI: 0.19–0.3)
9 0 1	165	for their younger counterparts]. (Figure 4)
2 3	166	
4 5 5	167	DISCUSSION
7 8	168	In this study, we investigated the associations between long-term exposure to $PM_{2.5}$ and
9) 1	169	hypertension prevalence, SBP, and DBP. We found that PM _{2.5} was associated with
2 3 4	170	increased risk of hypertension prevalence and elevation of blood pressure. Nonlinearity in
5	171	these associations was also observed. The C-R curves for hypertension and SBP showed
7 8 9	172	steeper slopes for $PM_{2.5}$ concentration above 50 μ g/m ³ ; while the C-R curve for $PM_{2.5}$ -DBP
) 1 2	173	was U-shaped, with the turning point around 50 μ g/m ³ . The elderly, men, and non-current
2 3 4	174	smokers appeared to be more susceptible to the exposure of $PM_{2.5}$.
5 5 7	175	
, 8 9	176	Our study contributes to the existing scientific literature in several ways. First, we
J		Page 13 of 25

Page 16 of 40

incorporated a large cross-sectional survey with extensive covariates data obtained by
personal interviews and standardized blood pressure measurements, which allowed us to
comprehensively assess associations among a more diverse spectrum of population with a
wider range of $PM_{2.5}$ concentrations. We found long-term exposure to $PM_{2.5}$ was positively
associated with hypertension prevalence and blood pressure. This echoed the data showing
that there was an absolute increase of 139 million individuals with hypertension in China
during a decade from 2002–2013/14 ²⁰ , with the national $PM_{2.5}$ level gradually increasing in
the meantime. ²¹ Furthermore, the magnitude of the effects for each 10 μ g/m ³ increment in
PM _{2.5} were also similar compared to other studies. ^{5, 7, 22-24} For example, one study based on
361,560 adults observed that each 10 μ g/m ³ in PM _{2.5} was associated with increases of 0.45
mmHg and 0.07 mmHg in SBP and DBP, respectively. ²² For hypertension prevalence, odds
ratios related to a 10 μ g/m ³ increase in PM _{2.5} were ranged from 1.01 to 1.14 in prior
studies. ^{5, 23, 24} It is also noteworthy that others have reported no or inconsistent
associations. ^{25, 26} Adar et al. found no associations between exposures to $PM_{2.5}$ and blood
pressure based on a longitudinal cohort. ²⁵ However, this study only included a small fraction
of Chinese populations (10%), and was conducted in the U.S. with a mean annual average
$PM_{2.5}$ of 17 µg/m ³ , which was lower than this study (49.2 µg/m ³).
Second, we provided new information on the C-R relationship between long-term $PM_{2.5}$
exposure and hypertension prevalence. Previous research reported a U-shaped relationship
with a threshold $PM_{2.5}$ of 47.9 μ g/m ^{3.5} However, in our study, the risk of hypertension

198 associated with PM_{2.5} became even more pronounced when the exposure was extended to

Page 14 of 25

Page 17 of 40

BMJ Open

1 2	
3 4 5	199
6 7	200
8 9 10	201
11 12 13	202
14 15	203
16 17 18	204
19 20	205
21 22 23	206
24 25	207
26 27 28	208
29 30	209
31 32 33	210
34 35 36	211
37 38	212
39 40 41	213
42 43	214
44 45 46	215
47 48	216
49 50 51	217
52 53	218
54 55 56	219
57 58	220
59 60	•

199	higher levels. This finding was in line with a prior study based on prospective cohorts
200	showed that higher $PM_{2.5}$ exposure was significantly associated with increased risk of
201	developing hypertension, with hazard ratios (95% CIs) for hypertension incidence of 1.27
202	(1.17–1.39), 1.44 (1.30–1.58), and 1.77 (1.56–2.00) for the participants in the second (71.9-
203	73.7 μ g/m ³), third (73.7-82.2 μ g/m ³), and fourth quartiles (>82.2 μ g/m ³) of PM _{2.5}
204	concentrations compared with those in the first quartile (<71.9 μ g/m ³), respectively. ²⁷ This
205	result suggests that a per unit decrease in the concentration of $PM_{2.5}$ can be translated to a
206	greater reduction in excess hypertension prevalence in highly polluted regions compared
207	with regions with low to moderate levels of PM _{2.5} exposure.
208	
209	Third, we found evidence of nonlinearity in the relationships of PM _{2.5} exposure with SBP and
210	DBP. Interestingly, the shape of curves for SBP and DBP were different. Although the
211	relevant mechanism remains unclear, pathophysiological changes, such as systemic
212	inflammation, atherosclerosis, endothelial dysfunction, and increased arterial stiffness, ⁴ may
213	have contributed to the observed patterns. The increased arterial stiffness induced by $PM_{2.5}$
214	would initially lead to elevation in SBP and decline in DBP, creating an increased pulse
215	pressure. ²⁸ While with further increase of arterial stiffness, the heart rates got higher to
216	maintain the stroke volume, which could result in the rise of DBP afterward. In addition, prior
217	studies have reported the effects of $PM_{2:5}$ exposure on pulse pressures showing a tendency
218	of rising first and then declining at higher $PM_{2.5}$ levels, which partially supports this
219	hypothesis. ²²
220	

1 2	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 0 21 22 23 24 25 26 27 28 9 30 31 32 33 4 35 36 37	2
6 7	2
8 9 10	2
11 12 13	2
14 15	2
16 17 18	2
19 20	2
21 22 23	2
24 25	2
26 27 28	2
29 30	2
31 32 33	2
34 35	2
36 37 38	2
39 40	2
41 42 43	2
44 45	2
46 47 48	4
49 50	2
51 52 53	2
54 55	2
56 57 58	2
59 60	2

221	Fourth, we assessed the subpopulation differences through stratified analyses and identified
222	the susceptible individuals to the exposure of $PM_{2.5}$. We observed the large effect estimates
223	of $PM_{2.5}$ on hypertension and SBP among the elderly. Elderly subjects may commonly
224	represent a higher prevalence of preexisting cardiovascular and respiratory diseases, which
225	may confer susceptibility to $PM_{2.5}$. Also, the results showed that $PM_{2.5}$ exposure had larger
226	effects on hypertension in men, and such increased susceptibility may be related to sex-
227	related differences in the deposition localization and rates of air pollutants; specifically, men
228	have larger airways and slightly lower airway reactivity. ²⁹ Additionally, smoking status was
229	found to be an effect modifier with smaller effects on hypertension among current smokers.
230	This finding is also supported by prior research. ^{8, 22} One possible explanation is that smoking
231	and $PM_{2.5}$ exposure may share the same pathways in mediating cardiovascular effects and
232	smoking may play a dominant role in smokers. Thus, exposure to $PM_{2.5}$ might not exert
233	additional harmful effects via the same pathway. ²² There is also some potential that the
234	greater effect size in non-current smokers could also be connected to some of them being
235	advised to quit smoking because of multiple comorbidities.
236	
237	Our study should also be interpreted in the context of several limitations. First, given the
238	nature of the cross-sectional study design, the causal relationship could not be established.
239	Additional research is needed to examine these relationships in a prospective manner.
240	Second, a selection bias is possible because our analysis was restricted to participants with
241	available $PM_{2.5}$ data. Third, while we included a number of potential confounders in the
242	analyses, there might be unmeasured confounders that affected the observed associations.
	Page 16 of 25

Page **16** of **25**

BMJ Open

design, operations, and data collection.

	243	In particular, we were unable to control for other confounders such as diet and physical
	244	activity, because these data were only available in a subset of the China PEACE Million
)	245	Persons Project cohort. Fourth, we used the data from the fixed monitors to estimate the
2 2 2	246	exposure of $PM_{2.5}$ and did not account for residential proximity to major roads, time-activity
, 1 5	247	patterns, and indoor-related characteristics, which would likely result in nondifferential
5 7 8	248	measurement errors. However, this approach is commonly used and previous research has
)	249	indicated that PM _{2.5} exposure estimated by the nearest monitor was highly correlated with
<u>2</u> 3	250	other sophisticated approaches ³⁰ . Fifth, other gaseous pollutants, such as NOx and ozone,
+ 5	251	temperature, and noise were not included in this study. As a result, we were not able to
, , ,	252	determine whether the observed effects were specifically attributable to $PM_{2.5}$ or the
)) 	253	combined effects of these factors.
2	254	
+ 5 5	255	In conclusion, our study demonstrated that long-term exposure to $PM_{2.5}$ was positively
7 3 9	256	associated with blood pressure and hypertension prevalence. The effect of $PM_{2.5}$ on
) 	257	hypertension prevalence was more pronounced at higher PM _{2.5} concentrations. Our findings
<u>2</u> 3 1	258	reinforce the need to develop comprehensive strategies for addressing air pollution
5	259	problems, especially for areas with severe air pollution.
, 3 9	260	
))	261	ACKNOWLEDGMENTS
- 3 1	262	We thank all study individuals for their participation and appreciate the contributions made
5	263	by project teams at the National Center for Cardiovascular Diseases in the realms of project
3	004	design energians and data collection

Page 17 of 25

1 2		
3 4 5	265	
6 7	266	FUNDING SOURCES
8 9 10	267	This project was supported by the National Key Research and Development Program
11 12 13	268	(2016YFE0103800) from the Ministry of Science and Technology of China, the CAMS
14 15 16	269	Innovation Fund for Medical Science (2016-I2M-1-006), the Major Public Health Service
17 18	270	Project from the Ministry of Finance and National Health and Family Planning Commission of
19 20 21	271	China and the 111 Project (B16005) from the Ministry of Education of China.
22 23	272	
24 25 26	273	DISCLOSURES
27 28 29	274	Dr. Jing Li discloses that she is a recipient of research grants from the government of China,
30 31	275	through Fuwai Hospital, for research to improve the management of hypertension and blood
32 33 34	276	lipids, and to improve care quality and patient outcomes of cardiovascular disease; is a
35 36	277	recipient of research agreements with Amgen, through National Center for Cardiovascular
37 38 39	278	Diseases (NCCD) and Fuwai Hospital, for a multi-centre trial to assess the efficacy and safety
40 41 42	279	of Omecamtiv Mecarbil, and for dyslipidemic patient registration; is a recipient of a research
43 44	280	agreement with Sanofi, through Fuwai Hospital, for a multi-centre trial on the effects of
45 46 47	281	sotagliflozin; is a recipient of a research agreement with University of Oxford, through Fuwai
48 49	282	Hospital, for a multi-centre trial of empagliflozin; and was a recipient of a research agreement,
50 51 52	283	through NCCD, from AstraZeneca for clinical research methods training. The authors declare
53 54 55	284	no other relevant conflicts of interest.
56 57	285	
58 59		
60		Page 18 of 25

3 4 5	286	CONTRIBUTORS
6 7 8	287	JS and XZ conceived of this article. JS and YG wrote the manuscript with further
9 10	288	contributions from XZ, XL, EM, MR, GT, DZ, WZ, JL, and MA. JS and SH completed all the
11 12 13	289	statistical analyses. All authors interpreted data, contributed to critical revisions, and
14 15	290	approved the final version of the article.
16 17 18	291	
19 20 21	292	DATA AVAILABILITY STATEMENT
22 23	293	No data is available. The China PEACE Million Persons Project is a major national program,
24 25 26	294	and as the government policy stipulates, it is not permissible for the researchers to
27 28 29	295	make the raw data publicly available at this time. All data generated during
30 31	296	this study are included in this manuscript and its supplementary information
32 33 34	297	files.
35 36 37	298	
38		
39 40		
41 42		
43 44		
45		
46 47		
48		
49		
50 51		
52		
53 54		
54 55		
56		
57 58		
58 59		
60		Page 19 of 25

Stanaway JD, Afshin A, Gakidou E, et al. Global, regional, and national comparative risk

assessment of 84 behavioural, environmental and occupational, and metabolic risks or

clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the

2. Mills KT, Bundy JD, Kelly TN, et al. Global Disparities of Hypertension Prevalence and

3. Rajagopalan S, Al-Kindi SG, Brook RD. Air Pollution and Cardiovascular Disease: JACC

Coll Cardiol.

4. Carey RM, Muntner P, Bosworth HB, Whelton PK. Prevention and Control of

Hypertension: JACC Health Promotion Series. J Am Coll Cardiol. Sep 11 2018;72(11):1278-

Xie X, Wang Y, Yang Y, et al. Long-Term Effects of Ambient Particulate Matter (With an

Aerodynamic Diameter </=2.5 mum) on Hypertension and Blood Pressure and Attributable

Risk Among Reproductive-Age Adults in China. Journal of the American Heart Association.

6. Dong GH, Qian ZM, Xaverius PK, et al. Association between long-term air pollution and

increased blood pressure and hypertension in China. Hypertension (Dallas, Tex : 1979). Mar

Liu C, Chen R, Zhao Y, et al. Associations between ambient fine particulate air pollution

Oct 23

Control. Circulation. 2016;134(6):441-450. doi:10.1161/circulationaha.115.018912

Study 2017. Lancet (London,

England).

2018;72(17):2054-2070.

Page 20 of 25

10

Nov

2	
3 4 5	299
6 7	300
8 9 10	301
11 12 13	302
14 15	303
16 17 18	304
19 20	305
21 22 23	306
24 25 26	307
26 27 28	308
29 30 31	309
32 33	310
34 35 36	311
37 38	312
39 40 41	313
42 43 44	314
45 46	315
47 48 49	316
50 51	317
52 53 54	318
55 56	319
57 58 59	320
60	

5.

7.

1

REFERENCES

1.

Global

Burden of

State-of-the-Art Review.

doi:10.1016/j.jacc.2018.07.099

1293. doi:10.1016/j.jacc.2018.07.008

Apr 26 2018;7(9)doi:10.1161/jaha.118.008553

2013;61(3):578-84. doi:10.1161/hypertensionaha.111.00003

Disease

2018;392(10159):1923-1994. doi:10.1016/s0140-6736(18)32225-6

Am

J

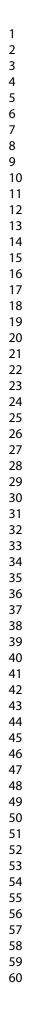
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2	
3 4 5	3
4 5 6 7	3
8 9 10	3
11 12	3
13 14 15 16 17	3
16 17	3
18 19 20	3
21	3
22 23 24 25 26 27 28	3
26 27	3
29 30	3
31 32 33	3
34 35	3
36 37 38	
38 39 40	
41 42 43	
43 44 45	Ċ
46 47 48	Ċ
49 50	ć
51 52 53	3
54 55	3
56 57 58	3
58 59 60	3

321 and hypertension: A nationwide cross-sectional study in China. The Science of the total 322 environment. Apr 15 2017;584-585:869-874. doi:10.1016/j.scitotenv.2017.01.133 323 8. Fuks KB, Weinmayr G, Foraster M, et al. Arterial blood pressure and long-term exposure to traffic-related air pollution: an analysis in the European Study of Cohorts for Air Pollution 324 325 Effects (ESCAPE). Environmental health perspectives. Sep 2014;122(9):896-905. doi:10.1289/ehp.1307725 326 327 9. Schwartz J, Alexeeff SE, Mordukhovich I, et al. Association between long-term exposure 328 to traffic particles and blood pressure in the Veterans Administration Normative Aging Study. 329 Occupational and environmental medicine. Jun 2012;69(6):422-7. doi:10.1136/oemed-2011-100268 330 10. Chan SH, Van Hee VC, Bergen S, et al. Long-Term Air Pollution Exposure and Blood 331 332 Pressure in the Sister Study. Environmental health perspectives. Oct 2015;123(10):951-8. doi:10.1289/ehp.1408125 333 11. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of 334 335 hypertension: analysis of worldwide data. Lancet (London, England). Jan 15-21 336 2005;365(9455):217-23. doi:10.1016/s0140-6736(05)17741-1 12. Cohen AJ, Brauer M, Burnett R, et al. Estimates and 25-year trends of the global burden 337 338 of disease attributable to ambient air pollution: an analysis of data from the Global Burden of 339 Diseases Study 2015. The Lancet. 2017;389(10082):1907-1918. 13. Lu J, Xuan S, Downing NS, et al. Protocol for the China PEACE (Patient-centered 340 341 Evaluative Assessment of Cardiac Events) Million Persons Project pilot. BMJ Open. Jan 4 2016;6(1):e010200. doi:10.1136/bmjopen-2015-010200 342

1 2


3 4 5	343	14. Compilation rules of zoning codes for statistics and urban-rural division codes. Accessed
6 7	344	July 1, 2021. http://www.stats.gov.cn/tjsj/tjbz/200911/t20091125_8667.html
8 9 10	345	15. James PA, Oparil S, Carter BL, et al. 2014 evidence-based guideline for the management
11 12 13	346	of high blood pressure in adults: report from the panel members appointed to the Eighth Joint
14 15	347	National Committee (JNC 8). Jama. 2014;311(5):507-20.
16 17 18	348	16. Liu LS, Writing Group of Chinese Guidelines for the Management of H. [2010 Chinese
19 20 21	349	guidelines for the management of hypertension]. Zhonghua xin xue guan bing za zhi. Jul
22 23	350	2011;39(7):579-615.
24 25 26	351	17. Zhou BF. Predictive values of body mass index and waist circumference for risk factors
27 28	352	of certain related diseases in Chinese adults study on optimal cut-off points of body mass
29 30 31	353	index and waist circumference in Chinese adults. Biomedical and environmental sciences :
32 33 34	354	BES. Mar 2002;15(1):83-96.
34 35 36	355	18. Bennett DA. How can I deal with missing data in my study? Australian and New Zealand
37 38 39	356	<i>journal of public health</i> . 2001;25(5):464-469.
40 41	357	19. Desquilbet L, Mariotti F. Dose-response analyses using restricted cubic spline functions
42 43 44	358	in public health research. Statistics in medicine. 2010;29(9):1037-1057.
45 46	359	20. Li Y, Yang L, Wang L, et al. Burden of hypertension in China: A nationally representative
47 48 49	360	survey of 174,621 adults. International journal of cardiology. Jan 15 2017;227:516-523.
50 51 52	361	doi:10.1016/j.ijcard.2016.10.110
53 54	362	21. Liang F, Xiao Q, Huang K, et al. The 17-y spatiotemporal trend of PM _{2.5}
55 56 57	363	and its mortality burden in China. Proceedings of the National Academy of Sciences.
58 59	364	2020;117(41):25601-25608. doi:10.1073/pnas.1919641117
60		Page 22 of 25

BMJ Open

3 4 5	365	22. Zhang Z, Guo C, Lau AKH, et al. Long-Term Exposure to Fine Particulate Matter, Blood
6 7 8 9 10	366	Pressure, and Incident Hypertension in Taiwanese Adults. Environmental health perspectives.
	367	Jan 18 2018;126(1):017008. doi:10.1289/ehp2466
11 12	368	23. Cai Y, Zhang B, Ke W, et al. Associations of Short-Term and Long-Term Exposure to
13 14 15	369	Ambient Air Pollutants With Hypertension: A Systematic Review and Meta-Analysis.
16 17 18	370	Hypertension (Dallas, Tex : 1979). Jul 2016;68(1):62-70.
 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 	371	doi:10.1161/hypertensionaha.116.07218
	372	24. Lin H, Guo Y, Zheng Y, et al. Long-Term Effects of Ambient PM2.5on Hypertension and
	373	Blood Pressure and Attributable Risk Among Older Chinese Adults. Hypertension (Dallas, Tex
	374	: 1979). 2017;69(5):806-812. doi:10.1161/hypertensionaha.116.08839
	375	25. Adar SD, Chen YH, D'Souza JC, et al. Longitudinal Analysis of Long-Term Air Pollution
	376	Levels and Blood Pressure: A Cautionary Tale from the Multi-Ethnic Study of Atherosclerosis.
	377	Environmental health perspectives. Oct 2018;126(10):107003. doi:10.1289/ehp2966
	378	26. Chen S-Y, Wu C-F, Lee J-H, et al. Associations between Long-Term Air Pollutant
	379	Exposures and Blood Pressure in Elderly Residents of Taipei City: A Cross-Sectional Study.
	380	Environmental health perspectives. 2015;123(8):779-784. doi:10.1289/ehp.1408771
45 46 47	381	27. Huang K, Yang X, Liang F, et al. Long-Term Exposure to Fine Particulate Matter and
48 49	382	Hypertension Incidence in China. Hypertension (Dallas, Tex : 1979). Jun 2019;73(6):1195-
50 51 52	383	1201. doi:10.1161/hypertensionaha.119.12666
53 54	384	28. Bavishi C, Goel S, Messerli FH. Isolated systolic hypertension: an update after SPRINT.
55 56 57	385	The American journal of medicine. 2016;129(12):1251-1258.
58 59 60	386	29. Yunginger JW, Reed CE, O'Connell EJ, Melton L, O'Fallon WM, Silverstein MD. A
00		Page 23 of 25

1 2		
3 4 5	387	community-based study of the epidemiology of asthma. Am Rev Respir Dis. 1992;146(4):888-
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	388	894.
	389	30. Miller KA, Spalt EW, Gassett AJ, et al. Estimating ambient-origin PM2.5 exposure for
	390	epidemiology: observations, prediction, and validation using personal sampling in the Multi-
	391	Ethnic Study of Atherosclerosis. Journal of exposure science & environmental epidemiology.
	392	2019;29(2):227-237. doi:10.1038/s41370-018-0053-x
	393	
21 22 23	394	
24 25		
26 27 28		
29 30		
31 32 33		
34 35 36		
37 38		
39 40 41		
42 43		
44 45 46		
47 48		
49 50 51		
52 53		
54 55 56		
57 58		
59 60		Page 24 of 25

1 2								
3 4 5	395	FIGURE LEGEND						
5 6 7 8 9 10 11 12 13 14	396 397	•						
	398 399							
	400 401	Figure 3. Stratified analysis of the association of long-term exposure to $PM_{2.5}$ with hypertension prevalence						
$\begin{array}{c} 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 32\\ 4\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 132\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 940\\ 41\\ 43\\ 44\\ 546\\ 47\\ 48\\ 950\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 7\\ 58\\ 960 \end{array}$	402 403	Figure 4. Stratified analysis of the association of long-term exposure to PM _{2.5} with systolic blood pressure (SBP) and diastolic blood pressure (DBP)						

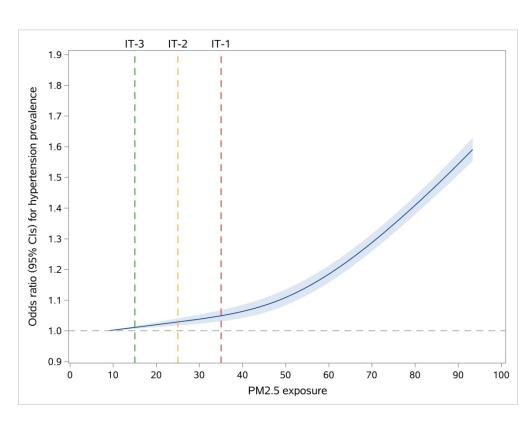


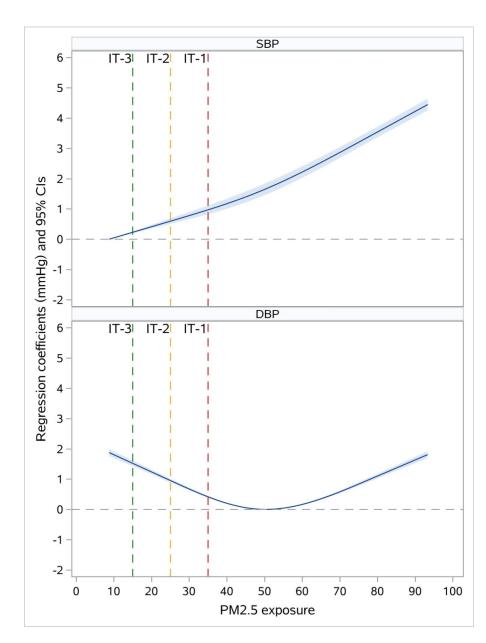
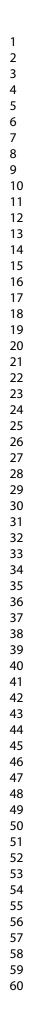
Figure 1. Concentration-response functions of the long-term exposure to PM2.5 with hypertension prevalence.

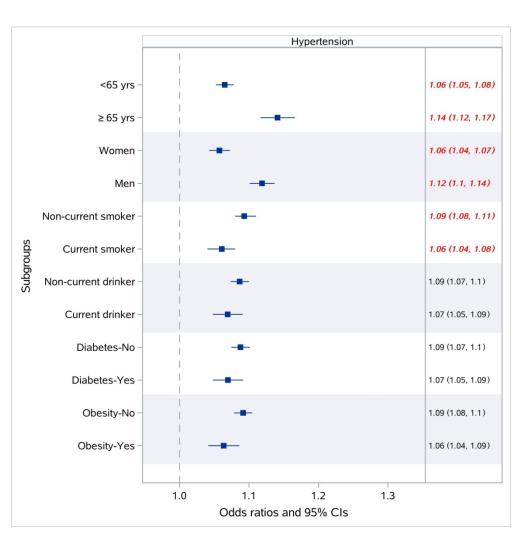
Effect estimates were presented as adjusted odds ratios for hypertension prevalence compared to individuals with PM2.5 exposure 8.8 µg/m3.

The dashed lines represent the air-quality standards for annual average concentrations of PM2.5 according to the World Health Organization (WHO) Interim Target 1 (IT-1), WHO Interim Target 2 (IT-2), WHO Interim Target 3 (IT-3).

Covariates used within the multivariate-adjusted models included age, sex, education level, urbanity, smoking status, alcohol consumption, obesity, and diabetes

169x127mm (300 x 300 DPI)


Figure 2. Concentration-response functions of the long-term exposure to PM2.5 with systolic blood pressure (SBP) and diastolic blood pressure (DBP)

Effect estimates (regression coefficients) were presented as changes in SBP compared to individuals with PM2.5 exposure 8.8 µg/m3 and changes in DBP compared to individuals with PM2.5 exposure 50 µg/m3. The dashed lines represent the air-quality standards for annual average concentrations of PM2.5 according to the World Health Organization (WHO) Interim Target 1 (IT-1), WHO Interim Target 2 (IT-2), WHO Interim Target 3 (IT-3).

Covariates used within the multivariate-adjusted models included age, sex, education level, urbanity, smoking status, alcohol consumption, obesity, diabetes, and use of antihypertensive medications.

127x169mm (300 x 300 DPI)

Stratified analysis of the association of long-term exposure to PM2.5 with hypertension prevalence. Red texts with italics indicated that p-value for interaction terms<0.05.

Effect estimates (regression coefficients) were presented as adjusted odds ratios for hypertension prevalence for each 10 µg/m3 increment in the 1-year PM2.5 exposure.

Covariates used within the multivariate-adjusted models included age, sex, education level, urbanity, smoking status, alcohol consumption, obesity and diabetes.

158x158mm (300 x 300 DPI)

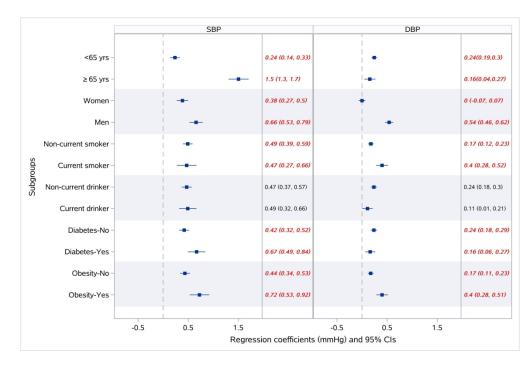


 Figure 4. Stratified analysis of the association of long-term exposure to PM2.5 with blood pressure Red texts with italics indicated that p-value for interaction terms<0.05.
 Effect estimates (regression coefficients) were presented as changes in systolic blood pressure (SBP) or diatolic blood pressure (DBP) for each 10 μg/m3 increment in the 1-year PM2.5 exposure deriving from multivariable linear regression. Covariates used within the multivariate-adjusted models included age, sex, education level, urbanity, smoking status, alcohol consumption, obesity, diabetes, and use of antihypertensive medications.

238x158mm (300 x 300 DPI)

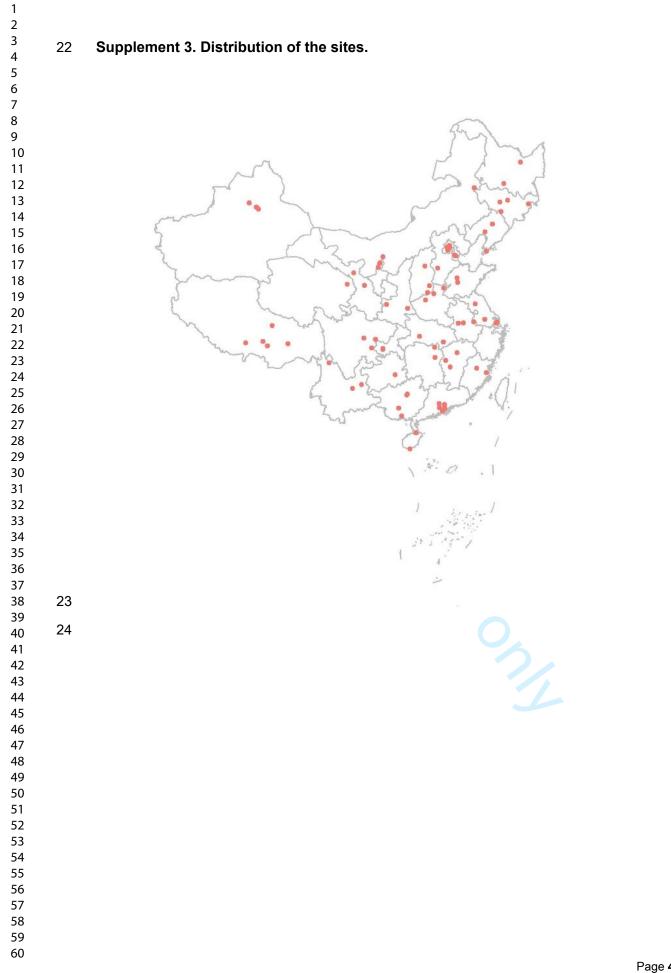
1 SUPPLEMENTAL MATERIAL

2 Supplement 1. Collection of medication data in China PEACE Million Persons Project.

Potential participants who were taking medications were required to bring their drug packaging (boxes) to the project sites. During the face-to-face interview, local project staff asked participants whether they always took anti-hypertension, lipid-lowering, anti-diabetics, or anti-platelet drugs during the past 2 weeks. Those who answered "yes" and knew the name of the drug were further asked to report the name, dose, and frequency of each drug. For those who did not remember the exact dose of the drug, the number of tablets or pills taken was recorded. Interviewers searched and selected drug names or the first letter of the Chinese phonetic alphabet participants answered by entering the generic name or trade name of each drug in the electronic data collecting system. In this system, a data dictionary was used to confirm drug information, including the drug class, generic name, trade name, and corresponding unique ID.

Page 1 of 9

Supplement 2. Summary statistics for daily PM_{2.5} (µg/m³) concentrations of assigned

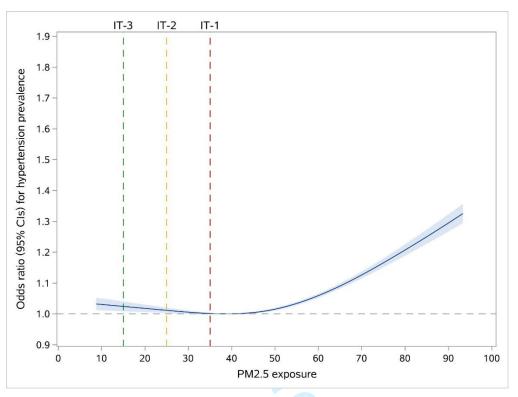

No.	Mean	Median	25 th percentile	75 th percentile	Minimum	Maximum	Total (days)	Missing (days)
1	67.9	50	26	88	5	540	1461	22
2	65.48	48	23	85	3	515	1461	25
3	56.39	40	19	76	2	448	1461	18
4	69.26	50	27	88	4	529	1461	10
5	57.73	41	20	77	4	446	1461	9
6	64.46	51	32	79.5	6	350	1461	13
7	62.85	50	30	78	4	409	1461	38
8	68.35	50 54	34	83.5	7	408	1461	37
9	64.46	51	32	79.5	6	350	1461	13
10	65.52	51	32	81	7	410	1461	34
10	86.31	61	38	107	5	708	1461	34 37
12								
	63.99	52	37	76 70	6	421	1461	18
13	61.01	50	30	79 70	2	290	1461	24
14	60.51	49	32	76	7	390	1461	70
15	46.19	40	29	55	7	276	1461	44
16	22.9	18	12	29	3	187	1461	59
17	54.55	41	26	68	3	932	1461	14
18	40.93	32	20	50	5	450	1461	16
19	44.97	35	22	56	6	353	1461	39
20	48.8	37	24	59	6	508	1461	15
21	45.3	31	19	55	3	612	1461	27
22	30.54	22	14	39	2	308	1461	17
23	45.36	34	21	58	3	378	1461	24
24	54.24	33	21	66	5	730	1461	24
25	39.52	29	18	49	3	502	1461	78
26	42.91	36	22	55	4	235	1461	24
27	44.22	36	22	58	5	225	1461	60
28	44.97	38	24	58	5	218	1461	22
29	44.32	37	23	57	6	224	1461	12
30*	49.23	40	28	62	10	271	797	1
31	52.7	42	27	67	7	284	1461	9
32	51.19	43	28	64	3	250	1461	40
33	49.98	44	31	61	6	259	1461	26
34	49.90	44	27	59	3	233	1461	30
35		40 25	17	35			1461	30 46
35 36	27.35				2	114		
30 37*	26.16	22	14	34	2	233	1461	5
	32.18	25	14	45	4	155	650	15
38	45.33	40	29	57	9	209	1461	32
39	49.12	44	31	62	3	356	1461	27
40	74.08	60	40	92	7	431	1461	22
41	56.81	46	31	70	7	327	1461	44
42*	70.49	57	40	82	6	514	797	56
43*	56.69	46	34	65	14	257	606	15
44	69.96	53	35	88	5	548	1461	57
45	62	50	31	81	3	275	1461	20
46	44.01	38	26	56	5	195	1461	31
47	48.13	43	29	61	6	478	1461	43
48		43	29	65	5	289	1461	10
49	39.33		23	50	6	214	1461	12

Page 2 of 9

Page 34	of 40
---------	-------

1										
1 2										
2							_			
4		50	32.84	29	20	42	5	121	1461	22
5		51	32.48	28	18	43	5	149	1461	35
6		52	27.19	24	14	36	3	120	1461	31
7		53	38.01	33	21	49	5	192	1461	16
8		54	35.67	30	19	46	3	269	1461	13
9		55	50.36	42	27	64	6	286	1461	23
10		56	44.34	35	23	56	5	333	1461	6
11		57	35.14	29	16	47	3	202	1461	22
12		58	22.1	18	14	27	3	123	1461	31
13		59	15.14	13	9	18	2	68	1461	12
14		60*	37.75	29	18	47	5	183	773	20
15		61	49.89	41	30	61	8	222	1461	27
16		62	60.72	49	32	77	5	353	1461	8
17		63	42.87	36	24	55	5	215	1461	16
18		64	49.35	40	24	65	3	235	1461	13
19		65	32.64	28	18	42	4	195	1461	23
20		66	30.96	28	21	39	7	123	1461	10
21		67	29.79	28	20	36	7	102	1461	23
22		68	13.86	14	12	15	3	51	1461	109
23		69	25.99	19	13	32	5	187	1461	33
24		70	24.49	19	13	30	2	124	1461	156
25		71	11.95	10	7	15	2	88	1461	87
26		72	51.21	42	30	63	10	239	1461	238
27		73	10.62	9	7	13	4	73	1461	46
28		74	53.8	41.5	28	64	5	328	1461	19
29		75	38.88	32	23	47	4	169	1461	27
30		76	44.45	36	24	57	4	581	1461	59
31		77	44.1	36	25	53	5	287	1461	44
32 33		78*	44.04	38	27	56	9	139	488	27
33 34		79	55.15	45	30	68	5	363	1461	14
34 35		80	44.69	36	24	55	5	219	1461	50
36		81	65.37	34	20	85	5	447	1461	97
37		82	57.76	29	19	70	3	414	1461	58
38		83	51.7	26	14	65	3	406	1461	42
30 39	17	Note:	01.1	20	17		J		IUI	74
40										
41	18		-		ole after 20					
42	19	Total: N	umber of	f days c	of assigned	d monitors b	eing availa	able during 2	2015-2018	
		.		<i>.</i> .					·	

Missing: Number of days with missing PM_{2.5} concentration during 2015-2018


1	
2	
3 4 5 6 7	
4 5	
6	
7	
8 0	
9 10	
11	
12	
14	
15	
16 17	
12 13 14 15 16 17 18 19	
19	
20 21	
22	
23	
24 25	
26	
27	
20 21 22 23 24 25 26 27 28 29	
20	
31	
32 33	
34	
35	
34 35 36 37	
38	
39 40	
40 41	
42	
43 44	
44	
46	
47 48	
49	
50	
51 52	
53	
54	
55 56	
57	
58 59	
74	

25 **Supplement 4. Characteristics of the study population.**

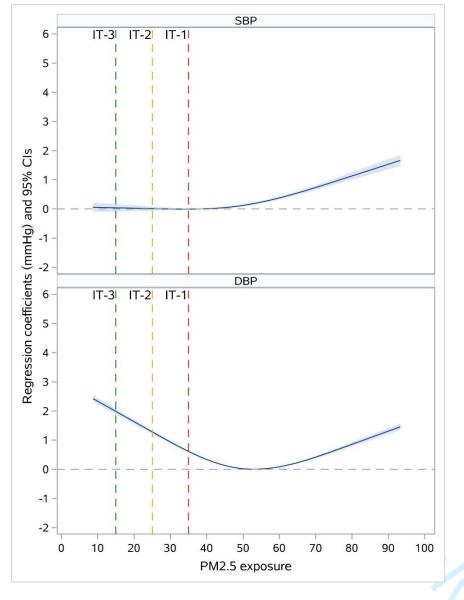
Variable	Total
	(n=883,827)
Socio-demographics	
Age, mean (SD), years	55.5 (10.1)
Female, n (%)	533897 (60.4)
Urban residence, n (%)	657608 (74.4)
Han ethnic group, n (%)	805479 (91.1)
College or above	102764 (11.6)
Regions, n (%)	
Eastern	325253 (36.8)
Central	178435 (20.2)
Western	311599 (35.3)
NorthEastern	68540 (7.8)
Cardiovascular risk factors, n (%)	
Obesity	142150 (16.1)
Current drinker	194967 (22.1)
Diabetes	173950 (19.7)
Current smoker	161006 (18.2)
Hypertension	381223 (43.1)
Blood pressures	
Systolic blood pressure, mean (SD)	143.5 (22.2)
Diastolic blood pressure, mean (SD)	83.1 (12.3)
PM _{2.5} exposures	
1-y average PM _{2.5} exposure, mean (SD) 🦯	49.2 (16.4)
Above WHO Interim Target 1 (IT-1, 35 µg/m ³), n (%)	706415 (79.9)
Above WHO Interim Target 2 (IT-2, 25 µg/m ³), n (%)	842356 (95.3)
Above WHO Interim Target 3 (IT-3, 15 µg/m ³), n (%)	864119 (97.8)

	Model	Per 10 µg/m ³ PM _{2.5} increment	
_		Odds ratios (95% confidence inter	vals) p-Value
	Hypertension pre	evalence	
	Model 1	1.10 (1.09-1.11)	<0.001
	Model 2	1.10 (1.09-1.11)	<0.001
	Model 3	1.09 (1.08-1.10)	<0.001
	Model 4*	1.09 (1.08-1.10)	<0.001
	Model 5*	1.04 (1.02-1.05)	<0.001
_	Model 6*	1.04 (1.02-1.05)	<0.001
*	Sensitivity analysis	s	
Ν	lodel 1: Included a	age and sex;	
Ν	lodel 2: Model 1 +	education level and urbanity;	
Ν	lodel 3: Model 2 +	- smoking status, alcohol consumption, obe	sity, and diabetes
Ν	lodel 4: Model 3 +	- day of week of the medical examination;	
		- season of the medical examination;	
Ν	lodel 6: Model 3 +	- day of week + season.	

Supplement 6. Concentration-response functions of the long-term exposure to PM_{2.5} with hypertension prevalence in the sensitivity analysis.

40 Effect estimates were presented as adjusted odds ratios for hypertension prevalence 41 compared to individuals with $PM_{2.5}$ exposure 38.5 µg/m³.

The dashed lines represent the air-quality standards for annual average concentrations of
PM_{2.5} according to the World Health Organization (WHO) Interim Target 1 (IT-1), WHO
Interim Target 2 (IT-2), WHO Interim Target 3 (IT-3).


47 Covariates of the model including age, sex, education level, urbanity, smoking status,
48 alcohol consumption, obesity, diabetes, as well as the day of week and season of blood
49 pressure measurement.

	Madal	Per 10 µg/m³ PM _{2.}	5 increment
	Model	mmHg (95% confidence int	
	Systolic blood pro	essure	
	Model 1	0.58 (0.49-0.67)	<0.001
	Model 2	0.57 (0.48-0.66)	<0.001
	Model 3	0.45 (0.36-0.54)	<0.001
	Model 4	0.50 (0.41-0.59)	< 0.001
	Model 5*	0.50 (0.41-0.59)	<0.002
	Model 6*	0.19 (0.10-0.28)	<0.002
	Model 7*	0.19 (0.10-0.28)	< 0.001
	Diastolic blood pr	ressure	
	Model 1	0.29 (0.23-0.34)	<0.002
	Model 2	0.28 (0.23-0.34)	<0.002
	Model 3	0.21 (0.15-0.26)	< 0.00
	Model 4	0.23 (0.18-0.28)	< 0.00
	Model 5*	0.23 (0.18-0.28)	< 0.00
	Model 6*	0.13 (0.08-0.18)	< 0.00
	Model 7*	0.13 (0.08-0.18)	< 0.001
	*Sensitivity analysis		
2			
3	Model 1: Included a	de and sev:	
3 4		-	
		education level and urbanity;	,
	Model 3: Model 2 +		
		smoking status, alcohol consumption	, obesity, and dial
		use of antihypertensive medication;	, obesity, and dial
	Model 4: Model 3 +	-	-
,	Model 4: Model 3 + Model 5: Model 4 +	use of antihypertensive medication;	-
7 8	Model 4: Model 3 + Model 5: Model 4 + Model 6: Model 3 +	use of antihypertensive medication; day of week of the medical examinati season of the medical examination;	-
7 8 9	Model 4: Model 3 + Model 5: Model 4 + Model 6: Model 3 +	use of antihypertensive medication; day of week of the medical examinati	-
7 8 9	Model 4: Model 3 + Model 5: Model 4 + Model 6: Model 3 +	use of antihypertensive medication; day of week of the medical examinati season of the medical examination;	-
7 8 9	Model 4: Model 3 + Model 5: Model 4 + Model 6: Model 3 +	use of antihypertensive medication; day of week of the medical examinati season of the medical examination;	-
7 8 9	Model 4: Model 3 + Model 5: Model 4 + Model 6: Model 3 +	use of antihypertensive medication; day of week of the medical examinati season of the medical examination;	-
6 7 8 9	Model 4: Model 3 + Model 5: Model 4 + Model 6: Model 3 +	use of antihypertensive medication; day of week of the medical examinati season of the medical examination;	-
7 8 9	Model 4: Model 3 + Model 5: Model 4 + Model 6: Model 3 +	use of antihypertensive medication; day of week of the medical examinati season of the medical examination;	-
7 8 9	Model 4: Model 3 + Model 5: Model 4 + Model 6: Model 3 +	use of antihypertensive medication; day of week of the medical examinati season of the medical examination;	-
7 8 9	Model 4: Model 3 + Model 5: Model 4 + Model 6: Model 3 +	use of antihypertensive medication; day of week of the medical examinati season of the medical examination;	-
	Model 4: Model 3 + Model 5: Model 4 + Model 6: Model 3 +	use of antihypertensive medication; day of week of the medical examinati season of the medical examination;	-
7 3 9	Model 4: Model 3 + Model 5: Model 4 + Model 6: Model 3 +	use of antihypertensive medication; day of week of the medical examinati season of the medical examination;	-
7 3 9	Model 4: Model 3 + Model 5: Model 4 + Model 6: Model 3 +	use of antihypertensive medication; day of week of the medical examinati season of the medical examination;	-
	Model 4: Model 3 + Model 5: Model 4 + Model 6: Model 3 +	use of antihypertensive medication; day of week of the medical examinati season of the medical examination;	-
7 3 9	Model 4: Model 3 + Model 5: Model 4 + Model 6: Model 3 +	use of antihypertensive medication; day of week of the medical examinati season of the medical examination;	-
7 3 9	Model 4: Model 3 + Model 5: Model 4 + Model 6: Model 3 +	use of antihypertensive medication; day of week of the medical examinati season of the medical examination;	-
, ;)	Model 4: Model 3 + Model 5: Model 4 + Model 6: Model 3 +	use of antihypertensive medication; day of week of the medical examinati season of the medical examination;	-
7 3 9	Model 4: Model 3 + Model 5: Model 4 + Model 6: Model 3 +	use of antihypertensive medication; day of week of the medical examinati season of the medical examination;	-
7 3 9	Model 4: Model 3 + Model 5: Model 4 + Model 6: Model 3 +	use of antihypertensive medication; day of week of the medical examinati season of the medical examination;	-
7 3 9	Model 4: Model 3 + Model 5: Model 4 + Model 6: Model 3 +	use of antihypertensive medication; day of week of the medical examinati season of the medical examination;	-
	Model 4: Model 3 + Model 5: Model 4 + Model 6: Model 3 +	use of antihypertensive medication; day of week of the medical examinati season of the medical examination;	-
, ;)	Model 4: Model 3 + Model 5: Model 4 + Model 6: Model 3 +	use of antihypertensive medication; day of week of the medical examinati season of the medical examination;	-

61 Supplement 8. Concentration-response functions of the long-term exposure to PM_{2.5}

62 with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in the

63 sensitivity analysis.

Effect estimates (regression coefficients) were presented as changes in SBP compared to individuals with $PM_{2.5}$ exposure 39 µg/m³ and changes in DBP compared to individuals with $PM_{2.5}$ exposure 53 µg/m³.

The dashed lines represent the air-quality standards for annual average concentrations of PM_{2.5} according to the World Health Organization (WHO) Interim Target 1 (IT-1), WHO Interim Target 2 (IT-2), WHO Interim Target 3 (IT-3).

Covariates of the model including age, sex, education level, urbanity, smoking status,
alcohol consumption, obesity, diabetes, and use of antihypertensive medications, as well as
the day of week and season of blood pressure measurement.

	Item No	Recommendation	Pag No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	3
		(<i>b</i>) Provide in the abstract an informative and balanced summary of what was done and what was found	3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	6
Objectives	3	State specific objectives, including any prespecified hypotheses	7
Methods			
Study design	4	Present key elements of study design early in the paper	7
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	7
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods of selection of participants	7
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	8
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	7-8
Bias	9	Describe any efforts to address potential sources of bias	9
Study size	10	Explain how the study size was arrived at	8
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	9
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	9-1
		(b) Describe any methods used to examine subgroups and interactions	10
		(c) Explain how missing data were addressed	8
		(<i>d</i>) If applicable, describe analytical methods taking account of sampling strategy	9-1
		(e) Describe any sensitivity analyses	10
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	10
		(b) Give reasons for non-participation at each stage	7-8
		(c) Consider use of a flow diagram	7-8
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,	10-
		social) and information on exposures and potential confounders	11
		(b) Indicate number of participants with missing data for each variable of interest	7-8
Outcome data	15*	Report numbers of outcome events or summary measures	10-
			11

Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted
		estimates and their precision (eg, 95% confidence interval). Make clear
		which confounders were adjusted for and why they were included
		(b) Report category boundaries when continuous variables were
		categorized
		(c) If relevant, consider translating estimates of relative risk into absolute
		risk for a meaningful time period
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions,
		and sensitivity analyses
Discussion		
Key results	18	Summarise key results with reference to study objectives
Limitations	19	Discuss limitations of the study, taking into account sources of potential
		bias or imprecision. Discuss both direction and magnitude of any potential
		bias
Interpretation	20	Give a cautious overall interpretation of results considering objectives,
		limitations, multiplicity of analyses, results from similar studies, and other
		relevant evidence
Generalisability	21	Discuss the generalisability (external validity) of the study results
Other information		
Funding	22	Give the source of funding and the role of the funders for the present study
		and, if applicable, for the original study on which the present article is
		based

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Association of long-term exposure to PM_{2.5} with hypertension prevalence and blood pressure in China: a cross-sectional study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-050159.R2
Article Type:	Original research
Date Submitted by the Author:	27-Sep-2021
Complete List of Authors:	Song, Jiali; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases Gao, Yan; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases Hu, Shuang; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases Medda, Emanuela; Istituto Superiore di Sanità, Reference Centre for Behavioural Sciences and Mental Health Tang, Guigang; Ministry of Ecology and Environment of the People's Republic of China, China National Environmental Monitoring Centre Zhang, Di; Ministry of Ecology and Environment of the People's Republic of China, China National Environmental Monitoring Centre Zhang, U; Ministry of Ecology and Environment of the People's Republic of China, China National Environmental Monitoring Centre Zhang, Wenbo; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases Li, Xi; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases Li, Jing; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases Renzi, Matteo; Department of Epidemiology of the Regional Health Service Lazio, Epidemiology, Stazi, Maria Antonietta; Istituto Superiore di Sanità, Reference Centre for Behavioural Sciences and Mental Health Zheng, Xin; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases
Primary Subject Heading :	Public health
Secondary Subject Heading:	Epidemiology, Public health
Keywords:	Epidemiology < TROPICAL MEDICINE, Public health < INFECTIOUS DISEASES, Hypertension < CARDIOLOGY

SCHOLARONE [™] Manuscripts
For noar roviow only http://bmionan.hmi.com/site/about/guidalines.yhtml
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

Fo

TITLE PAGE

Association of long-term exposure to PM_{2.5} with hypertension prevalence and blood pressure in China: a cross-sectional study

Authors

Jiali Song*, MD; Yan Gao*, MSc; Shuang Hu, PhD; Emanuela Medda, MSc; Guigang Tang, MSc; Di Zhang, MSc; Wenbo Zhang, MPH; Xi Li, MD, PhD; Jing Li, MD, PhD; Matteo Renzi, MSc; Maria Antonietta Stazi, MSc; Xin Zheng[†], MD, PhD

oet tevie

*Joint first authors

[†]Corresponding author

Author Affiliations

National Clinical Research Center for Cardiovascular Diseases, NHC Key Laboratory of Clinical Research for Cardiovascular Medications, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases (Song, Gao, Hu, W. Zhang, X. Li, J. Li, Zheng); Reference Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy (Medda, Stazi); Department of Epidemiology of Lazio Region, Rome, Italy (Renzi); China National Environmental Monitoring Centre, State Environmental Protection Key Laboratory of Quality Control in Environmental Monitoring, Ministry of Ecology and Environment of the People's Republic of China (Tang, D. Zhang)

Page 1 of 25

Correspondence

Dr. Xin Zheng, National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital,

167 Beilishi Road, Beijing 100037, People's Republic of China; Tel: +86 010 6086 6719; Email:

xin.zheng@fwoxford.org

International and the second sec Word count: 3,044 words (main text)

Number of figures: 4

BMJ Open

ABSTRACT

Objective: Evidence of the effects of long-term fine particulate matter ($PM_{2.5}$) exposure on hypertension and blood pressure is limited for populations exposed to high levels of $PM_{2.5}$. We aim to assess associations of long-term exposure to $PM_{2.5}$ with hypertension prevalence and blood pressure, and further explore the subpopulation differences and effect modification by participant characteristics in these associations in China.

Methods: We analyzed cross-sectional data from 883,827 participants aged 35–75 years in the China Patient-Centered Evaluative Assessment of Cardiac Events (PEACE) Million Persons Project. Data from the monitoring station was used to estimate the one-year average concentration of $PM_{2.5}$. The associations of $PM_{2.5}$ exposure with hypertension prevalence and blood pressure were investigated by generalized linear models, with $PM_{2.5}$ included as either linear or spline functions.

Results: The 1-year $PM_{2.5}$ exposure of the study population ranged from 8.8 to 93.8 µg/m³ (mean 49.2 µg/m³). The adjusted odds ratio of hypertension prevalence related to a 10 µg/m³ increase in one-year $PM_{2.5}$ exposure was 1.04 (95% confidence interval, 1.02–1.05). Each 10 µg/m³ increment in $PM_{2.5}$ exposure was associated with increases of 0.19 mmHg (95% confidence interval, 0.10–0.28) and 0.13 mmHg (95% confidence interval, 0.08–0.18) in systolic blood pressure and diastolic blood pressure, respectively. The concentration-response curves for hypertension prevalence and systolic blood pressure showed steeper slopes at higher $PM_{2.5}$ levels; while the curve for diastolic blood pressure was U-shaped. The elderly, men, non-current smokers, and obese participants were more susceptible to the exposure of $PM_{2.5}$.

Page 3 of 25

Conclusions: Long-term exposure to $PM_{2.5}$ is associated with higher blood pressure and increased risk of hypertension prevalence. The effects of $PM_{2.5}$ on hypertension prevalence become more pronounced at higher $PM_{2.5}$ levels. These findings emphasize the need to reduce air pollution, especially in areas with severe air pollution.

or operations of the text of t

Keywords: Air pollution; Blood pressure; Hypertension

Page **4** of **25**

Strengths and limitations of this study

- The large size of our study allowed us to comprehensively assess these associations among a diverse spectrum of population across a wider range of PM_{2.5} concentrations in China.
- The large number of participants with hypertension and high level of PM_{2.5} exposure (e.g. >35 µg/m³), enabled us to examine these associations with greater precision and sufficient statistical power.
- Given the nature of the cross-sectional study design, the causal relationship could not be established.

A selection bias is possible because our analysis was restricted to participants with available PM_{2.5} data.

1 INTRODUCTION

Hypertension is the leading risk factor for death globally.¹ Although hypertension is a
worldwide public health concern, three-quarters of the world's population with the condition
are living in low- and middle-income countries (LMICs).² The causes of hypertension are
complex. Apart from genetic predisposition, social determinants, and lifestyle factors, air
pollution, especially fine particulate matter with an aerodynamic diameter of 2.5 µm or less
(PM_{2.5}), may also contribute to increased risk for hypertension.^{3, 4}

Over the past few years, a growing body of epidemiological evidence indicated the association of long-term exposure to PM_{2.5} with blood pressure and hypertension.⁵⁻¹⁰ However, most of the studies were undertaken in high-income countries.^{8, 10} Compared with high-income countries, exposure to PM_{2.5} is substantially higher in LMICs. Furthermore, prior studies have largely focused on specific populations or regions.⁵⁻⁷ Therefore, further studies are needed to assess the associations of PM_{2.5} with blood pressure and prevalence of hypertension among a wider spectrum of populations with high PM_{2.5} concentrations, especially in LMICs.

China is experiencing a growing epidemic of hypertension and is estimated to have 300
million individuals with hypertension by 2025.¹¹ Meanwhile, outdoor PM_{2.5} has become one
of China's most serious environmental problems with population-weighted annual means of
PM_{2.5} ranging from 19.1 µg/m³ to 79.3 µg/m³ in 2015.¹² A deeper understanding of the
chronic health effects of PM_{2.5} on hypertension prevalence and blood pressure in moderate
Page 6 of 25

BMJ Open

2		
3 4 5	23	to high $PM_{2.5}$ concentrations will help to develop policies to improve air quality and combat
6 7 8	24	the hypertension epidemic in China.
9 10	25	
11 12 13	26	Accordingly, incorporating $PM_{2.5}$ data with a large-scale population-based screening project
14 15	27	in China, the China Patient-Centered Evaluative Assessment of Cardiac Events (PEACE)
16 17 18	28	Million Persons Project, we aimed to: (1) explore the association of long-term $PM_{2.5}$
19 20 21	29	exposure with blood pressure level and hypertension prevalence, and evaluate
22 23	30	subpopulation differences and effect modification by characteristics of participants in these
24 25 26	31	associations; (2) assess the concentration-response relationships of long-term $PM_{2.5}$
27 28 20	32	exposure with hypertension prevalence and blood pressure.
29 30 31	33	
32 33 34	34	METHODS
35 36	35	Study population
37 38 39	36	Our study population is derived from the China PEACE Million Persons Project, which has
40 41 42	37	been described previously. ¹³ In brief, we selected county-level regions using a convenience
42 43 44	38	sampling strategy in all 31 provinces in mainland China from September 2014 to March
45 46 47	39	2019. These regions are designated as rural counties or urban districts according to urban-
48 49	40	rural division codes of the National Bureau of Statistics of China. ¹⁴ Local residents aged 35
50 51 52	41	to 75 years, who were currently registered in the selected region's Hukou (a record officially
53 54	42	identifying a person as a resident of an area) or had lived in the region for at least 6 of the
55 56 57	43	previous 12 months, were enrolled in this project. After excluding participants with missing
58		

Page **7** of **25**

2		
3 4 5	45	measurement (n=2), we further excluded participants with systolic blood pressure (SBP) \geq
6 7 8	46	250 mmHg or diastolic blood pressure (DBP) ≥150 mmHg to minimize the potential bias due
9 10	47	to measurement errors in blood pressure values (n=73). Finally, we included 883,827
11 12 13	48	participants in the study sample.
14 15	49	
16 17 18	50	Data collection and variable definitions
19 20 21	51	Data collection for each participant was performed by trained personnel with a standardized
21 22 23	52	in-person interview and a medical examination. Information on sociodemographic status
24 25 26	53	(age, gender, and education level), lifestyle (smoking and alcohol use), medical history, and
27 28	54	medication use were collected. Medication use was determined by asking participants
29 30 31	55	whether they had taken prescribed medications for controlling blood pressure or glucose in
32 33	56	the past 2 weeks. Those who answered "yes" and knew the drug names were asked to
34 35 36	57	report the name, dose, and frequency of each drug. Those who did not remember the exact
37 38	58	dose stated the number of pills or tablets taken (Supplement 1).
39 40 41	59	
42 43 44	60	The blood pressure of each participant was measured twice on the right upper arm after 5
44 45 46	61	minutes of rest in a seated position with a standardized electronic blood pressure monitor
47 48 49	62	(Omron HEM-7430). If the difference between the two SBP readings was greater than 10
50 51	63	mmHg, a third measurement was obtained, and the average of the last 2 readings was used.
52 53 54	64	Hypertension was defined as SBP of 140 mmHg or higher, DBP of 90 mmHg or higher, or
55 56	65	use of antihypertensive medications, which is consistent with the US Joint National
57 58 59	66	Committee and Chinese definitions ^{15, 16} . Body mass index (BMI) was defined as weight in
60		Page 8 of 2 5

1

1 2		
3 4 5	67	kilograms divided by height in square meters. Obesity was defined as 28.0 kg/m ² or higher,
6 7	68	based on recommendations from the Working Group on Obesity in China. ¹⁷
8 9 10	69	
11 12	70	Exposure Assessment
13 14 15	71	We geocoded each participant's current address (either rural counties or urban districts) into
16 17 18	72	latitude and longitude data and identified air monitors located within 10 kilometers
19 20	73	(Supplement 2). The average distance between the address of participants and assigned
21 22 23	74	monitors was 2.7 (interquartile range 1.2, 3.5) kilometers. The measurements from these
24 25	75	monitors strictly followed the methodological standards set by the State Environmental
26 27 28	76	Protection Administration of China. For each participant, daily average PM _{2.5} concentrations
29 30 31	77	measured at the nearest monitors to the residence were used to estimate $PM_{2.5}$ exposure.
32 33	78	The 1-year average concentration before the medical examination was calculated and
34 35 36	79	treated as an indicator of long-term exposure to $PM_{2.5}$. In the present study, we included
37 38	80	participants with more than 330 valid PM _{2.5} values for assessing long-term exposure, to
39 40 41	81	ensure that, for each participant, the missing rate of $PM_{2.5}$ data in the preceding one year of
42 43 44	82	medical examination is less than 10%. ¹⁸
45 46	83	
47 48 49	84	Statistical Analysis
50 51	85	Continuous variables were reported as means with standard deviation; categorical variables
52 53 54 55 56	86	were presented as percentages. We developed mixed models with a logit link function to
	87	assess the effect of long-term exposure to $PM_{2.5}$ on hypertension prevalence. To assess the
57 58 59	88	association of $PM_{2.5}$ and blood pressure, SBP and DBP were modeled using linear
60		Page 9 of 25

89	regressions with township-specific random intercepts. For each of these analyses, we
90	started with a model (Model 1) which only included age and sex. We then incrementally
91	adjusted for additional covariates. The second model (Model 2) included Model1 and
92	socioeconomic factors (education level and urbanity). The third model (Model 3) included
93	Model 2 and cardiovascular disease risk factors (BMI, smoking status, alcohol consumption,
94	and diabetes). Models of blood pressure were controlled for hypertensive medication use;
95	while models of hypertension were not, as hypertension medication use was a component of
96	the outcome definition. To account for potential time-variant factors, we additionally adjusted
97	for the day of week (one indicator variable per day) and season of measurement (summer:
98	June–August; fall: September–November; winter: December–February; spring: March–May).
99	We also used restricted cubic splines to characterize the concentration-response (C-R)
100	relationships of PM _{2.5} with hypertension prevalence and blood pressure. ¹⁹ In addition, to
101	examine effect modification by age, gender, smoking status, alcohol consumption, diabetes,
102	and obesity, each potential modifier was tested by adding an interaction term in the
103	regression model separately and testing its statistical significance as well as the association
104	per categories of the tested variable through subgroup analyses.
105	
106	Analyses were conducted with SAS version 9.4, 64-bit Windows (SAS Institute Inc., Cary,
107	North Carolina). All tests of significance were 2-tailed, with a level of significance set at an
108	alpha of 0.05.
109	

Page 10 of 25

2		
3 4 5	110	Patient and public involvement
6 7 8	111	Patients and/or the public were not involved in the design, or conduct, or reporting, or
9 10	112	dissemination plans of this research.
11 12 13	113	
14 15 16	114	RESULT
17 18	115	Study population and baseline characteristics
19 20 21	116	We included a total of 883,827 participants distributed in 83 county-level regions of mainland
22 23 24	117	China (Supplement 3). The mean age was 55.5 years, 60.4% were women, 43.1% had
25 26	118	hypertension, mean SBP was 143.5 mmHg, mean DBP was 83.1 mmHg, and 19.4% were
27 28 29	119	taking antihypertensive medications. The 1-year $PM_{2.5}$ exposure of the total study population
30 31 32	120	ranged from 8.8 to 93.8 µg/m ³ (mean 49.2 µg/m ³). There were 864,119 (97.8%), 842,356
33 34	121	(95.3%), and 706,415 (79.9%) participants with 1-year PM _{2.5} exposure higher than 15 μ g/m ³
35 36 37	122	[World Health Organization (WHO) Interim Target 3 (IT-1)], 25 µg/m ³ [WHO Interim Target 2
38 39	123	(IT-2)], and 35 μ g/m ³ [WHO Interim Target 3 (IT-3)], respectively. (Supplement 4)
40 41 42	124	
43 44	125	Associations of long-term PM _{2.5} exposure with hypertension prevalence
45 46 47	126	After adjusting for sociodemographic characteristics and cardiovascular risk factors, the
48 49 50	127	odds ratio (OR) of hypertension was 1.09 (95% CI: 1.08–1.10) for each 10 $\mu\text{g/m}^3$ increase in
51 52	128	$PM_{2.5}$. The adjustment for day of week and season of blood pressure measurements
53 54 55	129	resulted in a slight decrease in the effect estimate of the association of $PM_{2.5}$ exposure with
56 57	130	hypertension prevalence (OR: 1.04, 95%CI: 1.02–1.05). (Supplement 5) For the C-R
58 59 60	131	relationship, the curve showed steeper slopes at high $PM_{2.5}$ exposure levels (i.e., higher than
		Page 11 of 25

1 2	
3 4 5	1
6 7	1
8 9 10	1
11 12 13	1
14 15	1
16 17 18	1
19 20	1
21 22 23	1
24 25	1
26 27 28	1
29 30 31	1
32 33	1
34 35 36	1
37 38	1
39 40 41	1
42 43 44	1
45 46	1
47 48 49	1
50 51	1
52 53 54	1
55 56 57	1
58 59	1
60	

132	~50 μ g/m ³). Compared to individuals with PM _{2.5} exposure of 38.5 μ g/m ³ , the adjusted ORs
133	for hypertension of individuals with 15, 25, and 35 $\mu g/m^3$ of $PM_{2.5}$ exposure were 1.02 (95%
134	CI: 1.01–1.04), 1.01 (95% CI: 1.00–1.02), and 1.00 (95% CI: 1.00–1.00), respectively.
135	(Figure 1)
136	
137	Associations of long-term $PM_{2.5}$ exposure with systolic and diastolic blood pressure
138	In the adjusted Model 4, each 10 μ g/m ³ increment was associated with increases of 0.50
139	mmHg (95% CI: 0.41–0.59) in SBP and 0.23 mmHg (95% CI: 0.18–0.28) in DBP. After
140	adjustment for the day of week and season, there was some reduction in the effect
141	estimates of the associations between PM _{2.5} exposure and blood pressure [0.19 mmHg
142	(95% CI: 0.10–0.28) in SBP; 0.13 mmHg (95% CI: 0.08–0.18) in DBP]. (Supplement 6) In
143	addition, we found that the shapes of the C-R curves for SBP and DBP were different. The
144	fitted C-R functions showed upward trends with greater effect estimates of $PM_{2.5}$ at higher
145	concentrations for SBP but were generally U-shaped for DBP. (Figure 2)
146	
147	Subpopulation difference and effect modification
148	The associations of $PM_{2.5}$ exposure with hypertension were stronger among men and non-
149	current smokers, compared with their counterparts (Figure 3). Gender significantly modified
150	the effects of $PM_{2.5}$ exposure on all three outcomes (all p for interaction <0.05) with stronger
151	associations among men [e.g., OR for hypertension per 10 $\mu g/m^3$ increase in $PM_{2.5}$ of 1.01

152 (95% CI: 1.00–1.03) for women, and 1.06 (95% CI: 1.05–1.08) for men]; while these

153 associations were not modified by alcohol consumption and prevalence of diabetes (all p for

Page 12 of 25

BMJ Open

interaction >0.05). Although smoking status was the effect modifiers in the associations of PM_{2.5} exposure with SBP, DBP, and hypertension, the impacts of smoking on these associations differed depending on the outcome. We observed greater effect estimates of PM_{2.5} exposure for SBP [elevation in SBP per 10 µg/m³ increase in PM_{2.5} of 0.97 mmHg (95% CI: 0.77–1.17) for the elderly, and -0.02 mmHg (95% CI: -0.12–0.08) for their younger counterparts], while smaller estimates for DBP among the elderly [elevation in DBP per 10 μ g/m³ increase in PM_{2.5} of 0.11 mmHg (95% CI: 0.00–0.22) for the elderly, and 0.14 mmHg (95% CI: 0.08–0.20) for their younger counterparts]. Besides, obesity was also found to be an effect modifier in the associations of PM_{2.5} exposure with SBP and DBP, with greater effect estimates in obese participants. (Figure 4) DISCUSSION In this study, we investigated the associations between long-term exposure to PM_{2.5} and hypertension prevalence, SBP, and DBP. We found that $PM_{2.5}$ was associated with increased risk of hypertension prevalence and elevation of blood pressure. Nonlinearity in these associations was also observed. The C-R curves for hypertension and SBP showed steeper slopes for PM_{2.5} concentration above 50 µg/m³; while the C-R curve for PM_{2.5}–DBP was U-shaped, with the turning point around 50 µg/m³. The elderly, men, non-current smokers, and obese participants appeared to be more susceptible to the exposure of PM_{2.5}. Our study contributes to the existing scientific literature in several ways. First, by including participants in a national cross-sectional survey with long-term exposure to PM_{2.5} ranged Page 13 of 25

176	from 8.8–93.8 $\mu g/m^3$, we are able to comprehensively assess the association of $\text{PM}_{2.5}$
177	exposure with hypertension prevalence and blood pressure among a more diverse spectrum
178	of population with a wider range of $PM_{2.5}$ concentrations. We found exposure to $PM_{2.5}$ was
179	positively associated with hypertension prevalence and blood pressure. This echoed the
180	data showing that there was an absolute increase of 139 million individuals with
181	hypertension in China during a decade from 2002 to 2013/14 ²⁰ , with the national annual
182	mean PM _{2.5} increasing from 39.5 μ g/m ³ to 47 μ g/m ³ between 2000 and 2013. ²¹ Specifically,
183	in some high-polluted areas such as Beijing-Tianjin-Hebei region of 2013, the annual
184	average concentrations of $PM_{2.5}$ had reached 98.9 μ g/m ³ , and daily average concentrations
185	had exceeded 300 μ g/m ³ . ^{22, 23} Furthermore, the magnitude of the effects for each 10 μ g/m ³
186	increment in PM _{2.5} was also similar compared to other studies. ^{5, 7, 24-26} For example, one
187	study found that each 10 $\mu\text{g}/\text{m}^3$ in $\text{PM}_{2.5}$ was associated with increases of 0.45 mmHg and
188	0.07 mmHg in SBP and DBP, respectively. ²⁴ And odds ratios for hypertension prevalence
189	related to a 10 μ g/m ³ increase in PM _{2.5} were ranged from 1.01 to 1.14 in prior studies. ^{5, 25, 26}
190	It is also noteworthy that others have reported no or inconsistent associations. ^{27, 28} Adar et
191	al. found no associations between exposures to $PM_{2.5}$ and blood pressure based on a
192	longitudinal cohort. ²⁷ However, this study only included a small fraction of Chinese
193	populations (10%), and was conducted in the U.S. with a mean annual average $PM_{2.5}$ of 17
194	μ g/m ³ , which was lower than the present study (49.2 μ g/m ³).
195	
196	Second, we provided new information on the C-R relationship between long-term $\text{PM}_{2.5}$
197	exposure and hypertension prevalence. Previous research reported a U-shaped relationship

Page 14 of 25

Page 17 of 38

BMJ Open

	198	with a threshold PM _{2.5} of 47.9 $\mu g/m^{3.5}$ However, in our study, the risk of hypertension
	199	associated with $PM_{2.5}$ became even more pronounced when the exposure was extended to
0	200	higher levels. This finding was in line with a prior study based on prospective cohorts
1 2 3	201	showed that there was a stepwise increase in the risk of developing hypertension
4 5	202	with increasing quartiles of long-term $PM_{2.5}$ exposure. ²⁹ This result suggests that, for a given
6 7 8	203	decrease in the concentration of $PM_{2.5}$, a greater reduction in excess hypertension
9 0 1	204	prevalence would be obtained in highly polluted regions compared with regions with low to
2 3	205	moderate levels of $PM_{2.5}$ exposure. In this respect, the implication of air quality
4 5 6	206	improvements in highly polluted regions of China in recent years would be more profound. It
7 8	207	has shown that from 2013 to 2018, the annual average concentration of $PM_{2.5}$ in Beijing-
9 0 1	208	Tianjin-Hebei region has declined by 49%. ³⁰ Considering the population size and baseline
2 3 4	209	$PM_{2.5}$ levels in these areas, the public health impact related to $PM_{2.5}$ reduction would be
+ 5 6	210	huge.
7 8 9	211	
0	212	Third, we found evidence of nonlinearity in the relationships of PM _{2.5} exposure with SBP and
2 3 4	213	DBP. Interestingly, the shape of curves for SBP and DBP were different. Although the
5 6 7	214	relevant mechanism remains unclear, pathophysiological changes, such as systemic
8 9	215	inflammation, atherosclerosis, endothelial dysfunction, and increased arterial stiffness, ⁴ may
0 1 2	216	have contributed to the observed patterns. The increased arterial stiffness induced by $PM_{\!2.5}$
3 4	217	would initially lead to elevation in SBP and decline in DBP, creating an increased pulse
5 6 7	218	pressure. ³¹ While with further increase of arterial stiffness, the heart rates got higher to
8 9	219	maintain the stroke volume, which could result in the rise of DBP afterward. In addition, prior
0		Page 15 of 25

studies have reported the effects of PM2:5 exposure on pulse pressures showing a tendency of rising first and then declining at higher PM_{2.5} levels, which partially supports this

Fourth, we assessed the subpopulation differences through stratified analyses and identified the susceptible individuals to the exposure of PM_{2.5}. We observed the large effect estimates of PM_{2.5} on SBP among the elderly. Elderly subjects may commonly represent a higher prevalence of preexisting cardiovascular and respiratory diseases, which may confer susceptibility to PM_{2.5}. Also, the results showed that PM_{2.5} exposure had larger effects on hypertension in men, and such increased susceptibility may be related to sex-related differences in the deposition localization and rates of air pollutants; specifically, men have larger airways and slightly lower airway reactivity.³² Further, we found stronger associations of PM_{2.5} and blood pressure in obese participants. The greater response observed in obese individuals may be attributed to the higher deposition rate of PM_{2.5} exposure. This has been demonstrated in overweight children, where there was an increase in tidal volume and resting minute ventilation.³³ Additionally, smoking status was found to be an effect modifier with smaller effects on hypertension among current smokers. This finding is also supported by prior research.^{8, 24} One possible explanation is that smoking and PM_{2.5} exposure may share the same pathways in mediating cardiovascular effects and smoking may play a dominant role in smokers. Thus, exposure to PM_{2.5} might not exert additional harmful effects via the same pathway.²⁴ There is also some potential that the greater effect size in noncurrent smokers could also be connected to some of them being advised to guit smoking Page 16 of 25

because of multiple comorbidities.

1

BMJ Open

1 2	
3	
4	
5	
6 7	
, 8	
9	
10	
11	
12 13	
14	
15	
16	
17	
18 19	
19 20	
21	
22	
23	
24 25	
26	
27	
28	
29	
30 31	
32	
33	
34	
35 26	
36 37	
38	
39	
40	
41 42	
42 43	
44	
45	
46	
47 48	
40 49	
50	
51	
52	
53 54	
55	
56	
57	
58 50	
59 60	
50	

243	
244	Our study should also be interpreted in the context of several limitations. First, given the
245	nature of the cross-sectional study design, the causal relationship could not be established.
246	Additional research is needed to examine these relationships in a prospective manner.
247	Second, a selection bias is possible because our analysis was restricted to participants with
248	available PM _{2.5} data. Third, while we included a number of potential confounders in the
249	analyses, there might be unmeasured confounders that affected the observed associations.
250	In particular, we were unable to control for other confounders such as diet and physical
251	activity, because these data were only available in a subset of the China PEACE Million
252	Persons Project cohort. Fourth, we used the data from the fixed monitors to estimate the
253	exposure of $PM_{2.5}$ and did not account for residential proximity to major roads, time-activity
254	patterns, and indoor-related characteristics, which would likely result in nondifferential
255	measurement errors. However, this approach is commonly used and previous research has
256	indicated that $PM_{2.5}$ exposure estimated by the nearest monitor was highly correlated with
257	other sophisticated approaches ³⁴ . Fifth, other gaseous pollutants, such as NOx and ozone,
258	temperature, and noise were not included in this study. As a result, we were not able to
259	determine whether the observed effects were specifically attributable to $PM_{2.5}$ or the
260	combined effects of these factors.
261	
262	In conclusion, our study demonstrated that long term expective to DMwas positively

262 In conclusion, our study demonstrated that long-term exposure to $PM_{2.5}$ was positively 263 associated with blood pressure and hypertension prevalence. The effect of $PM_{2.5}$ on

Page 17 of 25

1 2

3 4 5	264	hypertension prevalence was more pronounced at higher $PM_{2.5}$ concentrations. Our findings
6 7	265	reinforce the need to develop comprehensive strategies for addressing air pollution
8 9 10	266	problems, especially for areas with severe air pollution.
11 12 13	267	
14 15 16	268	ACKNOWLEDGMENTS
17 18	269	We thank all study individuals for their participation and appreciate the contributions made
19 20 21	270	by project teams at the National Center for Cardiovascular Diseases in the realms of project
22 23 24	271	design, operations, and data collection.
25 26	272	
27 28 29	273	FUNDING SOURCES
30 31	274	This project was supported by the National Key Research and Development Program
32 33 34	275	(2016YFE0103800) from the Ministry of Science and Technology of China, the CAMS
35 36	276	Innovation Fund for Medical Science (2016-I2M-1-006), the Major Public Health Service
37 38 39	277	Project from the Ministry of Finance and National Health and Family Planning Commission of
40 41 42	278	China and the 111 Project (B16005) from the Ministry of Education of China.
43 44	279	
45 46 47	280	DISCLOSURES
48 49	281	Dr. Jing Li discloses that she is a recipient of research grants from the government of China,
50 51 52	282	through Fuwai Hospital, for research to improve the management of hypertension and blood
53 54 55	283	lipids, and to improve care quality and patient outcomes of cardiovascular disease; is a
56 57	284	recipient of research agreements with Amgen, through National Center for Cardiovascular
58 59 60	285	Diseases (NCCD) and Fuwai Hospital, for a multi-centre trial to assess the efficacy and safety

Page 18 of 25

BMJ Open

3 4 5	286
6 7	287
8 9 10	288
11 12 13	289
14 15 16	290
17 18	291
19 20 21	292
22 23	293
24 25 26	294
27 28 29	295
30 31	296
32 33 34	297
35 36 37	298
38 39	299
40 41 42	300
43 44 45	301
46 47	302
48 49 50	303
51 52 53	304
54 55	305
56 57 58	306
59	307

286 of Omecamtiv Mecarbil, and for dyslipidemic patient registration; is a recipient of a research 287 agreement with Sanofi, through Fuwai Hospital, for a multi-centre trial on the effects of 288 sotagliflozin; is a recipient of a research agreement with University of Oxford, through Fuwai Hospital, for a multi-centre trial of empagliflozin; and was a recipient of a research agreement, 289 290 through NCCD, from AstraZeneca for clinical research methods training. The authors declare

no other relevant conflicts of interest. 291

293 CONTRIBUTORS

JS and XZ conceived of this article. JS wrote the manuscript with further contributions from 294 XZ, YG, XL, EM, MR, GT, DZ, WZ, JL, and MA. JS and SH completed all the statistical 295 296 analyses. All authors interpreted data, contributed to critical revisions, and approved the final iler 297 version of the article.

ETHICS APPROVAL 299

300 The central ethics committee at the China National Center for Cardiovascular Diseases 301 approved this project (Ethical code 2014-574). All enrolled participants provided written 302 informed consent.

304 DATA AVAILABILITY STATEMENT

No data is available. The China PEACE Million Persons Project is a major national program, 305 306 and as the government policy stipulates, it is not permissible for the researchers to make the raw data publicly available at this time. All data generated during this study is included in this 307 60

Page 19 of 25

2	
3	
4	
5	
6 7	
8	
9	
9 10	
11	
12	
13 14	
14 15	
16	
16 17	
18	
19 20	
20 21	
21	
23	
24	
25	
26	
27 28	
20 29	
30	
31	
32	
33 34	
34 35	
36	
37	
38	
39	
40 41	
42	
43	
44	
45	
46	
47 48	
49	
50	
51	
52	
53 54	
54 55	
56	
57	
58	
59	
60	

308 manuscript and its supplementary information files.

309 **REFERENCES**

Stanaway JD, Afshin A, Gakidou E, et al. Global, regional, and national comparative risk
 assessment of 84 behavioural, environmental and occupational, and metabolic risks or
 clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the
 Global Burden of Disease Study 2017. *Lancet (London, England)*. Nov 10
 2018;392(10159):1923-1994. doi:10.1016/s0140-6736(18)32225-6

315 2. Mills KT, Bundy JD, Kelly TN, et al. Global Disparities of Hypertension Prevalence and 316 Control. *Circulation*. 2016;134(6):441-450. doi:10.1161/circulationaha.115.018912

317 3. Rajagopalan S, Al-Kindi SG, Brook RD. Air Pollution and Cardiovascular Disease: JACC
 318 State-of-the-Art Review. J Am Coll Cardiol. Oct 23 2018;72(17):2054-2070.

3 319 doi:10.1016/j.jacc.2018.07.099

320 4. Carey RM, Muntner P, Bosworth HB, Whelton PK. Prevention and Control of
 321 Hypertension: JACC Health Promotion Series. *J Am Coll Cardiol*. Sep 11 2018;72(11):1278-

322 1293. doi:10.1016/j.jacc.2018.07.008

323 5. Xie X, Wang Y, Yang Y, et al. Long-Term Effects of Ambient Particulate Matter (With an
 324 Aerodynamic Diameter </=2.5 mum) on Hypertension and Blood Pressure and Attributable
 37

⁸ 325 Risk Among Reproductive-Age Adults in China. *Journal of the American Heart Association*.

i 326 Apr 26 2018;7(9)doi:10.1161/jaha.118.008553

327 6. Dong GH, Qian ZM, Xaverius PK, et al. Association between long-term air pollution and

increased blood pressure and hypertension in China. *Hypertension (Dallas, Tex : 1979)*. Mar

329 2013;61(3):578-84. doi:10.1161/hypertensionaha.111.00003

Page 20 of 25

BMJ Open

2	
3 4	3
5 6	
7	3
8 9	3
10 11	
11 12 13 14 15 16	3
14	3
15 16	
17	3
18 19	3
20 21	Ū
22 23	3
24	2
25 26	0
27 28	3
29 30	^
31	3
32 33	3
34 35	_
36	3
37 38 39	3
39 40	
41	3
42 43	3
44 45	
46	3
47 48	3
49 50	•
51	3
52 53	3
54 55	J
56 57	3
58	2
59 60	3

Liu C, Chen R, Zhao Y, et al. Associations between ambient fine particulate air pollution
 and hypertension: A nationwide cross-sectional study in China. *The Science of the total environment*. Apr 15 2017;584-585:869-874. doi:10.1016/j.scitotenv.2017.01.133
 Fuks KB, Weinmayr G, Foraster M, et al. Arterial blood pressure and long-term exposure

to traffic-related air pollution: an analysis in the European Study of Cohorts for Air Pollution
 Effects (ESCAPE). *Environmental health perspectives*. Sep 2014;122(9):896-905.
 doi:10.1289/ehp.1307725

Schwartz J, Alexeeff SE, Mordukhovich I, et al. Association between long-term exposure
 to traffic particles and blood pressure in the Veterans Administration Normative Aging Study.
 Occupational and environmental medicine. Jun 2012;69(6):422-7. doi:10.1136/oemed-2011 100268

341 10. Chan SH, Van Hee VC, Bergen S, et al. Long-Term Air Pollution Exposure and Blood
 342 Pressure in the Sister Study. *Environmental health perspectives*. Oct 2015;123(10):951-8.
 343 doi:10.1289/ehp.1408125

344 11. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of 345 hypertension: analysis of worldwide data. *Lancet (London, England)*. Jan 15-21 346 2005;365(9455):217-23. doi:10.1016/s0140-6736(05)17741-1

347 12. Cohen AJ, Brauer M, Burnett R, et al. Estimates and 25-year trends of the global burden
 348 of disease attributable to ambient air pollution: an analysis of data from the Global Burden of
 349 Diseases Study 2015. *The Lancet*. 2017;389(10082):1907-1918.

6 350 13. Lu J, Xuan S, Downing NS, et al. Protocol for the China PEACE (Patient-centered

351 Evaluative Assessment of Cardiac Events) Million Persons Project pilot. BMJ Open. Jan 4

Page 21 of 25

2	
3 4 5	3
6 7 8	3
9 10	3
11 12 13	3
14 15	3
16 17 18	3
19 20 21	3
22 23	3
24 25 26	30
27 28	30
29 30 31	30
32 33 34	30
35 36	30
37 38 39	30
40 41	30
42 43 44	30
45 46 47	30
48 49	30
50 51 52	3
53 54	3
55 56 57	3
58 59 60	3
00	

352 2016;6(1):e010200. doi:10.1136/bmjopen-2015-010200

353 14. Compilation rules of zoning codes for statistics and urban-rural division codes. Accessed

354 July 1, 2021. http://www.stats.gov.cn/tjsj/tjbz/200911/t20091125_8667.html

355 15. James PA, Oparil S, Carter BL, et al. 2014 evidence-based guideline for the management

356 of high blood pressure in adults: report from the panel members appointed to the Eighth Joint

357 National Committee (JNC 8). Jama. 2014;311(5):507-20.

16. Liu LS, Writing Group of Chinese Guidelines for the Management of H. [2010 Chinese
guidelines for the management of hypertension]. *Zhonghua xin xue guan bing za zhi*. Jul
2011;39(7):579-615.

361 17. Zhou BF. Predictive values of body mass index and waist circumference for risk factors
 362 of certain related diseases in Chinese adults--study on optimal cut-off points of body mass
 363 index and waist circumference in Chinese adults. *Biomedical and environmental sciences :*

⁵ 364 *BES*. Mar 2002;15(1):83-96.

365 18. Bennett DA. How can I deal with missing data in my study? Australian and New Zealand
 366 journal of public health. 2001;25(5):464-469.

367 19. Desquilbet L, Mariotti F. Dose-response analyses using restricted cubic spline functions
368 in public health research. *Statistics in medicine*. 2010;29(9):1037-1057.

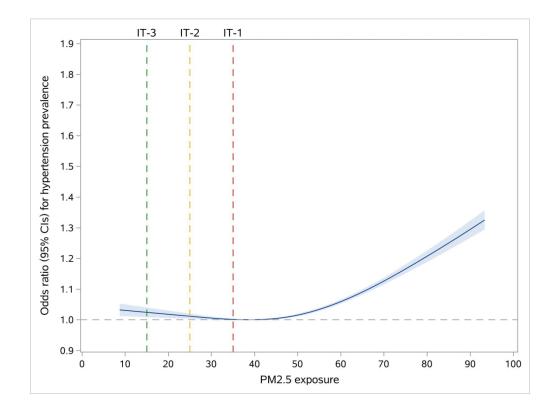
369 20. Li Y, Yang L, Wang L, et al. Burden of hypertension in China: A nationally representative

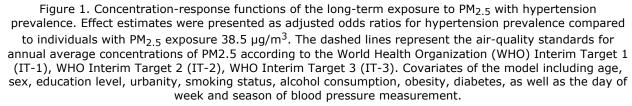
1 370 survey of 174,621 adults. International journal of cardiology. Jan 15 2017;227:516-523.

²⁵ 371 doi:10.1016/j.ijcard.2016.10.110

56 372 21. Liang F, Xiao Q, Huang K, et al. The 17-y spatiotemporal trend of PM_{2.5}

373 and its mortality burden in China. *Proceedings of the National Academy of Sciences*.


Page 22 of 25


1 2		
3 4 5	374	2020;117(41):25601-25608. doi:10.1073/pnas.1919641117
6 7	375	22. Wang L, Xiong Q, Wu G, et al. Spatio-temporal variation characteristics of PM2. 5 in the
8 9 10	376	Beijing-Tianjin-Hebei Region, China, from 2013 to 2018. Int J Environ Res Public Health.
11 12 13	377	2019;16(21):4276.
14 15	378	23. Batterman S, Xu L, Chen F, Chen F, Zhong X. Characteristics of PM(2.5) Concentrations
16 17 18	379	across Beijing during 2013-2015. Atmos Environ (1994). Nov 2016;145:104-114.
19 20	380	doi:10.1016/j.atmosenv.2016.08.060
21 22 23	381	24. Zhang Z, Guo C, Lau AKH, et al. Long-Term Exposure to Fine Particulate Matter, Blood
24 25 26	382	Pressure, and Incident Hypertension in Taiwanese Adults. Environmental health perspectives.
27 28	383	Jan 18 2018;126(1):017008. doi:10.1289/ehp2466
29 30 31	384	25. Cai Y, Zhang B, Ke W, et al. Associations of Short-Term and Long-Term Exposure to
32 33	385	Ambient Air Pollutants With Hypertension: A Systematic Review and Meta-Analysis.
34 35 36	386	Hypertension (Dallas, Tex : 1979). Jul 2016;68(1):62-70.
37 38 39	387	doi:10.1161/hypertensionaha.116.07218
40 41	388	26. Lin H, Guo Y, Zheng Y, et al. Long-Term Effects of Ambient PM2.5on Hypertension and
42 43 44	389	Blood Pressure and Attributable Risk Among Older Chinese Adults. Hypertension (Dallas, Tex
45 46	390	: 1979). 2017;69(5):806-812. doi:10.1161/hypertensionaha.116.08839
47 48 49	391	27. Adar SD, Chen YH, D'Souza JC, et al. Longitudinal Analysis of Long-Term Air Pollution
50 51 52	392	Levels and Blood Pressure: A Cautionary Tale from the Multi-Ethnic Study of Atherosclerosis.
53 54	393	Environmental health perspectives. Oct 2018;126(10):107003. doi:10.1289/ehp2966
55 56 57	394	28. Chen S-Y, Wu C-F, Lee J-H, et al. Associations between Long-Term Air Pollutant
58 59	395	Exposures and Blood Pressure in Elderly Residents of Taipei City: A Cross-Sectional Study.
60		Page 23 of 25

2	
3	
4 5 6 7	
5	
6	
7	
8	
Q	
9 10	
10	
11	
12	
13	
14	
15	
16	
12 13 14 15 16 17	
10	
18	
19	
20	
21	
22	
23	
24	
25	
23	
26	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	
28	
29	
30	
31	
37	
J∠ 22	
33	
34	
35	
34 35 36 37	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

396	Environmental health perspectives. 2015;123(8):779-784. doi:10.1289/ehp.1408771
397	29. Huang K, Yang X, Liang F, et al. Long-Term Exposure to Fine Particulate Matter and
398	Hypertension Incidence in China. Hypertension (Dallas, Tex : 1979). Jun 2019;73(6):1195-
399	1201. doi:10.1161/hypertensionaha.119.12666
400	30. Zhai S, Jacob DJ, Wang X, et al. Fine particulate matter (PM2.5) trends in China, 2013–
401	2018: separating contributions from anthropogenic emissions and meteorology. Atmos Chem
402	Phys. 2019;19(16):11031-11041. doi:10.5194/acp-19-11031-2019
403	31. Bavishi C, Goel S, Messerli FH. Isolated systolic hypertension: an update after SPRINT.
404	The American journal of medicine. 2016;129(12):1251-1258.
405	32. Yunginger JW, Reed CE, O'Connell EJ, Melton L, O'Fallon WM, Silverstein MD. A
406	community-based study of the epidemiology of asthma. Am Rev Respir Dis. 1992;146(4):888-
407	894.
408	33. Bennett WD, Zeman KL. Effect of body size on breathing pattern and fine-particle
409	deposition in children. Journal of Applied Physiology. 2004;97(3):821-826.
410	doi:10.1152/japplphysiol.01403.2003
411	34. Miller KA, Spalt EW, Gassett AJ, et al. Estimating ambient-origin PM2.5 exposure for
412	epidemiology: observations, prediction, and validation using personal sampling in the Multi-
413	Ethnic Study of Atherosclerosis. Journal of exposure science & environmental epidemiology.
414	2019;29(2):227-237. doi:10.1038/s41370-018-0053-x
415	
415 416	

417	FIGURE LEGEND
418 419	Figure 1. Concentration-response functions of the long-term exposure to $PM_{2.5}$ with hypertension prevalence
420 421	Figure 2. Concentration-response functions of the long-term exposure to $PM_{2.5}$ with systolic blood pressure (SBP) and diastolic blood pressure (DBP)
422 423	Figure 3. Stratified analysis of the association of long-term exposure to $PM_{2.5}$ with hypertension prevalence
424 425	Figure 4. Stratified analysis of the association of long-term exposure to PM _{2.6} with systolic blood pressure (DBP)
	418 419 420 421 422 423 424

169x127mm (300 x 300 DPI)

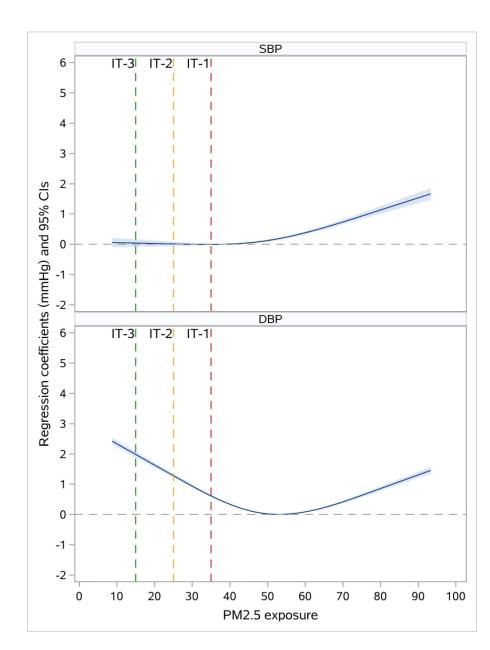
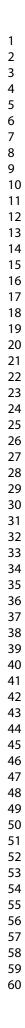



Figure 2. Concentration-response functions of the long-term exposure to PM_{2.5} with systolic blood pressure (SBP) and diastolic blood pressure (DBP). Effect estimates (regression coefficients) were presented as changes in SBP compared to individuals with PM_{2.5} exposure 39 μg/m³ and changes in DBP compared to individuals with PM_{2.5} exposure 53 μg/m³. The dashed lines represent the air-quality standards for annual average concentrations of PM_{2.5} according to the World Health Organization (WHO) Interim Target 1 (IT-1), WHO Interim Target 2 (IT-2), WHO Interim Target 3 (IT-3). Covariates of the model including age, sex, education level, urbanity, smoking status, alcohol consumption, obesity, diabetes, and use of antihypertensive medications, as well as the day of week and season of blood pressure measurement.

127x169mm (300 x 300 DPI)

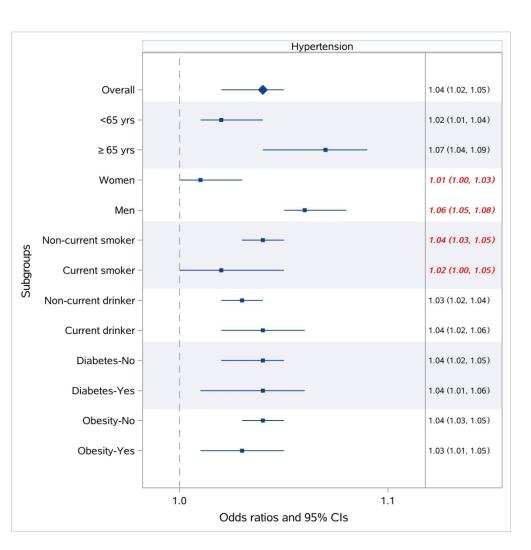


Figure 3. Stratified analysis of the association of long-term exposure to $PM_{2.5}$ with hypertension prevalence. Red texts with italics indicated that p-value for interaction terms<0.05. Effect estimates (regression coefficients) were presented as adjusted odds ratios for hypertension prevalence for each 10 µg/m³ increment in the 1-year PM_{2.5} exposure. Covariates of the model including age, sex, education level, urbanity, smoking status, alcohol consumption, obesity, diabetes, as well as the day of week and season of blood pressure measurement.

158x158mm (300 x 300 DPI)

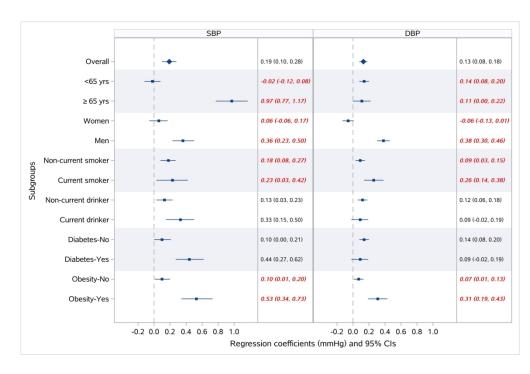


Figure 4. Stratified analysis of the association of long-term exposure to $PM_{2.5}$ with blood pressure. Red texts with italics indicated that p-value for interaction terms<0.05. Effect estimates (regression coefficients) were presented as changes in systolic blood pressure (SBP) or diastolic blood pressure (DBP) for each 10 µg/m³ increment in the 1-year PM_{2.5} exposure deriving from multivariable linear regression. Covariates of the model including age, sex, education level, urbanity, smoking status, alcohol consumption, obesity, diabetes, and use of antihypertensive medications, as well as the day of week and season of blood pressure measurement.

238x158mm (300 x 300 DPI)

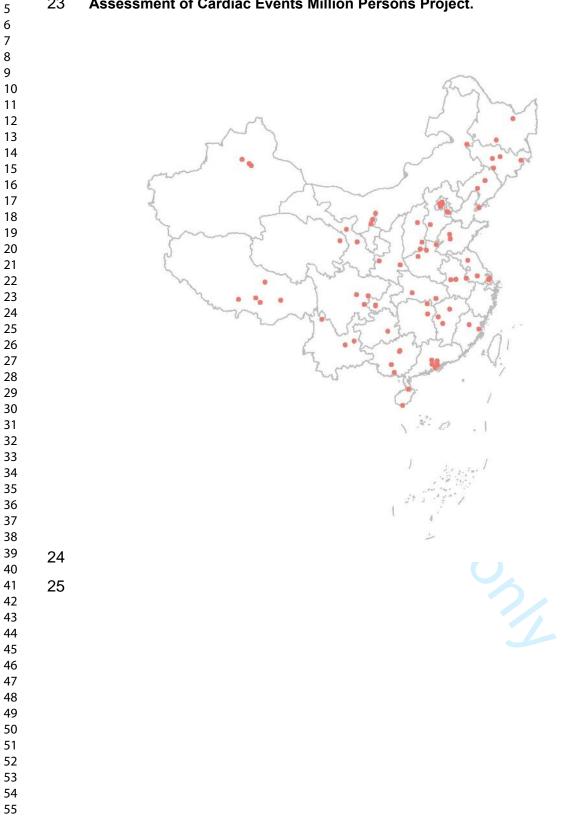
1 SUPPLEMENTAL MATERIAL

2 Supplement 1. Collection of medication data in China PEACE Million Persons Project.

Potential participants who were taking medications were required to bring their drug packaging (boxes) to the project sites. During the face-to-face interview, local project staff asked participants whether they always took anti-hypertension, lipid-lowering, anti-diabetics, or anti-platelet drugs during the past 2 weeks. Those who answered "yes" and knew the name of the drug were further asked to report the name, dose, and frequency of each drug. For those who did not remember the exact dose of the drug, the number of tablets or pills taken was recorded. Interviewers searched and selected drug names or the first letter of the Chinese phonetic alphabet participants answered by entering the generic name or trade name of each drug in the electronic data collecting system. In this system, a data dictionary was used to confirm drug information, including the drug class, generic name, trade name, and corresponding unique ID.

Page **1** of **7**

Supplement 2. Summary statistics for daily PM_{2.5} (µg/m³) concentrations of assigned monitors in 83 study regions.


No.	Mean	Median	25 th percentile	75 th percentile	Minimum	Maximum	Total (days)	Missing (days)
1	67.9	50	26	88	5	540	1461	22
2	65.48	48	23	85	3	515	1461	25
3	56.39	40	19	76	2	448	1461	18
4	69.26	50	27	88	4	529	1461	10
5	57.73	41	20	77	4	446	1461	9
6	64.46	51	32	79.5	6	350	1461	13
7	62.85	50	30	78	4	409	1461	38
8	68.35	54	34	83.5	7	408	1461	37
9	64.46	51	32	79.5	6	350	1461	13
10	65.52	51	32	81	7	410	1461	34
10	86.31	61	38	107	5	708	1461	37
12	63.99	52	37	76	6	421	1461	18
12		52 50	30		2		1461	
	61.01			79 76	2 7	290		24
14	60.51	49	32	76		390	1461	70
15	46.19	40	29	55	7	276	1461	44
16	22.9	18	12	29	3	187	1461	59
17	54.55	41	26	68	3	932	1461	14
18	40.93	32	20	50	5	450	1461	16
19	44.97	35	22	56	6	353	1461	39
20	48.8	37	24	59	6	508	1461	15
21	45.3	31	19	55	3	612	1461	27
22	30.54	22	14	39	2	308	1461	17
23	45.36	34	21	58	3	378	1461	24
24	54.24	33	21	66	5	730	1461	24
25	39.52	29	18	49	3	502	1461	78
26	42.91	36	22	55	4	235	1461	24
27	44.22	36	22	58	5	225	1461	60
28	44.97	38	24	58	5	218	1461	22
29	44.32	37	23	57	6	224	1461	12
30*	49.23	40	28	62	10	271	797	1
31	52.7	42	27	67	7	284	1461	9
32	51.19	43	28	64	3	250	1461	40
33	49.98	44	31	61	6	259	1461	40 26
34	49.98 47.59	44 40	27	59	3	239	1461	20 30
34	47.39 27.35		17	39 35	2	114	1461	30 46
35 36		25 22						
30 37*	26.16	22	14 14	34 45	2	233	1461 650	5 15
	32.18	25	14	45 57	4	155	650	15
38	45.33	40	29	57	9	209	1461	32
39	49.12	44	31	62	3	356	1461	27
40	74.08	60	40	92	7	431	1461	22
41	56.81	46	31	70	7	327	1461	44
42*	70.49	57	40	82	6	514	797	56
43*	56.69	46	34	65	14	257	606	15
44	69.96	53	35	88	5	548	1461	57
45	62	50	31	81	3	275	1461	20
46	44.01	38	26	56	5	195	1461	31
47	48.13	43	29	61	6	478	1461	43
48	51.57	43	29	65	5	289	1461	10
49	39.33	33	23	50	6	214	1461	12
	32.84	29	20	42	5	121	1461	22

Page **2** of **7**

Page	34	of	38
rage	54	0I	20

1										
2										
3		51	32.48	28	18	43	5	149	1461	35
4										
5		52	27.19	24	14	36	3	120	1461	31
6		53	38.01	33	21	49	5	192	1461	16
7		54	35.67	30	19	46	3	269	1461	13
		55	50.36	42	27	64	6	286	1461	23
8		56	44.34	35	23	56	5	333	1461	6
9		57	35.14	29	16	47	3	202	1461	22
10		58	22.1	18	14	27	3	123	1461	31
11		59	15.14	13	9	18	2	68	1461	12
12										
13		60*	37.75	29	18	47	5	183	773	20
14		61	49.89	41	30	61	8	222	1461	27
15		62	60.72	49	32	77	5	353	1461	8
16		63	42.87	36	24	55	5	215	1461	16
17		64	49.35	40	24	65	3	235	1461	13
18		65	32.64	28	18	42	4	195	1461	23
19		66	30.96	28	21	39	7	123	1461	10
20		67	29.79	28	20	36	7	102	1461	23
21		68	13.86	14	12	15		51	1461	109
22							3			
23		69 70	25.99	19	13	32	5	187	1461	33
23		70	24.49	19	13	30	2	124	1461	156
24 25		71	11.95	10	7	15	2	88	1461	87
25 26		72	51.21	42	30	63	10	239	1461	238
		73	10.62	9	7	13	4	73	1461	46
27		74	53.8	41.5	28	64	5	328	1461	19
28		75	38.88	32	23	47	4	169	1461	27
29		76	44.45	36	24	57	4	581	1461	59
30		77	44.1	36	25	53	5	287	1461	44
31		78*	44.04	38	27	56	9	139	488	27
32		79	55.15	45	30	68		363	400 1461	14
33							5			
34		80	44.69	36	24	55	5	219	1461	50
35		81	65.37	34	20	85	5	447	1461	97
36		82	57.76	29	19	70	3	414	1461	58
37		83	51.7	26	14	65	3	406	1461	42
38	17	Note:								
39	18	* Monito	rs heina	available	after 2015					
40			•						45 0040	
41	19			2	0		ng available	-		
42	20	Missing:	Number	r of days v	with missing	g PM _{2.5} cor	ncentration	during 201	5-2018	
43	21	_				-				
44	21									
45										
46										
47										
48										
49										
50										
51										
52										
53										
55										
55										
55 56										
50										

Supplement 3. Distribution of study sites in China Patient-Centered Evaluative Assessment of Cardiac Events Million Persons Project.

26	Supplement 4. Characteristics of the study	population.
----	--	-------------

Variable	Total	
	(n=883,827)	
Socio-demographics Age, mean (SD), years	55.5 (10.1)	
Female, n (%)	533897 (60.4)	
Urban residence, n (%)	657608 (74.4)	
Han ethnic group, n (%)	805479 (91.1)́	
College or above	102764 (11.6)	
Regions, n (%)		
Eastern	325253 (36.8)	
Central Western	178435 (20.2) 311599 (35.3)	
Northeastern	68540 (7.8)	
Cardiovascular risk factors, n (%)	/	
Obesity	142150 (16.1)	
Current drinker	194967 (22.1)	
Diabetes	173950 (19.7)	
Current smoker Hypertension	161006 (18.2) 381223 (43.1)	
Blood pressures	001220 (40.1)	
Systolic blood pressure, mean (SD)	143.5 (22.2)	
Diastolic blood pressure, mean (SD)	83.1 (12.3)	
PM _{2.5} exposures	40.0 (40.4)	
1-y average PM _{2.5} exposure, mean (SD) Above WHO Interim Target 1 (IT-1, 35 μg/m³), n (%)	49.2 (16.4) 706415 (79.9)	
Above WHO Interim Target 2 (IT-2, 25 μ g/m ³), n (%)	842356 (95.3)	
Above WHO Interim Target 3 (IT-3, 15 μ g/m ³), n (%)	864119 (97.8)	
		Page 5

Hypertension prevalence <0.007	MOUEI	Per 10 µg/m ³ PM _{2.5} increment	
Model 1 1.10 (1.09–1.11) <0.007 Model 2 1.10 (1.09–1.11) <0.007 Model 3 1.09 (1.08–1.10) <0.007 Model 4 1.09 (1.08–1.10) <0.007 Model 5 1.04 (1.02–1.05) <0.007 Model 6 1.04 (1.02–1.05) <0.007 Model 1: Included age and sex; Model 2: Model 1 + education level and urbanity; Model 3: Model 2 + smoking status, alcohol consumption, obesity, and diabe Model 4: Model 3 + day of week of the medical examination; Model 5: Model 3 + bay of week + season.		Odds ratios (95% confidence intervals) p-Value
Model 2 1.10 (1.09–1.11) <0.00	Hypertension pre	evalence	
Model 3 1.09 (1.08–1.10) <0.007	Model 1	1.10 (1.09–1.11)	<0.001
Model 41.09 (1.08–1.10)<0.007	Model 2	1.10 (1.09–1.11)	<0.001
Model 5 1.04 (1.02–1.05) <0.007	Model 3	, , ,	<0.001
Model 6 1.04 (1.02–1.05) <0.001			<0.001
Model 1: Included age and sex; Model 2: Model 1 + education level and urbanity; Model 3: Model 2 + smoking status, alcohol consumption, obesity, and diabe Model 4: Model 3 + day of week of the medical examination; Model 5: Model 3 + season of the medical examination; Model 6: Model 3 + day of week + season.	Model 5	1.04 (1.02–1.05)	<0.001
Model 2: Model 1 + education level and urbanity; Model 3: Model 2 + smoking status, alcohol consumption, obesity, and diabe Model 4: Model 3 + day of week of the medical examination; Model 5: Model 3 + season of the medical examination; Model 6: Model 3 + day of week + season.			<0.001
Model 3: Model 2 + smoking status, alcohol consumption, obesity, and diabe Model 4: Model 3 + day of week of the medical examination; Model 5: Model 3 + season of the medical examination; Model 6: Model 3 + day of week + season.			
Model 4: Model 3 + day of week of the medical examination; Model 5: Model 3 + season of the medical examination; Model 6: Model 3 + day of week + season.			
Model 5: Model 3 + season of the medical examination; Model 6: Model 3 + day of week + season.			and diabe
Model 6: Model 3 + day of week + season.		-	
	Model 6: Model 3 +	- day of week + season.	

3 4	37	Supplement 6. Th	ne effect of PM _{2.5} exposure on blood pressure	е.
5		Model	Per 10 µg/m³ PM _{2.5} increme	ent
6 7		MOUEI	mmHg (95% confidence intervals)	p-value
8		Systolic blood p	ressure	
9		Model 1	0.58 (0.49–0.67)	<0.001
10		Model 2	0.57 (0.48–0.66)	<0.001
11		Model 3	0.45 (0.36–0.54)	<0.001
12		Model 4	0.50 (0.41–0.59)	<0.001
13 14		Model 5	0.50 (0.41–0.59)	<0.001
15		Model 6	0.19 (0.10-0.28)	<0.001
16		Model 7	0.19 (0.10-0.28)	<0.001
17		Diastolic blood	pressure	
18		Model 1	0.29 (0.23–0.34)	<0.001
19		Model 2	0.28 (0.23–0.34)	<0.001
20		Model 3	0.21 (0.15–0.26)	<0.001
21 22		Model 4	0.23 (0.18–0.28)	<0.001
23		Model 5	0.23 (0.18–0.28)	<0.001
24		Model 6	0.13 (0.08–0.18)	<0.001
25		Model 7	0.13 (0.08–0.18)	<0.001
26	38	Model 1: Included		
27	39		+ education level and urbanity;	
28	40			and diabatas:
29 30			+ smoking status, alcohol consumption, obesity	, and diabetes,
31	41		+ use of antihypertensive medication;	
32	42		+ day of week of the medical examination;	
33	43	Model 6: Model 3 ·	 + season of the medical examination; 	
34	44	Model 7: Model 3 ·	+ day of week + season.	
35				
36 37				
38				
39				
40				
41				
42				
43				
44 45				
45 46				
47				
48				
49				
50				
51				
52 53				
55 54				
55				
56				
57				
58				
59 60				
60				

37 Supplement 6. The effect of PM_{2.5} exposure on blood pressure.

	Item No	Recommendation	Pa N
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	3
		(<i>b</i>) Provide in the abstract an informative and balanced summary of what was done and what was found	3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	6
Objectives	3	State specific objectives, including any prespecified hypotheses	7
Methods			
Study design	4	Present key elements of study design early in the paper	7
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	7
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods of selection of participants	7
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	8
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment	7-8
mousurement		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	9
Study size	10	Explain how the study size was arrived at	8
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	9
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	9-1
		(b) Describe any methods used to examine subgroups and interactions	10
		(c) Explain how missing data were addressed	8
		(<i>d</i>) If applicable, describe analytical methods taking account of sampling strategy	9-1
		(e) Describe any sensitivity analyses	10
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	10
		(b) Give reasons for non-participation at each stage	7-8
		(c) Consider use of a flow diagram	7-8
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,	10
		social) and information on exposures and potential confounders	11
		(b) Indicate number of participants with missing data for each variable of interest	7-8
Outcome data	15*	Report numbers of outcome events or summary measures	10-
		. ,	11

Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted	
		estimates and their precision (eg, 95% confidence interval). Make clear	
		which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were	
		categorized	
		(<i>c</i>) If relevant, consider translating estimates of relative risk into absolute	
		risk for a meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions,	
		and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	
Limitations	19	Discuss limitations of the study, taking into account sources of potential	
		bias or imprecision. Discuss both direction and magnitude of any potential	
		bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	
		limitations, multiplicity of analyses, results from similar studies, and other	
		relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	
		\sim	
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study	
		and, if applicable, for the original study on which the present article is	
		based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.