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Figure S1 – related to Figure 2: 
Effect of attention on aggregate noise 
correlations and firing rates for all 
neurons and pairs across all recording 
sessions. Error bars are standard error of 
the mean. 
A: Spike count correlations (rSC) for 3315 
MT neuron pairs (red), 3975 SC neuron 
pairs (blue), and 6934 MT-SC pairs (gray) 
for attend in and attend out conditions. rSC 
was calculated as the Pearson correlation 
between spike counts during all identical 
stimulus presentations except the first 
presentation after the beginning of the 
trial. Attention increases spike count 

correlations in SC pairs (p=2.7x10-69; Wilcoxon signed rank test) and MT-SC pairs (p=9.1 x10-224; 
Wilcoxon signed rank test) and has no effect on MT pairs (p=0.8; Wilcoxon signed rank test). The 
disparity between these results and previously published results1 is largely due to the selection of stimulus 
presentations. Here, we chose all presentations in a trial to increase statistical power in regression and 
factor analyses, whereas previous publications chose only the stimulus presentation before the orientation 
change to compare rSC with behavioral outcomes.  
B: Average firing rate across all presentations for 306 MT neurons (red) and 345 SC neurons (blue). 
Attention significantly increases firing rates of neurons in both MT (p=8.87x10-14; Wilcoxon signed rank 
test) and SC (p=5.88x10-42; Wilcoxon signed rank test). 
 
  



Figure S2 – related to Figure 4: 
Attention improves 
prediction accuracy 
inter-areal 
communication. Each 
point represents a 
recording session, and 
the color scheme is the 
same as other figures 
and redundant with the 
plot labels. Error bars 
represent the 95% 
confidence intervals 
across all random splits 
of the source and target 
populations. Note the 
difference in scales in 
panels A/D and B/C. 
a: Prediction accuracy 
for attend in and attend 
out conditions for the 
prediction of SC 

activity from MT activity. Each dot represents the average prediction accuracy and average predictive 
dimensions across 20 predictions of a random half of the SC population predicted by a random half of the 
MT population in that session. Attention significantly improves MT ➔ SC predictive performance 
(p=0.002; Wilcoxon’s signed rank test). Average attentional modulation index (as a proxy for the size of 
the effect of attention on prediction accuracy) across sessions calculated as the difference of mean 
prediction accuracies divided by the sum was 0.164±0.04 (mean±SEM). 
B: Same as (A) but for MT ➔ MT predictions. Each dot represents the average prediction accuracy and 
average predictive dimensions across 20 predictions of a random half of the MT population predicted by 
the other half of the same population in that session. Attention has no effect on prediction accuracy 
(p=0.89; Wilcoxon’s signed rank test). Average attentional modulation of prediction accuracies was 
0.005±0.019. 
C: Same as (B) but for SC ➔ SC predictions. Attention has a significant effect on the prediction accuracy 
(p=0.002; Wilcoxon’s signed rank test). Average attentional modulation of prediction accuracies was 
0.068±0.02. 
D: Same as (A) but for SC ➔ MT predictions. Attention increases prediction accuracy of SC ➔ MT 
predictions (p=0.032; Wilcoxon’s signed rank test). Average attentional modulation of prediction 
accuracies was 0.124±0.04.  



Figure S3 – related to Figure 4 and Figure 5: 

 
 



Attention-related changes in spike count correlations or attention index do not predict the 
improvement in communication efficacy across areas. Panels (A-O) illustrate how the differences of 
noise correlations of MT neuron pairs (A-E), SC neuron pairs (F-J), and MT-SC neuron pairs (K-O) 
between attend in and attend out conditions relate to the ratio of accuracies for within and across area 
response predictions. Panels (P-Y) illustrate the relationship between the average attentional modulation 
index for each session across neurons with the ratio of prediction accuracies between attend in and attend 
out conditions. Each point represents a recording session, and the color scheme is the same as other 
figures and redundant with the plot labels. + represents the mean of the points. The correlation coefficient 
for the relationship is mentioned at the top-right of each panel. For relevant relationships, the p-value is 
also mentioned (corrected for multiple comparisons). 
A: No relationship between the effect of attention on the average accuracy of MT ➔ SC predictions for 
each session and the effect on the average spike count correlations for MT neuron pairs for the same 
session. 
B: Same as (A) for MT ➔ MT predictions. 
C: Same as (A) for SC ➔ SC predictions. 
D: Same as (A) for SC ➔ MT predictions. 
E: Histogram of the difference of spike count correlations of MT neuron pairs between the two attention 
conditions. Dotted line represents the mean of -0.005. 
F-G: Same as A-E, but for comparing prediction accuracies with session-wise average spike count 
correlations for SC neuron pairs. Dotted line in the histogram in (G) represents the mean of 0.036. 
K-O: Same as a-e, but for comparing prediction accuracies with session-wise average spike count 
correlations for MT and SC neuron pairs. Dotted line in the histogram in (O) represents the mean of 
0.035. A weak relationship may be observed in (K) and (N).  
P-T: Comparing the average attentional modulation for MT neurons for each session with the ratio of 
prediction accuracies for each regression direction. Dotted line in the histogram in (T) represents the 
mean MT attentional modulation across sessions of 0.028. A negative relationship between prediction 
performance and MT attentional modulation index may be observed in (P) and (S). 
U-Y: Same as P-T, but for comparing the average attentional modulation index of SC neurons per session 
with the ratio of prediction performance across attention conditions. Dotted line in the histogram in (Y) 
represents the mean SC attentional modulation across sessions of 0.061. 
 
  



Figure S4 – related to Figure 4: 

 
Both oculo-motor and motor neurons in SC contribute similarly to the attention-related 
improvement in prediction performance between MT and SC. For each session, SC neurons were 
ordered by an oculo-motor score (described in text and methods) and split evenly into “SC visual” and 
“SC motor” populations. (Oculo-motor SC neurons are labeled “SC visual” for brevity.) Each point 
represents a recording session, and the color scheme is the same as other figures and redundant with the 
plot labels. + represents the mean of the points. 
A: Average accuracy of predictions of randomly split SC populations of either oculo-motor neurons or 
motor neurons from the same population of randomly sampled MT populations presented as a ratio of the 
two attention conditions. (In each iteration, 50% of randomly sampled (without replacement) MT neurons 
were used to predict 50% of randomly sampled SC neurons from the top half of the oculo-motor index 
distribution and 50% of randomly sampled SC neurons from the bottom half of the distribution. So, 
effectively, only 25% of the SC neurons were used for predictions in these regressions as compared to 
50% in other analyses.) The prediction accuracy of both oculo-motor SC and motor SC neural activity 
from MT neuron activity is similarly elevated with attention. (p = 0.0031 for MT ➔ SC motor, p = 0.0071 
for MT ➔ SC visual, p = 0.52 for the ratio of the two; one-sample t-test for the ratios) 
B: Same as (A) for SC oculo-motor or motor ➔ MT predictions. As with (A), prediction accuracy is 
similarly enhanced with attention. (p = 0.0309 for SC motor ➔ MT, p = 0.0052 for SC visual ➔ MT, p = 
0.456 for the ratio of the two; one-sample t-test for the ratios) 
C: Same as (A) for recurrent connections between SC oculo-motor and SC motor populations. As with 
(A), prediction accuracy is enhanced with attention. (p = 0.0047 for SC motor ➔ SC visual, p = 0.0013 
for SC visual ➔ SC motor, p = 0.0495 for the ratio [SC visual ➔ SC motor] / [SC motor ➔ SC visual]) 



D: Same as (A) but for the ratio of the average number of predictive dimensions between the two 
attention conditions for the MT ➔ SC oculo-motor or SC motor predictions. Attention has no effect on 
the dimensionality of the shared subspace between MT and SC populations. (p > 0.05 for all ratios; t-test) 
E: Same as (B) for the ratio of the average number of predictive dimensions between the two attention 
conditions for the SC oculo-motor or SC motor predictions ➔ MT predictions. (p > 0.05 for all ratios; t-
test) 
F: Same as (C) for the ratio of the average number of predictive dimensions between the two attention 
conditions for the recurrent connections between the SC oculo-motor and SC motor populations. (p > 0.05 
for all ratios; t-test) 
 
  



Figure S5 – related to Figure 6: 

 
Attention does not alter the dimensionality of the response space in SC or MT, or the 
dimensionality of the shared communication subspace. Each point represents a recording session, and 
the color scheme is the same as other figures and redundant with the plot labels. + represents the mean of 
the points. 
A: Attention does not affect the population dimensionality of the MT populations. Each point represents 
the average number of dimensions (factors) required to explain 95% of the variance in the MT activity for 
one session. On average, fluctuations in MT activity are largely restricted to ~ 3.5 dimensions. 
B: Attention does not affect the population dimensionality of the SC populations. Same as (A) for the SC 
population. On average, fluctuations in SC activity are largely restricted to ~ 4.2 dimensions. 
C-F: Attention does not affect the number of dimensions required to optimally predict target activity for 
any of the four predictions. Same data as Figure 4A split into four panels for clarity.  
  



Figure S6 – related to Figure 6: 
(full page width – 2 column) 

 
Detailed comparison of attention-related changes in MT and SC population dimensions and 
predictive dimensions different predictions. Each point represents a recording session, and the color 
scheme is the same as other figures and redundant with the plot labels. Colored + represents the mean of 
the corresponding points. 
A: Number of population dimensions or factors from factor analysis for the MT and SC populations in 
each session for attend in and attend out conditions. 95% of the variance in the MT and SC population 
activity can be explained with approximately 3.5 and 4.3 dimensions respectively in both attention 
conditions. 
B: Same as (A) expressed as a ratio of population dimensions in attend in and attend out conditions. 
Attention has no effect on the number of dimensions required to explain 95% of the variance in activity in 
this dataset. 
C: Number of predictive dimensions that are “shared” between MT and SC (orange axis) vs the number 
of dimensions that are “private” in MT (blue axis) in the two attention conditions. The number of MT 
dimensions required to predict SC activity (~ 2) is lower than the number of MT dimensions required to 
predict MT activity (~ 4). 
D: Same as (C) expressed as a ratio of predictive dimensions in attend in and attend out conditions. 
E: Same as (C) but for the number of dimensions in SC population activity that is sufficient to explain 
MT activity. Number of dimensions “shared” between SC and MT (~ 2) in SC activity is lower than the 
number of “private” SC dimensions (~ 4). 
F: Same as (E) expressed as a ratio of predictive dimensions in attend in and attend out conditions. 



Figure S7 – related to Figure 4 and 6: 
Cross-predicting 
activity for attend in 
trials using attend out 
model and vice versa 
reveals that the linear 
subspaces for across 
area communication 
are not identical. 
While the 
dimensionality of the 
communication 
subspace is not affected 
by attention, it is 
possible that the 
structure of the 
subspace changes while 
keeping its 
dimensionality, in turn 
causing the prediction 
accuracy to be better. 
To test this hypothesis, 
we used the weights of 
the linear model that 
corresponded to the 
optimum number of 
predictive dimensions 
in the attend in 
condition and used it to 
predict the target 
responses in the attend 
out condition and vice 
versa. We observed a 
marked drop in 
performance for cross-
prediction for inter-
areal communication in 
both directions but not 
intra-areal 
communication (A-D). 
To test whether this 
drop was due to a linear 
scaling of the weights 

across conditions and to cross-validate the cross-predictions, we projected the source activity through the 



weight matrix of the opposite attention condition and then fit a linear model to the target activity (see 
Methods for the details of the algorithm) and plotted the cross-validated cross-prediction performance 
normalized by the cross-validated performance of the true model. We observed a reduction in 
performance for the inter-areal predictions, albeit milder than earlier estimates (E-F). The intra-areal 
communication channels remained unaffected. While it may be possible that inter-areal communication 
indeed utilizes a different assortment of shared dimensions across attention conditions, we assert that 
these linear methods afford us a partial view of the effect of attention on the communication between 
areas. Each point represents the mean prediction accuracy of a recording session, and the color scheme is 
the same as other figures and redundant with the plot labels. 
A: We plotted the average cross-prediction accuracy (triangles) for each session and each communication 
channel across random splits against the true prediction accuracy (circles) i.e., the cross-validated 
prediction accuracy of the attend in models with the attend in trials etc. The linear model trained to 
predict SC activity using MT responses in the attend in condition performs significantly (p = 2.62x10-4; 
Wilcoxon rank sum test) worse when used to predict the SC responses for trials in the opposite attend out 
condition; the same is true for the reverse – using the attend out model to predict the attend in responses 
(p = 2.33x10-5; Wilcoxon rank sum test). Circles represent mean cross-validated prediction accuracy 
across random splits MT and SC neurons (same points as Figure 4A). For each random split, the linear 
model of the opposite set of trials was used to predict the responses; the mean accuracy this out-of-set 
prediction across all random splits is represented by the triangles. Each circle-triangle pair is connected by 
a line and represents the change in prediction performance for a single session. The projections of each 
line on the cardinal axes are shown on the top and right of the plot, ordered by the prediction accuracy. 
Out-of-set prediction accuracies are always lower (p = 2.62x10-4; Wilcoxon rank sum test) and not 
significantly different from 0 (p = 0.07; t-test), which may mean that the model is unable to do better than 
guessing the target variance based on the mean of the target population activity (see Semedo et al., 2019 
for more details2). Both out-of-set models are similarly affected, evident from the consistent slope of the 
lines. This drastic drop in performance suggests that the shared communication subspace between MT 
and SC is different across attention conditions. 
B: Out-of-set mean accuracies for the MT ➔ MT prediction are not significantly different (p = 0.68 for 
the attend in model and p = 0.65 for the attend out model for attend in vs attend out trials; Wilcoxon rank 
sum test) suggesting not only that attention does not affect prediction performance within MT, but also 
that the same axes of fluctuations within the MT population activity are used for communication within 
MT thereby using the same private communication subspace.  
C: Same as (B) but for SC ➔ SC prediction. The out-of-set prediction is not significantly different (p = 
0.046 for the attend in model and p = 0.097 for the attend out model for attend in vs attend out trials; 
Wilcoxon rank sum test). 
D: Same as (A) but for SC ➔ MT predictions. The out-of-set prediction is significantly worse for both 
the attend in model (p = 0.0011; Wilcoxon rank sum test) and the attend out model (p = 0.0016; Wilcoxon 
rank sum test). 
E: To control for the case where the prediction weights across conditions may be linearly scaled and 
thereby produce significantly worse predictions, the following procedure was used (these steps are for 
comparing the MT ➔ SC attend in weights with the attend out trials, but the same procedure applies for 
all possible permutations of conditions and populations). The pseudo-code for this cross-validated cross-
prediction method can be found in Methods. First, the MT ➔ SC prediction weights were found for a set 



of attend out training trials (W_out) and the SC activity was predicted for the test trials 
(SCout,testPred). Similarly, the prediction weights for the training set of attend in trials was found 
(W_in). Then W_in was used to project the attend out MT activity for both training and test trials and then 
used to predict SC activity in the attend out condition for the test trials (SCout,testPredCross). After 
finding predictions across all folds, the normalized square error was found and compared for the within 
and across condition predictions. The ratio of the across/within condition prediction for the attend in trials 
for each session is plotted against the ratio of the across/within condition prediction for the attend out 
trials. This comparison between these variables demonstrates the ability of the same communication 
subspace being applied to the trials in the opposite condition and therefore a ratio substantially lower than 
1 would indicate that the populations communicate using different subspaces in the different conditions. 
The cross-prediction accuracy is significantly lower for both attend in and attend out models tested with 
attend out and attend in trials respectively. 
F: same as (E), but for MT ➔ MT interactions. As in (B), the performance of the model from the 
opposite condition does not reduce prediction performance significantly. 
G: same as (E), but for SC ➔ SC interactions. While the cross-prediction accuracy was not significantly 
different across the two attention conditions in (C), the performance of the model was lower in each 
session. Here, the cross-validated cross-performance shows little difference in the ratio, which provides 
more evidence for the hypothesis that attention does not alter the dimensionality or structure of the SC-SC 
communication subspace. 
H: same as (E), but for SC ➔ MT interactions. As in (E), SC ➔ MT cross-prediction accuracy is 
significantly lower for both attend in and attend out models tested with attend out and attend in trials 
respectively. This difference in the structure or the constitution of the communication subspace between 
MT and SC between attention conditions may be evidence for attention either (a) altering the weights of 
interareal communication at a fast trial-to-trial timescale by unknown mechanisms, or (b) the inability of 
linear methods like FA and RR regression to describe potentially non-linear response spaces and the non-
linear dynamics of intra- and inter-areal interactions. 
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