
Open Access This file is licensed under a Creative Commons Attribution 4.0 

International License, which permits use, sharing, adaptation, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to 

the original author(s) and the source, provide a link to the Creative Commons license, and indicate if 

changes were made. In the cases where the authors are anonymous, such as is the case for the reports of 

anonymous peer reviewers, author attribution should be to 'Anonymous Referee' followed by a clear 

attribution to the source work.  The images or other third party material in this file are included in the 

article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is 

not included in the article’s Creative Commons license and your intended use is not permitted by statutory 

regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright 

holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. 

Peer Review File

Computational mechanisms of distributed value

representations and mixed learning strategies



REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author): 

In this paper the authors present a behavioural study on how humans make decisions when there are 
multiple stimuli available in the environment. The paper further develops an RNN model to investigate 
the mechanisms behind the behavioural processes. The paper is overall interesting and well-written. 

The task is also interesting and targets an important question about human decision-making. 
However, I believe further analyses are required to confirm the reported behaviour effects and also 

further comparisons with neural recordings are required to establish the usefulness of the developed 
RNN. Based on this, I have some major concerns about the paper as detailed below. 

- Behavioural analyses. The plots and analyses shown to support behavioural claims of the paper are 
well prepared and interesting, but it is still unclear to me whether the effects (model neutral effects) 

are significant at the group level (without subdividing subjects into feature/conjunction learners). 
Based on this, I suggest adding three further analyses. Firstly, showing two graphs which show the 

probability of choosing the same feature (or conjunction) in the next trial, depending on whether the 
previous trial was rewarded/not rewarded (figure 2 shows this to some extent, but group averages are 
not clear and further the groupings are not model neutral and depend on model fits). Secondly, I 

suggest (in line with the previous graphs) conducting a logistic GLM analysis on the choices (currently 
it is on probability estimates) investigating the effect of reward and its interactions with 

features/conjunctions on staying on the same action (feature/conjunction) in the next trial (for all 
subjects). The third analysis I would suggest is to show the difference between DR_informative and 
DR_non information for feature and conjunction on the same plot (as x and y axes) for each subject, 

so that it can be shown how much each subject uses both types of learning (feature and conjunction). 
From the current plots the degree to which both strategies are used by the same person is unclear. 

- RNN fit to data. Although figure 4 and 1 are similar, it is unclear from the current analyses how much 

RNN simulations produce *choices* similar to humans. This is because the suggested RNN model 
lacks a choice layer mechanism and only predicts reward probabilities. To address this limitation, I 
would suggest adding a choice layer (e.g., a linear layer that reads out the output activities of the 

network), simulating the RNN and performing the above analysis (or the one in Fig 2) to show much 
the effect of reward on actions in RNN simulations is similar to that of the subjects. 

- In terms of behaviour, although the RNN models are consistent with what was found in the previous 
analysis, they didn't really provide much novel insights about behaviour. In this regard, I would 

suggest at least comparing the fit of RNN to behaviour to the baseline RL models (e.g., using cross-
validation for predicting choices, similar to Ref 3 below) to show that the baseline models capture the 

same amount of variance that the RNN models can capture. 

- The sections about analysing the structure of weights in RNN are well presented and well 

developed, but without showing (preferably quantitatively) how well the developed mechanisms track 
actual neural activities/plasticity, it would be hard to assess the importance of the findings. Is it 

possible for example to show the activities/plasticities are related to the brain activities in some 
specific conditions/task? (e.g., similar to Ref 1 below). 

- I think further discussions about the literature on category learning (about feature and conjunction 
learning) would be appropriate (beyond generalisation aspects, which are currently discussed). Also, 

the current RNN training setup is similar to learning to learn (or meta-learning) literature in machine 
learning (e.g., Ref 2 below), which have been previously applied to human choice data (e.g., Ref 3 

below). The authors can consider adding a discussion of this relevant literature. 

- The differences in BIC (Supple Table 1) is marginal between F+C1 and Feature-based models for 

coupled and uncoupled cases, but become significantly larger in the Decay models. Is there 
justification for why the decay parameter should affect F+C1 and Feature-based models differently? 



Minor: 
- Please provide information about how the parameters of RNN were chosen (for example \lambda_r 

in equation 19). 

-I would suggest bringing the description of the task to the main text. 
tensor flow => Tensorflow. Also please add citations. 

Ref 1: 
Sussillo, David, et al. "A neural network that finds a naturalistic solution for the production of muscle 

activity." Nature neuroscience 18.7 (2015): 1025-1033. 

Ref(s) 2: 
Wang, Jane X., et al. "Prefrontal cortex as a meta-reinforcement learning system." Nature 
neuroscience 21.6 (2018): 860-868. 

Wang, Jane X., et al. "Learning to reinforcement learn." arXiv preprint arXiv:1611.05763 (2016). 

Ref 3: 
Dezfouli, Amir, et al. "Models that learn how humans learn: the case of decision-making and its 
disorders." PLoS computational biology 15.6 (2019): e1006903. 

Reviewer #2 (Remarks to the Author): 

Farashahi S and Soltani A, Neural mechanisms of distributed representations and learning strategies 

The authors describe a study in which they carried out behavioral studies in human subjects, and 

trained an RNN on a similar task. The task required subjects to learn to select multidimensional cues 
that predicted reward. Cues varied in shape, color, and texture. They found that, although 

challenging, subjects could learn the task, and most learned both shape and feature conjunctions that 
predicted reward. The behavior of these subjects was well-fit by an RL model which also included 
these factors. The trained RNN was also able to learn to predict outcome value. They also examined 

value coding as a function of cue features for hidden units in the RNN that did or did not have 
plasticity and/or were inhibitory vs. excitatory. They found that plasticity of connections was important 

for developing value representations. 

This is an interesting study which attempts to identify computational mechanisms that may underlie 

learning value associations for high dimensional stimuli. The results as presented are detailed, clear 
and straightforward. A number of choices in the modeling were not clearly motivated, however, and 

additional clarification of why these choices were made, as well as how important they are, is 
important. 

Comments 

1. It would be best to incorporate Supplemental Fig. 1 into the main text so the task design is clear. 

2. The network was trained in two stages. Why was this? What if the network was trained directly on 
the value estimation task given to the subjects, as opposed to the object based version? I assume it is 
hard to get the network to learn this and that is why the alternative approach was used. But this 

should be demonstrated and clarified. 

3. How does the network perform on samples on which it was not trained? What if it was trained on a 
subset of cues and then used to predict on the other set? Some generalization, for example across 
the same shape with different colors, should be fine. This is important as the network may be 

overfitting. 

4. The R2 between the network and the RL model was higher than it was between the network and 



the subjects. It would be useful to add noise to the network in some way, to better match performance 
between the network and the human participants. 

5. I would suggest not calling this network biophysically plausible. Maybe you could say that the 

network has some biophysically realistic features. 

6. What if the network input was simplified to just the shape features? The input dimensionality was 

quite high. I also think that if one was equating this input dimensionality to visual areas, it might 
represent inputs from multiple areas. 

7. It would be useful to directly illustrate the representational similarity analysis. I would show a matrix 

showing the value mapping for each stimulus, and then another matrix for activity levels for an 
example population, and then show the regression (GLM) used to map between these for an 
example. The slope can then be illustrated, and it can be shown that this is what is being analyzed. 

8. It would be useful to use dimensionality reduction on the neural dynamics at the beginning and end 

of learning, to show that the trajectories for two cues that differ in value maybe do not differ at the 
beginning of training, but then differ at the end. 

9. How much variance in the value estimates are driven by shape vs. feature conjunction? Ultimately 
the authors are carrying out non-linear regression with a basis function network, so it can certainly 

approximate the function mapping from cue to value. One would expect that the amount of variance in 
the unit activity should match the amount of variance in the relationship between feature dimension 
and value. 

10. Why was the network simulated to have plasticity in only certain connections? Is there any 

evidence for this in any neural systems? The choices were not well motivated by the biology. 

Reviewer #3 (Remarks to the Author): 

This study looks at how complex learning strategies might be implemented in humans and Recurrent 

Neural Networks (RNNs). Specifically, they look at a learning scenario in which the agent needs to 
learn about the informativeness of features and can additionally exploit conjunction and object level 
information to improve performance. Humans and RNN’s learn this in a characteristic way, first 

abstracting for feature dimensions and then adding conjunction level information. RNN’s do this 
through plasticity at the “sensory” i.e. stimulus identity level, which also contain all the reward 

sensitivity, with a particular relevance of plastic inhibitory neural pools and their connections to plastic 
excitatory ones, as shown using RNN lesions. Additionally, plastic inhibitory neurons appear to 
contain feature-based information and excitatory ones more object based information. All these 

results are very interesting and open up many new potential empirical tests in actual neural 
populations. However, the one thing that is lacking a little is more of an argument why the results are 

the way they are. E.g. did the authors expect excitatory populations to have this link to object based 
learning and inhibitory with feature based learning? Is it because of the fact that only excitatory 

populations have direct links to outputs or could there be another reason? 
Overall, there is a lot to like in this manuscript. It contains extensive exploration of the properties of 
the RNN, has an interesting task and compelling correspondence between human and model results. 

If I had to criticize the manuscript, I would have liked a little bit more conceptual reasoning about why 
the results are how they are and a bit more clarity in some places. Otherwise, congratulations on an 

impressive study! 

Major comments: 

1) The task itself should be in main figures. Also there could additionally be a bit more clarity from the 

start about the paradigm. 



2) Figure 6 C talks about all 8 types. Why are there only the 4 excitatory shown? I assume the 8 was 

a mistake because from the rest of the manuscript it is clear that only the excitatory neurons are 
connected to the output. 

3) The authors should more clearly state that the statistical values for the model free differential 
response after sorting participants into conjunction+feature and feature only learners are not unbiased 

as they are based on model fits of the same data. I think the description of the tests are still 
informative but that there is a differential response to informative features is not surprising when it is a 

test in the participants that were fit best by Conjunction+feature, unless I am misunderstanding 
something about the procedure. 

4) The authors convincingly show that there is in their own words “…, an opponency between 
representations of feature and object values by excitatory and inhibitory neurons;” But what I am not 

quite sure of is the why. Is it because of the fact that only excitatory populations have direct links to 
outputs or could there be another reason? It would be nice to have more discussion of this by the 

authors. 

5) There is a discrepancy between the RNN results regarding the excitatory plastic population which 
focuses on object level learning and the people doing conjunction and feature based learning. The 

authors need to address this a bit more head-on and explain how the narrative of combined feature 
and conjunction based learning through interactions between excitatory plastic and inhibitory plastic 
units lines up with the fact that there are object-based effects in excitatory populations and object 

based learning emerges after lesioning in the model despite no object based learning seeming 
existing in the human participants. 

6) Related do the last point, from Figure 1 B it looks like later in learning feature based learning does 

worse than object based learning, is that correct? I am asking in part because in Fig 1 C this doesn’t 
seem to be the case for the R-squared measure, although it seems to for the goodness of fit. 
Clarification on this is appreciated (and whether adding object based information explains additional 

variance which would also explain what the object-based excitatory effects in the RNN might be 
doing). 

7) A lot of the analysis of the RNN are descriptive and exploratory (e.g. they authors simply test all 
sub populations for significant weight change and report the one that changes). This makes a lot of 

sense because they want to give an exhaustive description of what the model is doing, which I 
applaud. However, it wasn’t always clear how the authors take into account multiple comparison 

issues in those cases? If they haven’t, they could simply re-run the simulation (if that is possible) and 
this way confirm all results. Alternatively, in cases where they had no prior hypothesis on what 
population should change, they could adjust statistics for multiple comparisons and otherwise clearly 

state that they aren't doing such adjustments or what the prior hypothesis was and why. 

Minor: 

A) Does Fig 1 D mean conjunctions are used a lot less or are weights not comparable like that across 
types? 

B) Fig 1D hard to see difference between grey and black at first. 

C) In Fig 6 D there are 3 columns for feature but only one is significant. If this is the informative 
feature, please make it clearer in the figure itself. 

D) Fig 3 C. Are inhibitory neurons always mostly active really early on and then silenced or is this just 
in that specific trial? Also, out of curiosity, why are there no other descriptions of timecourses and 

neural dynamics? Were they not informative? 



E) Fig 4 A could use a legend in figure. 

F) How would you have to change the RNN to get the feature only learning as some people (1/3) do? 

G) Maybe have labels in Fig 5 (even though it wont look as nice, people might be able to follow even 
without remembering how the images work). Alternatively, add a legend to remind them? 

H) In the analysis of the human data, differential response for non-informative and informative 

features should be compared against each other if the authors want to make a comparative 
statement, not each against zero (this seemed to be done with feature learners but not feature and 

conjunction learners). 

I) The authors state “In this step, only connections endowed with the plasticity mechanism were 

modulated after receiving reward feedback in each trial. The overall task structure used in these 
simulations was similar to our experimental paradigm with a simple modification where only one 

stimulus was shown in each trial and the network had to learn the reward probability associated with 
that stimulus.” This means there is no possibility for spread of effect across chosen and unchosen 
stimuli in the model. Was there any evidence in their participant data for such effects? 

Reviewer #4 (Remarks to the Author): 

The authors studied how humans and neural networks learn values in an environment where visual 

features and conjunctions of features are predictive of values. They showed that both humans and a 
type of plastic recurrent neural networks (RNNs) showed a mixed learning strategy, in which the 

feature-based values are learned earlier and faster, while conjunction-based values are learned later 
and slower. They showed these points with a combination of model fitting and direct data analysis. 
Then the authors proceeded with a detailed investigation of the RNNs. Through thorough analyses 

probing neural representation, connection weights, and lesioning impacts, they revealed how different 
neural types (plastic vs not, excitatory vs inhibitory) in the model are involved in learning the values. 

This work is carefully done, with plenty of controls and complementary analyses. The paper is clearly 
written, and the figures are thoughtfully made. The experimental task is interesting, and the kind of 

recurrent neural network used is innovative. Overall, this is a very solid paper. 

The main concerns I have are (1) the core finding from the human participants is, in my opinion, not 
so surprising, (2) the RNN part, though abundant in observations, does not provide much intuitive 
understanding. 

I want to emphasize that these concerns do not, in any way, refute the authors’ findings and 

observations. I’m also not suggesting major additional experiments, because I think the issue is not a 
lack of controls or care. The authors have done a lot of work, and in my opinion, deserve to have this 

paper published with few additional edits at a respectable journal. 

Major points: 
(1) Human behavior not surprising, or in other words, there was no clearly articulated alternatives to 

what the authors found. 

The authors report that humans learn feature-based rules (red better than blue) faster than 

conjunction-based rules (blue triangle better than red circle). The authors emphasize that they are the 
first to report this phenomenon (e.g., “…our experimental results demonstrate for the first time…”). 

However, it’s not clear what would be a plausible alternative. Could humans possibly learn 



conjunction-based rules before they learn feature-based rules? 

This is further complicated by the fact that informative conjunction occurs much less frequently than 
informative features. Therefore, it’s even harder to imagine than conjunctions would be learned first. 

I’m willing and hoping to be convinced by the authors that this behavior is not expected by classical 
theories or simply our everyday intuition. But currently I don’t see that from the Introduction. 

(2) RNN results lack a summarizing intuition. 

The RNN itself is interestingly complex in its architecture (two cell types, optional input plasticity, 

optional recurrent plasticity), and the authors conducted a very thorough investigation of it. However, 
at the end of it, we are left with lots of observations of the RNN, but little intuition that may transfer to 
other settings. 

For example, the authors observed that feature-encoding input units connect more strongly to 

inhibitory neurons that have plastic input weights. Why? As far as I can tell, little intuition is provided, 
and little investigation is oriented at understanding the difference between cell types, rather than 
reporting it. Some sections describing the RNN results (parts of p12-p19) almost read like auto 

generated text reporting all combinations of analyses (e.g. X analysis on Y cell report Z value). 

I think this issue is demonstrated in the authors’ Abstract where they say the “learning strategy relies 
on…distinct contributions of inhibitory and excitatory neurons”. That sounds rather vague. 

(3) Related to the second point, the architecture comparison is not given enough attention. 

Toward the end of the Results section, the authors discussed what happens with alternative 
structures. I find this section with lots of promises, because it may help us understand why the plastic 

RNN is necessary and why the human findings are surprising. In particular, I’m surprised to know that 
some architectures didn’t learn like humans do, which can be an important reason to think that the 
human findings are not trivial (essentially countering my first major concern). But being a short section 

at the very end, it feels like an afterthought and a missed opportunity. 

If I assumed the authors had infinite time and patience, I would have suggested that they restructure 
the paper, and put more emphasis on this last section. Perhaps bring it up, and show it before the 
main RNN results. But I know that in reality, we all have many things to do, and it’s not worth 

restructuring a perfectly fine paper just to satisfy one reviewer’s preference. So I’m not suggesting the 
authors do anything about this. I’m only pointing this issue out in the hope that the authors may find it 

helpful for their future work. 

Minor points 

In the Abstract, it’s not always clear what findings are based on RNNs and what are from humans. 

Fig. 1: I would appreciate if there’s a schematic for the task. Why not move Fig. S1 A, B to Fig. 1? 

Fig. 2 and page 8, the effect for informative conjunction seems relatively weak (P=0.029). But I 
suppose it’s not clear if the authors can do anything about it. 

The reason for using RNN is not well articulated. Usually people use RNNs to have temporal 

dynamics, but Fig. 3c shows essentially no dynamics? 

Fig. 7. Perhaps write something like “Lesioned networks” in the figure (not just the caption)?
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Response to the reviewers’ comments, and summary of changes made in response to the 
comments of the reviewers. 
Title: Neural mechanisms of distributed value representations and mixed learning 
strategies 
Authors: Farashahi and Soltani 
 
We are greatly thankful to all the reviewers for their careful reading of our manuscript and 
for their useful and constructive suggestions. We have performed multiple additional 
analyses and made substantial changes in the revised manuscript to fully address all of the 
reviewers’ concerns and suggestions. Below, we provide point-by-point responses to 
individual reviewers’ comments and concerns. The corresponding changes have been 
clearly marked (in blue) and noted in the revised manuscript (e.g., [R1.1] indicates 
response 1 to Reviewer # 1’ comment, etc.).  
 
Reviewer #1 
 
“In this paper the authors present a behavioural study on how humans make decisions when there 
are multiple stimuli available in the environment. The paper further develops an RNN model to 
investigate the mechanisms behind the behavioural processes. The paper is overall interesting and 
well-written. The task is also interesting and targets an important question about human decision-
making. However, I believe further analyses are required to confirm the reported behaviour effects 
and also further comparisons with neural recordings are required to establish the usefulness of the 
developed RNN. Based on this, I have some major concerns about the paper as detailed below.” 
 
Response: We thank the reviewer for a positive evaluation of our work. We really hoped 
that there were existing neural recordings that could be compared with our modeling 
results and used to test our predictions directly. However, because of the novelty of our 
experimental paradigm, there is no such neural data. Nonetheless, we hope that our 
additional new analyses and answers provided here, and corresponding changes in the 
revised manuscript, address the rest of the reviewer’s concerns.  
 
“Major: 
1. Behavioural analyses. The plots and analyses shown to support behavioural claims of the paper 
are well prepared and interesting, but it is still unclear to me whether the effects (model neutral 
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effects) are significant at the group level (without subdividing subjects into feature/conjunction 
learners). Based on this, I suggest adding three further analyses.  
1a. Firstly, showing two graphs which show the probability of choosing the same feature (or 
conjunction) in the next trial, depending on whether the previous trial was rewarded/not rewarded 
(figure 2 shows this to some extent, but group averages are not clear and further the groupings are 
not model neutral and depend on model fits).”  
 
Response: We thank the reviewer for their comment and useful suggestion. To address 
this, we now have calculated and compared differential response for the informative and 
non-informative features and the informative and non-informative conjunctions across all 
participants.  

We found that the difference between the probability of selecting stimuli that 
contained the informative feature of the stimulus that was selected and rewarded in the 
previous trial and the same probability when the previous trial was not rewarded (i.e., 
differential response of the informative feature) was significantly larger than zero (two-
sided sign-rank test; P = 10-3, d = 0.61, N = 67; Figure 1A below). In contrast, the difference 
between the probability of selecting stimuli that contained the non-informative features of 
the stimulus selected and rewarded in the previous trial and the same probability when 
the previous trial was not rewarded (i.e., differential response of the non-informative 
features) was not significantly different than zero (two-sided sign-rank test; P = 0.09, d = 
0.28, N = 67; Figure 1B below). These results indicate that participants responded 
differently to reward vs. no reward depending on the informativeness of features of the 
selected stimulus in the previous trial.  

A similar analysis on the informative and non-informative conjunctions yielded 
consistent results. More specifically, we found that the difference between the probability 
of selecting stimuli that contained the informative conjunction of the stimulus selected and 
rewarded in the previous trial and the same probability when the previous trial was not 
rewarded (i.e., differential response of the informative conjunction) was significantly 
larger than zero (two-sided sign-rank test; P = 2.7´10-3, d = 0.65, N = 67; Figure 1C below). 
In contrast, the corresponding difference for the non-informative conjunctions (i.e., 
differential response of the non-informative conjunctions) was not significantly different 
than zero (two-sided sign-rank test; P = 0.11, d = 0.21, N = 67; Figure 1D below). These 
results indicate that participants responded differently to reward vs. no reward depending 
on the informativeness of conjunctions of the selected stimulus in the previous trial.  
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Figure 1. Response to reward feedback depends on the informativeness of a feature or conjunction 
of features of the selected stimulus. (A) Plotted is the probability of selecting stimuli that contained 
the informative feature of the stimulus that was selected and rewarded (R) in the previous trial 
versus the same probability when the previous trial was not rewarded (NR). The insets show the 
histogram of the difference between these two probabilities (i.e., differential response). The dashed 
lines show the median values across participants, and an asterisk indicates the median is 
significantly different from 0 using two-sided sign-rank test with P < 0.05. (B) Similar to (A) but for 
stimuli that contained the non-informative features of the stimulus that was selected and rewarded 
in the previous trial versus the same probability when the previous trial was not rewarded. (C–D) 
Similar to (A–B) but for the informative or non-informative conjunctions. 
 
 We now have added Figure 1 above as Supplementary Figure 5 and discussed its 
results in the revised manuscript (see [R1.1] in the revised manuscript). 
 
“1b. Secondly, I suggest (in line with the previous graphs) conducting a logistic GLM analysis on 
the choices (currently it is on probability estimates) investigating the effect of reward and its 
interactions with features/conjunctions on staying on the same action (feature/conjunction) in the 
next trial (for all subjects).”  
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Response: We thank the reviewer for this suggestion. There are a few issues with applying 
GLM to choice data, and resolving these issues would give very similar results to the 
above analyses. First, in each trial, each of the two presented stimuli contains two out of 
three values of each feature and two out of nine values of each conjunction. This means 
that more than one feature (or similarly more than one conjunction) can be present in 
consecutive trials. Therefore, depending on the feature (or conjunction) of interest, 
participants’ choice can be interpreted differently. Second, in some trials, participants may 
have no choice but to choose the same feature (or same conjunction) as in the preceding 
trial. This means that not all trials can be used to investigate the effect of obtained reward 
in the previous trial based on the “free” choice of staying on the same feature (or 
conjunction). To overcome these issues, one can limit the analysis to trials in which only 
one of the two stimuli contains the same feature as the feature of chosen stimulus in the 
preceding trials (similarly for conjunctions). However, this results in having separate 
GLMs for each feature (or conjunction) applied to different subsets of trials. Such an 
analysis is very similar in nature to the differential response analysis mentioned above, 
which is now reported in the revised manuscript. 
 
“1c. The third analysis I would suggest is to show the difference between DR_informative and 
DR_non information for feature and conjunction on the same plot (as x and y axes) for each subject, 
so that it can be shown how much each subject uses both types of learning (feature and 
conjunction). From the current plots the degree to which both strategies are used by the same person 
is unclear.” 
 
Response: We thank the reviewer for this helpful suggestion. To address this, we have 
calculated differential response for non-informative conjunctions and subsequently 
compared differential response of the informative and non-informative features, and 
differential response of the informative and non-informative conjunctions.  

We found that differential response for the informative feature and differential 
response for the informative conjunction were both positive for participants who adopted 
the best mixed feature- and conjunction-based learning strategy, the F+C1 model (two-
sided sign-rank test; informative feature: P = 8´10-4, d = 0.59, N = 41; informative 
conjunction: P = 0.029, d = 0.19, N = 41). In contrast, differential responses for the non-
informative features and the non-informative conjunctions were not distinguishable from 
0 for the same participants (two-sided sign-rank test; non-informative features: P = 0.23, d = 
0.058, N = 41; non-informative conjunctions: P = 0.47, d = 0.056, N = 41). We also found that 
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differential response for the informative feature was larger than that of the non-
informative features (two-sided sign-rank test; P = 0.013, d = 0.41, N = 41; Figure 2A below). 
Similarly, differential response for the informative conjunction was larger than that of the 
non-informative conjunctions (two-sided sign-rank test; P = 0.031, d = 0.38, N = 41; Figure 
2B below). Finally, the difference between differential response for the informative and 
non-informative features was larger than the difference between differential response for 
the informative and non-informative conjunctions (two-sided sign-rank test; P = 0.025, d = 
0.23, N = 41; Figure 2C below). 

 

 
Figure 2. Direct evidence for adoption of mixed feature- and conjunction-based learning strategy. 
(A) Plot shows differential response for the informative feature vs. differential response for the 
non-informative features for participants whose choice behavior was best fit by the F+C1 model. 
The inset shows the histogram of the difference between differential response of the informative 
and non-informative features. The dashed line shows the median values across participants, and 
the asterisk indicates the median is significantly different from 0 using two-sided sign-rank test 
with P < 0.05. (B) Plot shows differential response for the informative conjunction vs. differential 
response for the non-informative conjunctions for the same participants. The inset shows the 
histogram of the difference between differential response of the informative and non-informative 
conjunctions. (C) Plot shows the difference between differential response for the informative and 
non-informative features vs. the difference between differential response for the informative and 
non-informative conjunctions. The inset shows the histogram of the difference between the 
aforementioned differences. (D–E) Similar to (A–C) but for participants whose choice behavior was 
best fit by the feature-based model. 
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In contrast, for participants who adopted the feature-based learning strategy, only 
differential response for the informative feature was significantly larger than zero (two-
sided sign-rank test; informative feature: P = 0.022, d = 0.37, N = 21; non-informative 
feature: P = 0.09, d = 0.25, N = 21), with differential response for the informative feature 
being larger than that of non-informative features (two-sided sign-rank test; P = 0.005, d = 
0.43, N = 21; Figure 2D above). Moreover, for these participants, differential response for 
either the informative conjunction or non-informative conjunctions was not 
distinguishable from zero (two-sided sign-rank test; informative conjunction: P = 0.27, d = 
0.17, N = 21; non-informative conjunctions: P = 0.08, d = 0.41, N = 21) and differential 
response for the informative conjunction was not distinguishable from that of non-
informative conjunctions (two-sided sign-rank test; P = 0.15, d = 0.12, N = 21; Figure 2E 
above). Finally, we found that the difference between differential response for the 
informative and non-informative features was larger than the difference between 
differential response for the informative and non-informative conjunctions (two-sided 
sign-rank test; P = 0.045, d = 0.31, N = 41; Figure 2F above). 

Together, these results dovetail our previous findings, providing direct evidence for 
adoption of different learning strategies. In the revised manuscript, we now have replaced 
previous Figure 2 (now Figure 3) with Figure 2 above and discussed its results (see [R1.2]).  
 
“2. RNN fit to data. Although figure 4 and 1 are similar, it is unclear from the current analyses 
how much RNN simulations produce *choices* similar to humans. This is because the suggested 
RNN model lacks a choice layer mechanism and only predicts reward probabilities. To address this 
limitation, I would suggest adding a choice layer (e.g., a linear layer that reads out the output 
activities of the network), simulating the RNN and performing the above analysis (or the one in Fig 
2) to show much the effect of reward on actions in RNN simulations is similar to that of the 
subjects.”  
 
Response: We thank the reviewer for raising this concern. The reviewer is correct that the 
presented RNNs do not make any decisions. This simplification was adopted to better 
focus on learning aspects of the task. Nonetheless, to address reviewer’s concern, we 
added a decision layer (using a logistic function) to the output layer of RNNs to generate 
choice based on the presented pair of stimuli in each trial. We then compared choices 
made by RNNs with our experimental data as described in the next response (see our 
response to major point 3). To compute differential response of RNNs, however, we still 
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used estimated reward probabilities in the output layer to avoid unnecessary additional 
simulations needed to compensate for stochasticity in generation of choice in each trial. 
 Analyses of differential response of RNNs yielded results similar to those of our 
human participants. Specifically, we found that in the trained RNNs, differential responses 
for the informative feature and informative conjunction were both positive (two-sided 
sign-rank test; informative feature: P = 0.03, d = 0.28, N = 50; informative conjunction: P = 
0.04, d = 0.23, N = 50). In contrast, differential response for the non-informative features 
and the non-informative conjunctions were not distinguishable from 0 (two-sided sign-
rank test; non-informative features: P = 0.11, d = 0.14, N = 50; non-informative conjunctions: 
P = 0.13, d = 0.09, N = 50).  

 

 
Figure 3. Trained RNNs can replicate main behavioral results in terms of response to reward 
feedback. (A) Plot shows differential response for the informative feature vs. differential response 
for the non-informative features in the trained RNNs. The inset shows the histogram of the 
difference between differential response of the informative and non-informative features. The 
dashed line shows the median values across all the trained RNNs, and the asterisk indicates the 
median is significantly different from 0 using two-sided sign-rank test with P < 0.05. (B) Similar to 
(A) but for the informative and non-informative conjunctions. (C) Plot shows the difference 
between differential response for the informative and non-informative features vs. the difference 
between differential response for the informative and non-informative conjunctions. The inset 
shows the histogram of the difference between the aforementioned differences. 
 
 

In addition, differential response for the informative feature was larger than that of 
the non-informative features (two-sided sign-rank test; P = 0.013, d = 0.41, N = 50; Figure 
3A above). Similarly, differential response for the informative conjunction was larger than 
that of the non-informative conjunctions (two-sided sign-rank test; P = 1.4´10-6, d = 0.48, N 
= 50, Figure 3B above). Finally, similar to our experimental results, the difference between 
differential response for the informative and non-informative features was larger than the 
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difference between differential response for the informative and non-informative 
conjunctions (two-sided sign-rank test; P = 0.018, d = 0.18, N = 50; Figure 3C above). 
Together, these results illustrate that the trained RNNs can qualitatively replicate behavior 
of human participants.  

We now have discussed the above results in the revised manuscript and included 
Figure 3 above as a part of Figure 5 (see [R1.3]).  
 
“3. In terms of behaviour, although the RNN models are consistent with what was found in the 
previous analysis, they didn't really provide much novel insights about behaviour. In this regard, I 
would suggest at least comparing the fit of RNN to behaviour to the baseline RL models (e.g., using 
cross-validation for predicting choices, similar to Ref 3 below) to show that the baseline models 
capture the same amount of variance that the RNN models can capture.”  
 
Response: We thank the reviewer for this suggestion. Unfortunately, we cannot fit RNNs 
to behavior as suggested because the number of free parameters in our network exceeds 
the number of choice trials we obtained from our participants. Specifically, a network with 
similar structure to our proposed RNNs that is able to perform our experiment 
successfully would have a total of 29862 free parameters (including naïve input, naïve 
recurrent and naïve output weights, bias terms, and Hebbian learning parameters) 
compared to the total of 28944 trials we obtained from our participants.  

Nonetheless, to show the behavioral relevance of our RNNs, as suggested by the 
reviewer, we added a decision layer (using a logistic function) to the output layer of RNNs 
to generate choice based on the presentation of a pair of stimuli in each trial. We then fit 
choice data produced by the trained RNNs using different RL models. Specifically, we 
used coupled, uncoupled, and decay RL models that were shown to capture our 
participants’ choice behavior well (Table 1 below). We found that similar to our human 
participants, the mixed feature- and conjunction-based model provided the best fit to 
choice data from the trained RNNs. 

In the revised manuscript, we now have discussed the above results and added 
Table 1 below as Supplementary Table 2 (see [R1.4]). 
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Model Feature-
based 

Mixed feature- and conjunction-
based Object-

based 
Mixed feature- and object-based 

 F+C1 F+C2 F+C3 F1+O F2+O F3+O 

# pars. 5 6 6 6 3 6 6 6 

-LL 167.5±3.4 163.4±3.4 168.8±3.3 169.1±3.3 173.0±3.0 169.7±3.5 171.7±3.6 172.5±3.7 C
oupled 

AIC 345.1±6.8 337.9±6.9 349.5±6.7 350.9±6.6 352.0±6.2 346.3±6.9 343.4±7.2 351.0±7.5 

BIC 363.1±6.8 360.6±69 371.1±6.7 372.4±6.6 362.8±6.2 368.9±6.9 371.0±7.2 372.6±7.5 

-LL 167.1±3.4 162.9±3.4 167.9±3.2 168.3±3.0 172.6±3.0 169±3.7 170.4±3.6 172.0±3.6 U
ncoupled 

AIC 344.3±6.7 336.9±6.8 347.7±6.5 348.7±6.2 351.2±6.0 345.9±7.4 346.8±7.2 350.1±7.1 

BIC 362.3±6.7 359.6±6.8 369.3±6.5 370.3±6.2 362.0±6.0 367.5±7.4 368.4±7.2 371.7±7.1 

# pars. 6 7 7 7 4 7 7 7  

-LL 167.2±3.5 161.7±3.4 
**(**) 167.3±3.0 170.0±3.0 171.8±2.8 166.8±3.6 167.4±3.6 167.9±3.6 

D
ecay 

AIC 346.4±6.9 337.4±6.7 
*(**) 348.7±6.2 354.0±6.0 351.7±5.6 347.7±7.2 348.9±7.2 349.9±7.3 

BIC 368.0±6.9 362.6±6.7 
*(**) 373.9±6.2 379.2±6.0 366.0±5.6 372.9±7.2 374.0±7.2 375.0±7.3 

Table 1. Comparison of the goodness-of-fit measures for fitting choice data generated by the 
trained RNNs. Reported are the goodness-of-fit measures, negative log likelihood (-LL), Akaike 
information criterion (AIC), and Bayesian information criterion (BIC) averaged over all the trained 
RNNs (mean±s.e.m.). The model providing the best fit (F+C1) and its object-based and feature-
based counterparts are highlighted in green and orange, respectively. The symbols next to 
goodness-of-fit for the F+C1 model indicate comparison with the feature-based and object-based 
(shown in parenthesis) models using a two-sided, sign-rank test. The significance level of the test is 
coded as: 0.01 < P < 0.05 (*), 0.001 < P < 0.01 (**), and P < 0.001 (***).  
 
“4. The sections about analyzing the structure of weights in RNN are well presented and well 
developed, but without showing (preferably quantitatively) how well the developed mechanisms 
track actual neural activities/plasticity, it would be hard to assess the importance of the findings. Is 
it possible for example to show the activities/plasticities are related to the brain activities in some 
specific conditions/task? (e.g., similar to Ref 1 below).” 
 
Response: We thank the reviewer for this comment. We really hoped that there were 
existing neural datasets that we could use to test the predictions of our model. However, 
our experimental paradigm that allows us to examine the emergence of complex learning 



 10 

strategies is novel and has not been used in any experiments. In addition, we are not 
aware of neural recording or brain imaging in a similar task. The closest task to our 
experimental paradigm is that of Oemisch et al. (2019), which was inspired by our 
previous study (Farashahi et al, 2017). Even data from that experiment still cannot be used 
to address different learning strategies and instead, can only provide some indirect 
support for our predictions as mentioned in the Discussion.  

We believe that one of the important contributions of our study is to provide very 
clear predictions that can be tested in future experiments.  

 
Oemisch, M., Westendorff, S., Azimi, M., Hassani, S. A., Ardid, S., Tiesinga, P., & 
Womelsdorf, T. (2019). Feature-specific prediction errors and surprise across macaque 
fronto-striatal circuits. Nature Communications, 10(1), 176. 
 
“5. I think further discussions about the literature on category learning (about feature and 
conjunction learning) would be appropriate (beyond generalization aspects, which are currently 
discussed). Also, the current RNN training setup is similar to learning to learn (or meta-learning) 
literature in machine learning (e.g., Ref 2 below), which have been previously applied to human 
choice data (e.g., Ref 3 below). The authors can consider adding a discussion of this relevant 
literature.” 
 
Response: We thank the reviewer for pointing out this relevant literature.  

In the revised manuscript (see [R1.5]), we have added further discussion to link our 
results to category learning and meta-learning: 

 
(page 26) “In general, feature-based and conjunction-based strategies can be considered as rule-
based category learning, whereas and object-based strategy can be considered as procedural-learning 
[R1.5].” 
 
“Our training algorithm was designed to allow the network to learn a general solution for learning 
reward probabilities in multi-dimensional environments. Networks capable of generalizing to new 
tasks or environments have been the focus of the meta-learning field (Finn et al., 2017; Hospedales 
et al., 2020; Pfahringer et al., 2000; Thrun & Pratt, 2012; J. X. Wang et al., 2016) and were used to 
simulate learning a distribution of tasks (J. X. Wang et al., 2018). Extending this approach to a 
novel task, our modeling results thus suggest that the brain’s ability to generalize might arise from 
principled learning rules along with structured connectivity patterns [R1.5].” 
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“6. The differences in BIC (Supple Table 1) is marginal between F+C1 and Feature-based models for 
coupled and uncoupled cases, but become significantly larger in the Decay models. Is there 
justification for why the decay parameter should affect F+C1 and Feature-based models 
differently?” 
 
Response: We thank the reviewer for asking this question. The decay of estimated reward 
probabilities aims to capture forgetting of all values that were not updated (i.e., increased 
or decreased due to reward feedback) in a given trial. As a result, in different models, this 
decay happens for different numbers of unchosen features, conjunctions, or stimuli. More 
specifically, after each trial, reward probabilities can decay for 6 out of 9 individual 
features, 24 out of 27 possible conjunctions, and 26 out of 27 individual stimuli. Therefore, 
depending on the base model, the decay mechanism has different effects on estimated 
reward probabilities and thus, the goodness-of-fit measures.  

 
“Minor: 7. Please provide information about how the parameters of RNN were chosen (for example 
\lambda_r in equation 19).” 
 
Response: We thank the reviewer for pointing out these missing pieces of information, 
which are now added to the Methods (see [R1.6]). 
 
“8. I would suggest bringing the description of the task to the main text.” 
 
Response: We thank the reviewer for this suggestion. As suggested by the reviewer, we 
now have included the previous Supplementary Figure 1 as Figure 1 in the main text (see 
[R1.7]). 
 
“9. tensor flow => Tensorflow. Also please add citations.” 
 
Response: We thank the reviewer for pointing out this typo and the missing reference, 
both of which have been fixed in the revised manuscript (see [R1.8]).  
 
“Ref 1: Sussillo, David, et al. "A neural network that finds a naturalistic solution for the 
production of muscle activity." Nature neuroscience 18.7 (2015): 1025-1033. 
 
Ref(s) 2: Wang, Jane X., et al. "Prefrontal cortex as a meta-reinforcement learning system." Nature 
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neuroscience 21.6 (2018): 860-868. 
Wang, Jane X., et al. "Learning to reinforcement learn." arXiv preprint arXiv:1611.05763 (2016). 
 
Ref 3: Dezfouli, Amir, et al. "Models that learn how humans learn: the case of decision-making and 
its disorders." PLoS computational biology 15.6 (2019): e1006903.” 
 
Reviewer #2: 
 
“The authors describe a study in which they carried out behavioral studies in human subjects, and 
trained an RNN on a similar task. The task required subjects to learn to select multidimensional 
cues that predicted reward. Cues varied in shape, color, and texture. They found that, although 
challenging, subjects could learn the task, and most learned both shape and feature conjunctions 
that predicted reward. The behavior of these subjects was well-fit by an RL model which also 
included these factors. The trained RNN was also able to learn to predict outcome value. They also 
examined value coding as a function of cue features for hidden units in the RNN that did or did not 
have plasticity and/or were inhibitory vs. excitatory. They found that plasticity of connections was 
important for developing value representations.  
This is an interesting study which attempts to identify computational mechanisms that may 
underlie learning value associations for high dimensional stimuli. The results as presented are 
detailed, clear and straightforward. A number of choices in the modeling were not clearly motivated, 
however, and additional clarification of why these choices were made, as well as how important they 
are, is important. “ 
 
Response: We thank the reviewer for a positive evaluation of our work. We hope that our 
new analyses, answers provided here, and corresponding changes in the revised 
manuscript addressed all the reviewer’s concerns. 
 
“1. It would be best to incorporate Supplemental Fig. 1 into the main text so the task design is 
clear.” 
 
Response: We thank the reviewer for this helpful suggestion. We now have included 
previous Supplementary Figure 1 as Figure 1 in the main text (see [R2.1]). 
 
“2. The network was trained in two stages. Why was this? What if the network was trained directly 
on the value estimation task given to the subjects, as opposed to the object based version? I assume 
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it is hard to get the network to learn this and that is why the alternative approach was used. But 
this should be demonstrated and clarified.”  
 
Response: We thank the reviewer for asking this question. First, we should note that the 
networks were trained during the first step only (i.e., stochastic gradient descent was 
stopped after this step) and then were only used to perform our experiment during the 
second step based on reward feedback in each trial. Training in the first step, which was 
done in a series of multi-dimensional environments, was to allow the networks to learn a 
general task of learning reward probabilities. Without such training, these networks 
would not have the connectivity pattern necessary to learn from multi-dimensional 
stimuli.  

We have made changes to the revised manuscript to clarify these points (see [R2.2]).  
 
“3. How does the network perform on samples on which it was not trained? What if it was trained 
on a subset of cues and then used to predict on the other set? Some generalization, for example 
across the same shape with different colors, should be fine. This is important as the network may be 
overfitting.” 
 
Response: We thank the reviewer for asking this insightful question. Indeed, training in 
many multi-dimensional environments with different levels of generalizability was to 
ensure that networks are not overfitting. Moreover, analyses of networks’ behavior 
showed that trained networks adopt a mixture of feature- and conjunction-based learning, 
which itself is generalizable (as opposed to object-based learning that is not generalizable).  

Nonetheless, to directly address the reviewer’s concern about overfitting and to 
further explore generalization in the trained RNNs, we used the trained RNNs to perform 
our task but with only a subset of the stimuli (a random set of 18 stimuli out of the 27 
stimuli). We then used the networks to predict the value for the subset of the stimuli not 
shown during learning the task (remaining 9 “leave-out” stimuli). In this way, the 
networks could use both feature values and conjunction values to generalize across 
stimuli. To test generalization, we then plotted the prediction of the network for the leave-
out stimuli against their actual reward probability (see Figure 4 below). We found that 
estimated reward probabilities for leave-out stimuli were significantly correlated with 
their actual reward probabilities (spearman correlation; 𝜌 = 0.77, P = 1.7×10-7), suggesting 
that the trained networks can generalize to stimuli that have not seen before. Moreover, 
our results showed that as the result of generalization, estimated reward probabilities of 
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leave-out stimuli can deviate from the actual reward probability of these stimuli, 
confirming that these networks are not overfitting. 

We have added a note about generalization and overfitting to the revised 
manuscript and included Figure 4 below as Supplementary Figure 6 (see [R2.3]). 

 
Figure 4. Trained networks can generalize to stimuli that were not used during learning. Each 
point shows the predicted reward probability for a stimulus not used during learning vs. its actual 
reward probability. The dashed line shows the identity line. 
 
 
“4. The R2 between the network and the RL model was higher than it was between the network and 
the subjects. It would be useful to add noise to the network in some way, to better match 
performance between the network and the human participants.” 
 
Response: We thank the reviewer for this suggestion. There are multiple sources of 
noise/variability that could increase R2 for human participants and could result in a better 
match between R2 values of RNNs and human participants. For example, spiking 
networks are inherently more sensitive to input noise and thus a spiking version of our 
trained networks could show a more similar performance to our human participants. 
Another source of variability could be exposure to environments with different levels of 
generalizability that could result in adoption of different learning strategies and thus, 
overall smaller R2 values.  

To show that such variability could explain some of the observed differences in R2, 
we focused on training environments with very different levels of generalizability. This 
was possible because reward probabilities during the training step were drawn from a 
uniformly random distribution between 0 and 1. To that end, we defined extreme non-
generalizable environments as those that fell in the 0–20% quantile of the joint distribution 
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of features and individual features plus conjunctions generalizability indices (see Figure 
5A below), and extreme generalizable environments as those that fell in the 80–100% 
quantile of the same joint distribution. We then examined the behavior of RNNs trained in 
these two types of environments. We found that the estimated reward probabilities by 
RNNs trained in generalizable environments were best fit by the feature-based model (see 
Figure 5B below), whereas estimates by RNNs trained in non-generalizable environments 
were best fit by the object-based model (see Figure 5C below).  
 

 
Figure 5. Generalizability of the environments used during the training step influences the 
behavior of RNNs during the learning task. (A) The plots show the joint distribution of 
generalizability indices calculated for the estimated reward probabilities associated with different 
stimuli based on their features and combinations of individual features and conjunctions. 
Environments with extreme generalizability and non-generalizability used to train two different 
sets of RNNs are indicated with white rectangles. (B–C) The plots show the time course of 
explained variance (R2) for reward probabilities estimated by RNNs using different learning 
models as indicated in the legend. The results for RNNs trained using extreme generalizable and 
non-generalizable environments are shown in B and C, respectively. Error bars represent s.e.m. 
The solid line is the average of exponential fits to RNNs’ data and the shaded areas indicate s.e.m. 
of the fit. Different training environments result in adopting different learning strategies and 
different R2 values in our task. 
 

More importantly, the explained variance by different models was drastically 
different between the two sets of RNNs (compare Figure 5B and 5C above). These results 
indicate that different training environments result in different R2 values, and thus 
variability in training (i.e., what reward environments a network or participant has 
experienced before performing our task) could account for mismatch between R2 values of 
human participants and RNNs. 
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We believe that investigating the aforementioned mechanisms to account for the 
observed mismatch in R2 values is beyond the scope of this study, and thus we did not 
include the above results in the revised manuscript. 
 
“5. I would suggest not calling this network biophysically plausible. Maybe you could say that the 
network has some biophysically realistic features.”  
 
Response: We thank the reviewer for this suggestion. In the revised manuscript, we point 
out that our networks have some realistic features and use “biologically inspired” instead 
of “biophysically plausible” (see [R2.4]). 
 
“6. What if the network input was simplified to just the shape features? The input dimensionality 
was quite high. I also think that if one was equating this input dimensionality to visual areas, it 
might represent inputs from multiple areas.”  
 
Response: If we understood this point correctly, the reviewer is asking what happens if 
sensory input to the recurrent populations only includes populations selective to 
individual features and not conjunctions or object identity, the latter two corresponding to 
input from multiple areas. First, we do not make any assumption about whether sensory 
input comes from the same or different brain areas, as sensory neurons with simple (e.g., 
selectivity to color) or complex response selectivity (e.g., selectivity to color and 
orientation) can be found in the same visual areas. The only assumption here is that 
connections between sensory populations encoding features, conjunctions of features, or 
stimuli (distributed across cortical visual areas) and recurrent populations (presumably in 
the PFC) can be plastic to allow learning and estimation of reward values in recurrent 
populations. In addition, restraining input to only features seems arbitrary in our view 
because of what is known about connectivity and neural representations in the brain. 
 
“7. It would be useful to directly illustrate the representational similarity analysis. I would show a 
matrix showing the value mapping for each stimulus, and then another matrix for activity levels for 
an example population, and then show the regression (GLM) used to map between these for an 
example. The slope can then be illustrated, and it can be shown that this is what is being analyzed.” 
 
Response: We thank the reviewer for their constructive suggestion. As suggested by the 
reviewer, we prepared a new figure (Figure 6 below) to illustrate representational 
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similarity analysis. This figure has been added as Supplementary Figure 8 to the revised 
manuscript (see [R2.5]). 

 
Figure 6. Schematic of the representational similarity analysis (RSA). (A) The response 
dissimilarity matrix (DM) was computed as the Euclidean distance between the activity of 
recurrent populations in a certain population (e.g., 𝐸𝑥𝑐!!) during the choice period. (B–D) The 
reward probability DMs were calculated as the Euclidean distance between reward probability 
estimates based on an object-based model (B), a model based on the conjunctions of non-
informative features (i.e., the informative conjunction) (C), and a model based on the informative 
feature (D) for all the stimuli used in the experiment. (E) As the final step of RSA, a GLM is used to 
fit the response DM as a function of the normalized weights of the three reward probability DMs. 
 
“8. It would be useful to use dimensionality reduction on the neural dynamics at the beginning and 
end of learning, to show that the trajectories for two cues that differ in value maybe do not differ at 
the beginning of training, but then differ at the end.” 
 
Response: We thank the reviewer for this helpful suggestion on exploring the temporal 
dynamics of population response in our networks. To address this, we applied principal 
component analyses (PCA) to the response of excitatory recurrent populations of the 
trained RNNs because this response determines the output of the networks. More 
specifically, we performed three separate PCAs on the activity of excitatory recurrent 
populations during the simulated experiment (repeated 100 times to obtain smoother 
results). This includes: PCA on the response of excitatory recurrent populations to all 
stimuli at the beginning of each session before the network has learned about the reward 
environment (see Figure 7A below); PCA on the response of excitatory recurrent 
populations to all stimuli at the end of each session when the network has fully learned the 
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task (see Figure 7B below); and PCA on the response of excitatory recurrent populations to 
all stimuli during the choice period throughout each session (see Figure 7C below). As 
expected, we found that the trajectory of population response projected on three principal 
components was not distinguishable at the beginning of the session, whereas this response 
diverged according to reward value as the network learned reward probabilities.  

In the revised manuscript, we now have added a few sentences to discuss these 
results and included Figure 7 below as Supplementary Figure 7 (see [R2.6]).  
 

 
Figure 7. Dynamics of population activity in RNNs during learning task performance. (A–B) 
Trajectories in the activity space formed by the first three principal components of PCA performed 
on the response of excitatory recurrent populations at the beginning (A) and end of each session 
(B). Diamonds mark stimulus onset, squares mark beginning of the choice period, and triangles 
mark the end of stimulus presentation. Different colors represent reward value (probability) 
assigned to each stimulus. (C) Trajectories in the activity space formed by the first three principal 
components of PCA performed on the response of excitatory recurrent populations during the 
choice period as the network learns about different stimuli. Larger markers indicate later trials 
within the session.  
 
“9. How much variance in the value estimates are driven by shape vs. feature conjunction? 
Ultimately the authors are carrying out non-linear regression with a basis function network, so it 
can certainly approximate the function mapping from cue to value. One would expect that the 
amount of variance in the unit activity should match the amount of variance in the relationship 
between feature dimension and value.” 
 
Response: We thank the reviewer for asking this question. Noting that stimulus identity 
fully determines reward probabilities (value estimates), we assume that the reviewer’s 
question is about variance in value estimates explained by individual features vs. 
conjunctions of features (i.e., they refer to individual features as “shape”). To answer this 
question, we first performed stepwise GLM on the actual reward probabilities to calculate 
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R2 associated with reward probabilities based on the informative feature (R2 = 0.27) and 
added R2 due to reward probabilities based on the conjunctions of the two non-
informative features (R2 = 0.12). We repeated the same analysis on reward probabilities 
estimated by human participants and the response of the output layer of the RNNs (which 
determines value estimates). We then compared the results between participants and 
RNNs to test whether variance captured by participants and networks are similar or 
different (considering they experienced the same reward environment).  

We found that the ratio of R2 of the reward probability of the informative feature 
and the conjunctions of the other two non-informative features was not significantly 
different between human participants and RNNs (human participants: median±IQR = 
2.52±1.19, RNNs: median±IQR = 2.68±1.02; two-sided rank-sum test; P = 0.28, d = 0.12, N = 
115), and both ratios were not different from the ratio according to the task design 
(median±IQR = 0.27/0.12=2.25; two-sided rank-sum test; P > 0.16, d < 0.18, N = 50 for RNNs 
and N = 67 for human participants). These results indicate that the trained RNNs can 
capture variance in value estimates embedded in the task design similarly to human 
participants. 
 
“10. Why was the network simulated to have plasticity in only certain connections? Is there any 
evidence for this in any neural systems? The choices were not well motivated by the biology.”  
 
Response: We thank the reviewer for asking this question. Our aim was to be agnostic and 
to not make any assumptions regarding the type of connections that are modulated by 
reward feedback (i.e., plastic connections). This was done because sensory and recurrent 
populations in our RNNs could be distributed across the brain. To that end, we simulated 
RNNs with both plastic and non-plastic connections from input sensory populations to the 
recurrent populations and the connections between the recurrent populations. More 
specifically, for each population (excitatory or inhibitory), input connections and recurrent 
connections were uniformly assigned to be flexible (modulated by reward) or rigid (not 
modulated by reward). This uniform assignment results in the eight disjoint populations 
all of which were included in our networks structure.  

We have clarified these points in the revised manuscript (see [R2.7]). 
 
Reviewer #3: 
 
“This study looks at how complex learning strategies might be implemented in humans and 
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Recurrent Neural Networks (RNNs). Specifically, they look at a learning scenario in which the 
agent needs to learn about the informativeness of features and can additionally exploit conjunction 
and object level information to improve performance. Humans and RNN’s learn this in a 
characteristic way, first abstracting for feature dimensions and then adding conjunction level 
information. RNN’s do this through plasticity at the “sensory” i.e. stimulus identity level, which 
also contain all the reward sensitivity, with a particular relevance of plastic inhibitory neural pools 
and their connections to plastic excitatory ones, as shown using RNN lesions. Additionally, plastic 
inhibitory neurons appear to contain feature-based information and excitatory ones more object-
based information. All these results are very interesting and open up many new potential empirical 
tests in actual neural populations. However, the one thing that is lacking a little is more of an 
argument why the results are the way they are. E.g. did the authors expect excitatory populations to 
have this link to object based learning and inhibitory with feature based learning? Is it because of 
the fact that only excitatory populations have direct links to outputs or could there be another 
reason?  
Overall, there is a lot to like in this manuscript. It contains extensive exploration of the properties of 
the RNN, has an interesting task and compelling correspondence between human and model 
results. If I had to criticize the manuscript, I would have liked a little bit more conceptual reasoning 
about why the results are how they are and a bit more clarity in some places. Otherwise, 
congratulations on an impressive study!” 
 
Response: We thank the reviewer for their positive evaluation of our work. We hope that 
our additional analyses, answers provided here, and corresponding changes in the revised 
manuscript addressed all the reviewer’s concerns.  
 
“Major comments: 
1) The task itself should be in main figures. Also, there could additionally be a bit more clarity from 
the start about the paradigm.“ 
 
Response: We thank the reviewer for this helpful suggestion. We now have moved 
previous Supplementary Figure 1 to the main text as Figure 1 and have provided a better 
explanation of the paradigm (see [R3.1] in the revised manuscript). 
 
“2) Figure 6 C talks about all 8 types. Why are there only the 4 excitatory shown? I assume the 8 
was a mistake because from the rest of the manuscript it is clear that only the excitatory neurons are 
connected to the output.” 
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Response: We thank the reviewer for pointing to this typo, which has been fixed in the 
revised manuscript (see [R3.2]). 
 
“3) The authors should more clearly state that the statistical values for the model free differential 
response after sorting participants into conjunction+feature and feature only learners are not 
unbiased as they are based on model fits of the same data. I think the description of the tests are still 
informative but that there is a differential response to informative features is not surprising when it 
is a test in the participants that were fit best by Conjunction+feature, unless I am 
misunderstanding something about the procedure.”  
 
Response: The reviewer is correct that the pattern of differential response is expected 
considering that subjects are divided according to the results of fitting their choice 
behavior. We now have clearly mentioned this point in the revised manuscript (see [R3.3]). 
We note that differential response analysis is an extra step we take to confirm our findings 
from fitting choice behavior using raw choice sequences. Nonetheless, to show direct 
evidence for adoption of mixed learning strategies, we performed the differential response 
analysis but using data from all participants. More specifically, we plotted the probability 
of selecting stimuli that contained the features or the conjunctions of the stimulus selected 
and rewarded in the previous trial versus the same probability when the previous trial 
was not rewarded, separately for the informative and non-informative features as well as 
for the informative and non-informative conjunctions across all participants (see Figure 8 
below).  

We found that the difference between the probability of selecting stimuli that 
contained the informative feature of the stimulus that was selected and rewarded in the 
previous trial and the same probability when the previous trial was not rewarded (i.e., 
differential response of the informative feature) was significantly larger than zero (two-
sided sign-rank test; P = 10-3, d = 0.61, N = 67; Figure 8A below). In contrast, the difference 
between the probability of selecting stimuli that contained the non-informative features of 
the stimulus selected and rewarded in the previous trial and the same probability when 
the previous trial was not rewarded (i.e., differential response of the non-informative 
features) was not significantly different than zero (two-sided sign-rank test; P = 0.09, d = 
0.28, N = 67; Figure 8B below). These results indicate that participants responded 
differently to reward vs. no reward depending on the informativeness of features of the 
selected stimulus in the previous trial.  
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Figure 8. Response to reward feedback depends on the informativeness of a features or 
conjunction of features of the selected stimulus. (A) Plotted is the probability of selecting stimuli 
that contained the informative feature of the stimulus that was selected and rewarded (R) in the 
previous trial versus the same probability when the previous trial was not rewarded (NR). The 
insets show the histogram of the difference between these two probabilities (i.e., differential 
response). The dashed lines show the median values across participants, and an asterisk indicates 
the median is significantly different from 0 using two-sided sign-rank test with P < 0.05. (B) Similar 
to (A) but for stimuli that contained only the non-informative features of the stimulus that was 
selected and rewarded in the previous trial versus the same probability when the previous trial 
was not rewarded. (C–D) Similar to (A–B) but for the informative or non-informative conjunctions. 
 

A similar analysis on the informative and non-informative conjunctions yielded 
consistent results. More specifically, we found that the difference between the probability 
of selecting stimuli that contained the informative conjunction of the stimulus selected and 
rewarded in the previous trial and the same probability when the previous trial was not 
rewarded (i.e., differential response of the informative conjunction) was significantly 
larger than zero (two-sided sign-rank test; P = 2.7´10-3, d = 0.65, N = 67; Figure 8C above). 
In contrast, the corresponding difference for the non-informative conjunctions (i.e., 
differential response of the non-informative conjunctions) was not significantly different 
than zero (two-sided sign-rank test; P = 0.11, d = 0.21, N = 67; Figure 8D above). These 
results indicate that participants responded differently to reward vs. no reward depending 
on the informativeness of conjunctions of the selected stimulus in the previous trial.  
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We now have added Figure 8 above as Supplementary Figure 5 and discussed its 
results in the revised manuscript (see [R3.3] in the revised manuscript). 
 
“4) The authors convincingly show that there is in their own words “…, an opponency between 
representations of feature and object values by excitatory and inhibitory neurons;” But what I am 
not quite sure of is the why. Is it because of the fact that only excitatory populations have direct 
links to outputs, or could there be another reason? It would be nice to have more discussion of this 
by the authors.” 
 
Response: We thank the reviewer for asking this important question. To account for the 
observed transition between different types of learning strategies, we expected to see an 
opponency between representations of feature and object values. However, explaining 
how this opponency occurs is not straightforward as pointed out by the reviewer. Indeed, 
determining why and how the opponency between representations of object and feature 
values is materialized in the excitatory and inhibitory populations, respectively, was one 
of the main goals of the different simulations and analyses we performed.  

As conjectured by the reviewer, the ability of excitatory recurrent populations to 
influence the output population could explain the larger contribution of excitatory 
populations to the object-based strategy (note that we did not consider any connections 
from inhibitory populations to the output population because inhibitory neurons are 
known to have predominantly local connections). More specifically, object values can be 
estimated directly by a single connection from sensory populations to recurrent 
populations because they do not require integration of information across features and/or 
conjunctions as is the case for feature-based and conjunction-based strategies. As a result, 
object values could directly drive excitatory populations which in turn drive the output of 
the network.  

However, another important factor in driving this opponency is the interaction 
between excitatory and inhibitory neurons. This interaction allows for value-based 
modulation of the excitatory populations by the inhibitory populations whose value 
representations are more sensitive to different learning strategies (e.g., compare Figure 6G 
and Figure 6C). Specifically, our analysis of naïve input weights suggests that feature-
based strategy is mainly encoded in the input connections from feature-encoding sensory 
populations to inhibitory populations. Additionally, because of recurrent connections, 
inhibitory populations disinhibit excitatory populations according to a feature-based 
strategy, and because our learning rules depend on pre- and post-synaptic activity, 
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learning in input connections from sensory populations to recurrent populations becomes 
dominated by the feature-based and not object-based strategy. Therefore, because of this 
value-dependent disinhibition, representations of feature values are reinforced (while 
suppressing object-based values) in excitatory populations, allowing for the intermediate 
strategies to emerge.  

Consistently, we found that the rate of value-dependent changes in the input 
connections from object-encoding sensory populations to recurrent populations is not 
significant in the intact network (Figure 7D). However, once the connections from the 
inhibitory populations are lesioned, feature-based disinhibition is removed and the object-
based strategy dominates (Figure 8). Therefore, the results of lesioning connections from 
inhibitory to excitatory populations support the idea that interactions between recurrent 
populations are needed to suppress object-based strategy and for the emergence of a 
mixed learning strategy.  

We have now added some of these points to our revied manuscript (see [R3.4]). 
 
“5) There is a discrepancy between the RNN results regarding the excitatory plastic population 
which focuses on object level learning and the people doing conjunction and feature based learning. 
The authors need to address this a bit more head-on and explain how the narrative of combined 
feature and conjunction-based learning through interactions between excitatory plastic and 
inhibitory plastic units lines up with the fact that there are object-based effects in excitatory 
populations and object-based learning emerges after lesioning in the model despite no object-based 
learning seeming existing in the human participants.”  
 
Response: We thank the reviewer for asking this important question and mentioning an 
apparent discrepancy between our experimental and modeling results.  

As the reviewer correctly points out, our analysis of naïve input weights and RSA 
suggests that object-based strategy is instantiated in and relies on excitatory neurons more 
strongly. If we understood the reviewer’s comment correctly, the question is why such 
influence of object-based strategy does not drive RNNs and result in the adoption of the 
object-based strategy, which is not what is observed in our experiment (please also see our 
response to the next point that better clarifies the influence of object-based strategy).  

As explained in our response to the previous point ([R3.4]), the key to the 
emergence of mixed learning strategies (and suppression of an object-based strategy) is the 
interaction between excitatory and inhibitory populations. That is, due to recurrent 
connections, inhibitory populations disinhibit excitatory populations according to the 
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feature-based strategy. As a result of this value-dependent disinhibition, representations of 
feature values are reinforced (while suppressing object-based values) in excitatory 
populations, allowing for the intermediate strategies to drive the output layer. This is 
consistent with our lesioning results showing that once the connections from inhibitory to 
excitatory populations are lesioned and feature-based disinhibition is removed, the object-
based strategy dominates the behavior. 

We have now added some of these points to our revied manuscript (see [R3.5]). 
 
“6) Related to the last point, from Figure 1 B it looks like later in learning feature-based learning 
does worse than object-based learning, is that correct? I am asking in part because in Fig 1 C this 
doesn’t seem to be the case for the R-squared measure, although it seems to for the goodness of fit. 
Clarification on this is appreciated (and whether adding object-based information explains 
additional variance which would also explain what the object-based excitatory effects in the RNN 
might be doing).”  
 
Response: We thank the reviewer for pointing to these seemingly contradictory results. 
The reviewer is correct that toward the end of the session, the fit of choice behavior by the 
object-based model becomes marginally better than that of the feature-based model 
(Figure 2B), but this is not the case for the explained variance in estimated reward 
probabilities (Figure 2C). We believe that this discrepancy is mainly due to similarity of 
object-based values to predicted values based on the F+C1 model (spearman correlation; 𝜌 
= 0.86, P = 8.3×10-9), making the object-based model to fit choice behavior better than the 
feature-based model as participants progress through the experiment. More specifically, 
based on multiple analyses we have performed, it is clear that after the initial feature-
based learning, participants adopt a mixed strategy using values of the F+C1 model. Due to 
the similarity of estimated values in the F+C1 model and object-based models, the 
goodness-of-fit for the object-based model becomes better than that of the feature-based 
model toward the end of the experiment.  

We also ran additional analyses to provide direct evidence for this claim and show 
that the object-based strategy does not capture more variance than the feature-based 
strategy. To that end, we used stepwise GLM to fit estimated reward probabilities 
associated with each stimulus based on the actual reward probabilities (object-based) and 
the predicted reward probabilities using the informative feature and conjunction. First, we 
found that for both human participants and RNNs, the predicted values based on the 
informative feature explained most variance followed by the predicted values based on the 
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informative conjunction. Moreover, adding object-based values did not significantly 
increase the explained variance of estimated reward probabilities beyond a model that 
included both feature- and conjunction-based values (human participants: median±IQR = 
0.9±1.0%; two-sided sign-rank test, P = 0.12, d = 0.48, N = 67; RNNs: median±IQR = 
5.7±3.0%, two-sided sign-rank test, P = 0.08, d = 0.96, N = 50; Figure 9 below). Unlike fitting 
of choice behavior, which is done using different models separately, stepwise GLM does 
not suffer from the similarity of object values to predicted values based on the F+C1 model. 
Together, these results demonstrate that the influence of object-based strategy on 
estimated reward probabilities did not increase over time and that the observed improved 
fit of object-based relative to feature-based models was a byproduct of the similarity of 
object values to predictions of the F+C1 model (i.e., the best model). 

 
Figure 9. Object-based values do not explain variance in estimated reward probabilities beyond the 
F+C1 model. (A) Plotted is the time course of explained variance (R2) in participants’ estimates 
based on two GLMs: predicted values based on the informative feature and informative 
conjunction (F+C1), and object values and predicted values based on the informative feature and 
informative conjunction (F+C1+object). The solid line is the average of fitted exponential function to 
each participant’s data, and shaded areas indicate s.e.m. of the fit. (B) Time course of adopted 
learning strategies measured by fitting participants’ estimates of reward probabilities. Plotted is 
the weight of object values and the predicted values based on the informative feature and the 
informative conjunction on estimated reward probabilities. Error bars indicate s.e.m. The solid line 
is the average of fitted exponential function to each participant’s data, and shaded areas indicate 
s.e.m. of the fit. (C–D) Same as (A–B) but for the trained RNNs. 
 

1 90 180 270
trial (within a session)

0

0.2

0.4

0.6

0.8

1

R2

1 90 180 270
trial (within a session)

0

0.2

0.4

0.6

0.8

1

w
ei

gh
t

1 100 200 300 400
trial (within a session)

0

0.1

0.2

0.3

0.4

R2

1 100 200 300 400
trial (within a session)

0

0.1

0.2

0.3

0.4

w
ei

gh
t

A B informative conjunction 
informative feature
object

feature+conjunction
feature+conjunction+object

C D



 27 

We have revised the manuscript to include the aforementioned stepwise GLM and 
discussed its results, and we have updated other similar figures in the revised manuscript 
to include weights associated with object-based values (see [R3.6]). 
 
“7) A lot of the analysis of the RNN are descriptive and exploratory (e.g. they authors simply test 
all sub populations for significant weight change and report the one that changes). This makes a lot 
of sense because they want to give an exhaustive description of what the model is doing, which I 
applaud. However, it wasn’t always clear how the authors take into account multiple comparison 
issues in those cases? If they haven’t, they could simply re-run the simulation (if that is possible) 
and this way confirm all results. Alternatively, in cases where they had no prior hypothesis on what 
population should change, they could adjust statistics for multiple comparisons and otherwise 
clearly state that they aren't doing such adjustments or what the prior hypothesis was and why.” 
 
Response: We thank the reviewer for pointing out the issue of multiple comparisons. The 
reviewer is correct that correction for multiple comparisons is needed when we did not 
have prior hypotheses. For all analyses performed on naïve weights of the RNNs (before 
simulating the task), we only performed limited comparisons based on the preliminary 
results we obtained from N = 20 trained RNNs (this data was not included in data 
presented in the manuscript). Thus, the prior hypotheses based on our preliminary 
simulation data greatly reduced the number of tests we performed on the data reported in 
the manuscript. In the revised manuscript, we now have included correction for multiple 
comparisons related to naïve weights and updated all statistics accordingly. Moreover, for 
analyses performed on response of different types of recurrent populations and the 
average rate of changes in the weights of the trained RNNs, we re-ran the simulations one 
more time and reported results based on the new simulations. We also have mentioned 
our approach for correction for multiple comparisons in the Methods section of the revied 
manuscript (see [R3.7]). 
 
“Minor: 
8) Does Fig 1 D mean conjunctions are used a lot less or are weights not comparable like that across 
types?” 
 
Response: We thank the reviewer for asking this question. The previously reported 
weights were actual and not normalized weights. Therefore, their values should not be 
compared with each other and this is why we only commented on their time course. 
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However, when we include all predictors based on the feature-based, feature+conjunction, 
and object-based models into a stepwise GLM to calculate the normalized weights of 
different models (see Figure 10 below), we found that indeed the normalized weight of the 
informative feature was significantly larger than the weight of the informative 
conjunction. This was reflected in the difference between the normalized weights of 
informative feature and conjunction being significantly larger than 0 (median±IQR = 
0.28±0.08; two-sided sign-rank test, P = 1.08×10-5, d = 0.67, N = 67).  

We now have clarified this point in the revised manuscript (see [R3.8]).  
 

 
Figure 10. Plotted is the normalized weight of the informative feature, informative conjunction, 
and object (stimulus identity) on reward probability estimates. Error bars indicate s.e.m. The solid 
line is the average of fitted exponential function to each participant’s data, and shaded areas 
indicate s.e.m. of the fit. 
 
“9) Fig 1D hard to see difference between grey and black at first.” 
 
Response: We now have fixed this issue in the previous Figure 1 (now Figure 2) and other 
similar figures of the revised manuscript (see [R3.9]). 
 
“10) In Fig 6 D there are 3 columns for feature but only one is significant. If this is the informative 
feature, please make it clearer in the figure itself.” 
 
Response: We thank the reviewer for pointing out this missing information. Yes, the 
significant column corresponds to the informative feature. We now have fixed this issue in 
the previous Figure 6 (now Figure 7) and other similar figures of the revised manuscript 
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(see [R3.10]). 
 
“11) Fig 3 C. Are inhibitory neurons always mostly active really early on and then silenced or is 
this just in that specific trial? Also, out of curiosity, why are there no other descriptions of time 
courses and neural dynamics? Were they not informative?” 
 
Response: We thank the reviewer for asking this question. Unfortunately, our selected 
example gave the wrong impression that the majority of inhibitory neurons were active 
only early on and were then silenced. In contrarily, on average, 57% of inhibitory neurons 
were active in each trial during the stimulus presentation period. In the revised 
manuscript, we now show another example to ensure that this confusion does not happen 
for other readers (see [R3.11]). 

Regarding neural dynamic, we used representational similarity analysis to 
demonstrate learning-dependent changes in neural dynamics throughout the session. 
Nonetheless, to further elucidate the temporal dynamics of population response in our 
networks, we applied principal component analyses (PCA) to the response of excitatory 
recurrent populations of the trained RNNs because this response determines the output of 
the networks. More specifically, we performed three separate PCAs on the activity of 
excitatory recurrent populations during the simulated experiment (repeated 100 times to 
obtain smoother results). This includes: PCA on the response of excitatory recurrent 
populations to all stimuli at the beginning of each session before the network has learned 
about the reward environment (see Figure 10A below); PCA on the response of excitatory 
recurrent populations to all stimuli at the end of each session when the network has fully 
learned the task (see Figure 10B below); and PCA on the response of excitatory recurrent 
populations to all stimuli during the choice period throughout each session (see Figure 
10C below). As expected, we found that the trajectory of population response projected on 
three principal components was not distinguishable at the beginning of the session, 
whereas this response diverged according to reward value as the network learned reward 
probabilities.  

In the revised manuscript, we now have added a few sentences to discuss these 
results and included Figure 11 below as Supplementary Figure 7 (see [R3.11]).  
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Figure 11. Dynamics of population activity in RNNs during learning task performance. (A–B) 
Trajectories in the activity space formed by the first three principal components of PCA performed 
on the response of excitatory recurrent populations at the beginning (A) and end each session (B). 
Diamonds mark stimulus onset, squares mark beginning of the choice period, and triangles mark 
the end of stimulus presentation. Different colors represent reward value (probability) assigned to 
each stimulus. (C) Trajectories in the activity space formed by the first three principal components 
of PCA performed on the response of excitatory recurrent populations during the choice period as 
the network learns about different stimuli. Larger markers indicate later trials within the session.  
 
“12) Fig 4 A could use a legend in figure.” 
 
Response: We thank the reviewer for this suggestion, which is now implemented in the 
previous Figure 4 (now Figures 5) of the revised manuscript (see [R3.12]). 
 
“13) How would you have to change the RNN to get the feature only learning as some people (1/3) 
do?” 
 
Response: We thank the reviewer for asking this question. Based on our results, we 
speculated that the adoption of certain strategies in our task could depend on the 
environments that participants experienced prior to performing our task. To test this, we 
considered RNNs trained in environments with very different levels of generalizability. 
This was possible because reward probabilities during the training step were drawn from 
a uniformly random distribution between 0 and 1. To that end, we defined extreme non-
generalizable environments as those that fell in the 0–20% quantile of the joint distribution 
of features and individual features plus conjunctions generalizability indices (see Figure 
12A below), and extreme generalizable environments as those that fell in the 80–100% 
quantile of the same joint distribution. We then examined the behavior of RNNs trained in 
these two types of environments.  
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We found that the estimated reward probabilities by RNNs trained in generalizable 
environments were best fit by the feature-based model (see Figure 12B below), whereas 
estimates by RNNs trained in non-generalizable environments were best fit by the object-
based model (see Figure 12C below). These results suggest that previous exposure to 
environments with different levels of generalizability can result in adoption of different 
learning strategies as exhibited by human participants in our experiment. 

We believe that investigating these mechanisms to account for the observed 
variability in adopted strategy is beyond the scope of this study, and thus, we did not 
include the above results in the revised manuscript. 
 

 
Figure 12. Generalizability of the environments used during the training step influences the 
behavior of RNNs during the learning task. (A) The plots show the joint distribution of 
generalizability indices calculated for the estimated reward probabilities associated with different 
stimuli based on their features and combinations of individual features and conjunctions. 
Environments with extreme generalizability and non-generalizability used to train two different 
sets of RNNs are indicated with white rectangles. (B–C) The plots show the time course of 
explained variance (R2) for reward probabilities estimated by RNNs using different learning 
models as indicated in the legend. The results for RNNs trained using extreme generalizable and 
non-generalizable environments are shown in B and C. Error bars represent s.e.m. The solid line is 
the average of exponential fits to RNNs’ data, and the shaded areas indicate s.e.m. of the fit. 
Different training environments result in adopting different learning strategies and different R2 

values in our task. 
 

“14) Maybe have labels in Fig 5 (even though it wont look as nice, people might be able to follow 
even without remembering how the images work). Alternatively, add a legend to remind them?” 
 
Response: We thank the reviewer for this helpful suggestion. We now have fixed this 
issue in the previous Figure 5 (now Figure 6) and other similar figures of the revised 
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manuscript (see [R3.13]). 
 
“15) In the analysis of the human data, differential response for non-informative and informative 
features should be compared against each other if the authors want to make a comparative 
statement, not each against zero (this seemed to be done with feature learners but not feature and 
conjunction learners).” 
 
Response: We thank the reviewer for pointing out this missing comparison, which now 
has been added to the revised manuscript (see [R3.14]). 
 
“16) The authors state “In this step, only connections endowed with the plasticity mechanism were 
modulated after receiving reward feedback in each trial. The overall task structure used in these 
simulations was similar to our experimental paradigm with a simple modification where only one 
stimulus was shown in each trial and the network had to learn the reward probability associated 
with that stimulus.” This means there is no possibility for spread of effect across chosen and 
unchosen stimuli in the model. Was there any evidence in their participant data for such effects?”  
 
Response: We thank the reviewer for asking this very important question. Yes, we chose 
this learning rule based on our experimental results. More specifically, our results of 
fitting participants’ choice behavior demonstrated that the mixed feature- and conjunction-
based model with forgetting reward probabilities associated with the unchosen stimulus 
(by decaying those values toward 0.5) and the mixed feature- and conjunction-based 
model that does not update the unchosen options (uncoupled) both provided a better fit 
compared to models that allow for additional (coupled) updating of unchosen stimulus. 
Therefore, in our model we only consider the case for which there is no effect across 
chosen and unchosen stimuli.  

We have now added a few sentences in the revised manuscript to clarify this point 
(see [R3.15]). 
 
Reviewer #4: 
 
“The authors studied how humans and neural networks learn values in an environment where 
visual features and conjunctions of features are predictive of values. They showed that both humans 
and a type of plastic recurrent neural networks (RNNs) showed a mixed learning strategy, in which 
the feature-based values are learned earlier and faster, while conjunction-based values are learned 
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later and slower. They showed these points with a combination of model fitting and direct data 
analysis. Then the authors proceeded with a detailed investigation of the RNNs. Through thorough 
analyses probing neural representation, connection weights, and lesioning impacts, they revealed 
how different neural types (plastic vs not, excitatory vs inhibitory) in the model are involved in 
learning the values. 
This work is carefully done, with plenty of controls and complementary analyses. The paper is 
clearly written, and the figures are thoughtfully made. The experimental task is interesting, and the 
kind of recurrent neural network used is innovative. Overall, this is a very solid paper.  
 
The main concerns I have are (1) the core finding from the human participants is, in my opinion, 
not so surprising, (2) the RNN part, though abundant in observations, does not provide much 
intuitive understanding.  
I want to emphasize that these concerns do not, in any way, refute the authors’ findings and 
observations. I’m also not suggesting major additional experiments, because I think the issue is not 
a lack of controls or care. The authors have done a lot of work, and in my opinion, deserve to have 
this paper published with few additional edits at a respectable journal.” 
 
Response: We thank the reviewer for their detailed summary and positive evaluation of 
our work. We hope that our new analyses, answers provided here, and corresponding 
changes in the revised manuscript addressed all the reviewer’s remaining concerns.  
 
Major points: 
“1. Human behavior not surprising, or in other words, there was no clearly articulated alternatives 
to what the authors found. 
The authors report that humans learn feature-based rules (red better than blue) faster than 
conjunction-based rules (blue triangle better than red circle). The authors emphasize that they are 
the first to report this phenomenon (e.g., “…our experimental results demonstrate for the first 
time…”). However, it’s not clear what would be a plausible alternative. Could humans possibly 
learn conjunction-based rules before they learn feature-based rules? 
This is further complicated by the fact that informative conjunction occurs much less frequently 
than informative features. Therefore, it’s even harder to imagine than conjunctions would be 
learned first.  
I’m willing and hoping to be convinced by the authors that this behavior is not expected by classical 
theories or simply our everyday intuition. But currently I don’t see that from the Introduction.” 
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Response: We thank the reviewer for pointing out the issue of not clarifying possible 
alternatives to what we found, making some of our experimental results look trivial. The 
reviewer is correct that conjunction-based learning should not be learned faster than 
feature-based learning because updates of feature values happen more frequently than 
updates of conjunction values. Nonetheless, adoption of different learning rates for 
feature- and conjunction-based learning can compensate for this (see below). More 
importantly, the most novel aspect of our behavioral results is that human participants 
adopted conjunction-based learning in addition to feature-based learning instead of: (1) 
stopping at feature-based learning; or (2) transitioning to object-based learning after the 
initial feature-based learning. Therefore, the observed combination of feature-based and 
conjunction-based learning to overcome the curse of dimensionality is not trivial at all. 
This is especially true because learning additional representations and using them are 
challenging.  

To show these points more clearly, we ran additional simulations using multiple RL 
models to compare the accuracy of different learning strategies early in the experiment 
(during the first 50 trials). Specifically, we simulated RL models based on feature-based, 
conjunction-based, feature+conjunction based, and object-based learning with decay of 
reward values for the unchosen options. We found that early superiority of feature-based 
strategy depends on the choice of the learning and decay rates. More specifically, early in 
the learning, a conjunction-based model with large learning rates exhibits a smaller MSE in 
predicting reward probabilities than that of a feature-based learner with small learning, 
whereas a conjunction-based learner with small learning rates is less accurate than a 
feature-based learner with large learning rates (Figure 13A below). Moreover, the part of 
parameter space for which the feature-based learner is more accurate increases with larger 
decay rates (Figure 13B, C below). Similarly, an object-based learner’s accuracy early in the 
experiment can be better than that of the best feature+conjunction (F+C1) learner and the 
feature-based learner, depending on the learning and decay rates (Figure 13D-I below). 
Together these simulation results illustrate that dominance and thus adoption of certain 
learning strategies could greatly vary, making our behavioral findings non-trivial.  

We have now revised the Introduction and Discussion to clarify some of these 
points and better explain why our behavioral findings are not trivial (see [R4.1]). 
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Figure 13. (A–C) Difference in the average squared error (MSE) of a feature-based learner and a 
conjunction-based learner in the estimation of reward probabilities during the first 50 trials of the 
learning task. Reinforcement learning models were simulated using the same learning rates for 
rewarded and unrewarded trials (𝛼!"# = 𝛼$%!) but different values for the decay rate (𝑑 = 0.001 (A), 
𝑑 = 0.02 (B), d = 0.1 (C)) for unchosen options. The black curve indicates parameter values for which 
the difference is equal to 0 corresponding to similar precision of feature-based and conjunction-
based learners. (D–F) Same as (A–C) but comparing object-based and F+C1 learners. (G–I) Same as 
(A–C) but comparing object-based and feature-based learners. 
 
“2. RNN results lack a summarizing intuition. 
The RNN itself is interestingly complex in its architecture (two cell types, optional input plasticity, 
optional recurrent plasticity), and the authors conducted a very thorough investigation of it. 
However, at the end of it, we are left with lots of observations of the RNN, but little intuition that 
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may transfer to other settings.  
For example, the authors observed that feature-encoding input units connect more strongly to 
inhibitory neurons that have plastic input weights. Why? As far as I can tell, little intuition is 
provided, and little investigation is oriented at understanding the difference between cell types, 
rather than reporting it. Some sections describing the RNN results (parts of p12-p19) almost read 
like auto generated text reporting all combinations of analyses (e.g. X analysis on Y cell report Z 
value). 
I think this issue is demonstrated in the authors’ Abstract where they say the “learning strategy 
relies on…distinct contributions of inhibitory and excitatory neurons”. That sounds rather vague.” 
 
Response: We thank the reviewer for raising this issue. The reviewer is correct that we did 
not provide clear intuition for some of the simulation results and especially the opposite 
roles of inhibitory and excitatory neurons in the adoption of different learning strategies. 
Indeed, determining why and how the opponency between representations of object and 
feature values is materialized in the excitatory and inhibitory populations, respectively, 
was one of the main goals of the different simulations and analyses we performed.  

Because of the observed transition between different types of learning strategies, we 
expected that representations of feature and object values should compete. On the one 
hand, the ability of excitatory recurrent populations to influence the output population 
could explain the larger contribution of excitatory populations to the object-based strategy. 
More specifically, object values can be estimated directly by a single connection from 
sensory populations to recurrent populations because they do not require integration of 
information across features and/or conjunctions as is the case for feature-based and 
conjunction-based strategies. As a result, object values could directly drive excitatory 
populations which in turn drive the output of the network.  

However, another important factor in driving this competition or opponency is the 
interaction between excitatory and inhibitory neurons. This interaction allows for value-
based modulation of the excitatory populations by the inhibitory populations whose value 
representations are more sensitive to different learning strategies (e.g., compare Figure 6G 
and Figure 6C). Specifically, our analysis of naïve input weights suggests that feature-
based strategy is mainly encoded in the input connections from feature-encoding sensory 
populations to inhibitory populations. Additionally, because of recurrent connections, 
inhibitory populations disinhibit excitatory populations according to a feature-based 
strategy, and because our learning rules depend on pre- and post-synaptic activity, 
learning in input connections from sensory populations to recurrent populations becomes 
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dominated by the feature-based and not object-based strategy. Therefore, because of this 
value-dependent disinhibition, representations of feature values are reinforced (while 
suppressing object-based values) in excitatory populations, allowing for the intermediate 
strategies to emerge.  

Consistently, we found that the rate of value-dependent changes in the input 
connections from object-encoding sensory populations to recurrent connections is not 
significant in the intact network (Figure 7D). However, once the connections from 
inhibitory population are lesioned, feature-based disinhibition is removed and the object-
based strategy dominates (Figure 8). Therefore, the results of lesioning connections from 
inhibitory to excitatory populations support the idea that interactions between recurrent 
populations are needed to suppress object-based strategy and for the emergence of mixed 
learning strategy. 

In summary, our multiple analyses show that differential connections of feature-
encoding and object-encoding sensory neurons to excitatory and inhibitory populations 
results in an opponency between representations of feature and object values. This 
opponency by excitatory and inhibitory neurons allows for value-based modulation of the 
excitatory neurons through the inhibitory neurons and enables the adoption of 
intermediate strategies.  

To provide more intuition, we now have revised the discussion of the RNNs’ 
results, included some of the points above to the Discussion, and clarified the distinct 
contribution of excitatory and inhibitory neurons in the Abstract (see [R4.2]). 
 
“3. Related to the second point, the architecture comparison is not given enough attention. 
Toward the end of the Results section, the authors discussed what happens with alternative 
structures. I find this section with lots of promises, because it may help us understand why the 
plastic RNN is necessary and why the human findings are surprising. In particular, I’m surprised 
to know that some architectures didn’t learn like humans do, which can be an important reason to 
think that the human findings are not trivial (essentially countering my first major concern). But 
being a short section at the very end, it feels like an afterthought and a missed opportunity. 
If I assumed the authors had infinite time and patience, I would have suggested that they 
restructure the paper, and put more emphasis on this last section. Perhaps bring it up, and show it 
before the main RNN results. But I know that in reality, we all have many things to do, and it’s not 
worth restructuring a perfectly fine paper just to satisfy one reviewer’s preference. So I’m not 
suggesting the authors do anything about this. I’m only pointing this issue out in the hope that the 
authors may find it helpful for their future work.” 



 38 

 
Response: We thank the reviewer for their suggestion on emphasizing on the results of 
alternative models and also their understanding of the time it takes to restructure the 
manuscript. We think that our changes in response to their previous comments (R4.1 and 
R4.2) should have made our experimental results look less trivial and also provided more 
clear intuition for simulation results with intact network. Nonetheless, we also have 
revised parts of the Introduction and Discussion to better emphasize behavior of RNNs 
with alternative architectures that behave very differently from our human participants 
(see [R4.3]).  
 
“Minor points 
4. In the Abstract, it’s not always clear what findings are based on RNNs and what are from 
humans.” 
 
Response: This has been clarified in the revised manuscript (see [R4.4]). 
 
“5. Fig. 1: I would appreciate if there’s a schematic for the task. Why not move Fig. S1 A, B to Fig. 
1?” 
 
Response: We thank the reviewer for their helpful suggestion on including the task 
description in the main text. In the revised manuscript, we have moved previous 
Supplementary Figure 1 to the main text as Figure 1 (see [R4.5]). 
 
“6. Fig. 2 and page 8, the effect for informative conjunction seems relatively weak (P=0.029). But I 
suppose it’s not clear if the authors can do anything about it.” 
 
Response: Analyzing estimates reported by human participants, we demonstrated that 
they learn the informative conjunction at a slower rate compared to the informative 
feature (see Figure 14A below). Consequently, this predicts that differential response for 
the informative conjunction will be small in magnitude, explaining the weakness of this 
effect (see Figure 14B below). Nonetheless, to investigate whether the strength of the effect 
depends on the time point in the experiment, we also analyzed data from the second half 
of each session (trials [216–432]) where conjunction-based learning was more pronounced. 
Limiting our differential response calculation to those trials, we found a stronger effect 
(two-sided sign-rank test; P = 0.005, d = 0.41, N = 41) (see Figure 14C below). Nonetheless, 
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considering that such analysis would discard half of the participants’ choice sequences, we 
kept the calculations of differential response as is, using all choice trials. 
 

 
Figure 14. (A) Time course of adopted learning strategies measured by fitting participants’ 
estimates of reward probabilities. Plotted is the weight of the informative feature and informative 
conjunction in the F+C1 model. Error bars indicate s.e.m. The solid line is the average of fitted 
exponential function to each participant’s data, and shaded areas indicate s.e.m. of the fit. (B–C) 
Plot shows the histogram of differential response calculated using all choice sequences (B), and 
choice sequences in the second half of the session (C) for the informative conjunction in 
participants whose choice behavior was best fit by the F+C1 model. The dashed lines show the 
median values across participants, and an asterisk indicates the median is significantly different 
from 0 using two-sided sign-rank test with P < 0.05. 
 
“7. The reason for using RNN is not well articulated. Usually, people use RNNs to have temporal 
dynamics, but Fig. 3c shows essentially no dynamics?” 
 
Response: We thank the reviewer for pointing out missing analyses of RNNs’ dynamics. 
Although single trial temporal dynamics seem simple in our task, the networks still 
needed to demonstrate long-term complex dynamics when learning about different 
stimuli in the task. Our RSA analysis is a great demonstration of how learning in our task 
results in across-trial dynamics in RNNs that are dependent on the reward structure in the 
task.  

To further confirm this, we applied principal component analyses (PCA) to the 
response of excitatory recurrent populations of the trained RNNs because this response 
determines the output of the networks. More specifically, we performed three separate 
PCAs on the activity of excitatory recurrent populations during the simulated experiment 
(repeated 100 times to obtain smoother results). This includes: PCA on the response of 
excitatory recurrent populations to all stimuli at the beginning of each session before the 
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network has learned about the reward environment (see Figure 15A below); PCA on the 
response of excitatory recurrent populations to all stimuli at the end of each session when 
the network has fully learned the task (see Figure 15B below); and PCA on the response of 
excitatory recurrent populations to all stimuli during the choice period throughout each 
session (see Figure 15C below). As expected, we found that the trajectory of population 
response projected on three principal components was not distinguishable at the 
beginning of the session, whereas this response diverged according to reward value as the 
network learned reward probabilities.  

In the revised manuscript, we now have added a few sentences to discuss these 
results and included Figure 15 below as Supplementary Figure 7. Additionally, we have 
clarified the reason for using RNNs (see [R4.6]). 
 

 
Figure 15. Dynamics of population activity in RNNs during learning task performance. (A–B) 
Trajectories in the activity space formed by the first three principal components of PCA performed 
on the response of excitatory recurrent populations at the beginning (A) and end of each session 
(B). Diamonds mark stimulus onset, squares mark beginning of the choice period, and triangles 
mark the end of stimulus presentation. Different colors represent reward value (probability) 
assigned to each stimulus. (C) Trajectories in the activity space formed by the first three principal 
components of PCA performed on the response of excitatory recurrent populations during the 
choice period as the network learns about different stimuli. Larger markers indicate later trials 
within the session.  
 
“8. Fig. 7. Perhaps write something like “Lesioned networks” in the figure (not just the caption)?” 
 
Response: Thanks for this useful suggestion which now has been incorporated in Figure 8 
and similar figures of the revised manuscript (see [R4.7]). 
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REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author): 

I thank the authors for their responses to my comments. I am satisfied by their responses. My only 
comment is, I would suggest adding more information about how RNN was simulated [regarding 
points 2,3] and how the final choice layer was trained. 

Reviewer #2 (Remarks to the Author): 

The authors have addressed my comments. I have no further concerns. 

Reviewer #3 (Remarks to the Author): 

The authors addressed all my comments. 

Reviewer #4 (Remarks to the Author): 

I’d like the thank the authors for carefully responding to my suggestions. The authors added several 
new analyses and made lots of changes to the manuscript. Overall, I’m happy with the changes. 

I think my major concern #1 was addressed. My major concern #2 was alleviated. 

Minor: 
I would generate Figure 13 with a “divergent” colormap, such as BwR in matplotlib. 

I appreciate the clever numbering of responses (e.g., [R4.5]). That’s smart!
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Response to the final reviewers’ comments, and summary of changes made in response to 

the comments of the reviewers. 

Title: Computational mechanisms of distributed value representations and mixed learning 

strategies 

Authors: Farashahi and Soltani 

 

We are greatly thankful to all the reviewers and the editor for their careful reading of our 

revised manuscript. Below, please see how we have addressed their final concerns. 

 

Reviewer #1 

I thank the authors for their responses to my comments. I am satisfied by their responses. My only 

comment is, I would suggest adding more information about how RNN was simulated [regarding 

points 2,3] and how the final choice layer was trained. 

 

Response: We have addressed these issues in the final revision of our manuscript as follows: 

 

(page 32) “Specifically, without retraining the networks, we added a decision layer after the output 

layer (using a logistic function) to generate binary choice between pairs of options and fit simulated 

choice data (similar to our participants) to show our results and main conclusion do not depend on the 

choice mechanism.” 

 

Reviewer #4  

I’d like the thank the authors for carefully responding to my suggestions. The authors added several 

new analyses and made lots of changes to the manuscript. Overall, I’m happy with the changes. 

I think my major concern #1 was addressed. My major concern #2 was alleviated. 

Minor: 

I would generate Figure 13 with a “divergent” colormap, such as BwR in matplotlib. 

I appreciate the clever numbering of responses (e.g., [R4.5]). That’s smart! 

 

Response: We have now revised Figure 13 (see below) in the rebuttal to follow this 

suggestion and included it as a Supplementary Figure 3 and discussed its results in the 

revised manuscript.  
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Supplementary Fig. 3. Comparison of estimation error between different models. (a–c) Plots show the 

difference in the average squared error (MSE) of a feature-based learner and a conjunction-based learner in the 

estimation of reward probabilities during the first 50 trials of the learning task. Reinforcement learning models 

based on feature-based, conjunction-based, mixed feature- and conjunction-based, and object-based learning 

were simulated using the same learning rates for rewarded and unrewarded trials (     =     ) but different 

values for the decay rate (  = 0.001 (a),   = 0.02 (b), d = 0.1 (c)) for unchosen options. The black curve 

indicates parameter values for which the difference is equal to 0 corresponding to similar precision of feature- 
based and conjunction-based learners. (d–f) Same as (a–c) but comparing object-based and F+C1 learners. (g–i) 

Same as (a–c) but comparing object-based and feature-based learners.  

 

 


