#### **Supplemental Files**



# Supplemental Figure 1: Cell-specific RNA sequencing strategy to identify UNC-4 target genes that regulate wiring, related to Figure 1.

**A.** Intersectional labeling strategy to enrich for VA motor neurons. The *unc-4* promoter (*Punc-4*::mCh) driving mCherry labels (red) 15, SAB, DA, AVF and VA neurons. A truncated *unc-4* promoter (*Punc-4C*::GFP) driving GFP labels (green) 15, SAB and DA neurons. As a result, VA and AVF are exclusively labeled with mCherry (red) and VA neurons (12) outnumber AVF neurons (2) by ratio of 6:1. Confocal images of anterior region (**B**) and full length (**C**) L2 stage larva illustrating intersectional labeling strategy. Pharyngeal muscle (green) is labeled with co-selectable marker (*myo-2::*GFP). Scale bars =  $20\mu$ m.

**D.** Strategy for isolating VA motor neurons for RNA-seq. Synchronized L2-stage larvae were dissociated to single cells for FACS-isolation of red-only (VA-enriched) cells and RNA-Seq.

**E.** Volcano plot of upregulated (> 2X, FDR p-value < .01) (blue dots) and downregulated (< -2X, FDR p-value <.01) (red dots) transcripts in *unc-4* mutant VAs versus wild-type VAs (see Methods). Black dots denote suppressors of the Unc-4 movement defect.

**F.** Genetic strategy to identify Unc-4 "suppressor" genes. In wild-type (WT) VAs (**top left**), UNC-4 blocks expression of genes that can induce ectopic gap junctions and disrupt backward movement. In *unc-4* mutant VAs (**top right**), UNC-4 target genes are de-repressed resulting in ectopic gap junction formation and disrupted backward movement. RNAi or genetic knockdown of an UNC-4 target gene can prevent the formation ectopic gap junctions and restore backward movement thus resulting in "suppression" of the Unc-4 mutant phenotype.

**G.** RNAi knock down of either *flp-15* or *goa-1* partially restores backward locomotion to an *unc-4* mutant. Backward distance traveled in a 3-minute period by *unc-4(e2323);eri-1;lin-15b* in empty vector (EV) control (black) (n = 41), *goa-1* (teal) (n=41) or *flp-15* (blue) (n=20) feeding RNAi treatments. One-way ANOVA, \* p = 0.0368, \*\*\*\* = p < 0.0001. Data are mean +/- SE.

**H.** PREDCouple2 prediction of FRPR-17 G-protein coupling. FRPR-17 is predicted (Score 99) to couple with Gi/o with lower scores for other classes of G-proteins. Names of corresponding G-proteins in *C. elegans* are listed below.



Supplemental Figure 2: cAMP signaling in VA neurons promotes backward movement, related to Figure 3.

**A.** Backward distance traveled in a 3-minute period of wild type (light blue), *unc-4* (black) and *unc-4* + 8-Br-cAMP (maroon). Growth on 8-Br-cAMP partially restores backward locomotion to *unc-4*(*e2323*) mutant animals. One-way ANOVA, N > 15 for each genotype. \* p = 0.0169, \*\*\*\* = p < 0.0001.

**B.** GOA-1/G $\alpha$ O activation in VA neurons enhances the Unc-4 backward movement defect. The *Punc-4* promoter was used to drive expression of constitutively active GOA-1(Q205L) in VAs in *unc-4(ts)* worms. At 16°C, *unc-4(ts)* worms show wild type (WT) backward locomotion whereas *unc-4(ts)* worms that express GOA-1(Q205L) in VAs show uncoordinated (Unc) backward movement in the tapping assay. Fisher's Exact test. \*\*\* = p< 0.001. N>50 for each genotype. *unc-4(ts)* = *unc-4(e2322)* and is temperature sensitive.

Α



# Supplemental Figure 3: Cholinergic release at the neuromuscular Junction does not affect gap junction specificity of VAs, related to Figure 3.

**A.** Acetylcholine (Ach) release at the neuromuscular junction is regulated by GOA-1 and GSA-1. GOA-1 antagonizes DGK- 1/diacylglycerol kinase to inhibit DAG production. GSA-1 functions through ACY-1/adenylyl cyclase and cAMP (not shown) to promote DAG binding to UNC-13, which is required for synaptic vesicle fusion. Thus, GOA-1 activity inhibits Ach release whereas GSA-1 promotes Ach release. Genetic ablation of *unc-13* or *unc-17* should result in reduced Ach signaling whereas loss of *dgk-1* should upregulate Ach release.

**B.** (Left) Percentage of VAs miswired with AVB gap junctions in wild type, *unc-13(e51)* mutants and *unc-17(e113)* mutants. Genetic ablation of neither *unc-13* nor *unc-17* results in ectopic VA $\rightarrow$ AVB gap junctions. (**Right**) Percentage of VAs with ectopic VA $\rightarrow$ AVB gap junctions in *unc-4(e120)* mutants, and *unc-4;dgk-1* double mutants. Loss of *dgk-1* does not suppress the *unc-4* miswiring defect. Fisher's Exact test, NS = Not Significant.





\*\*

D

L4 GFP::UNC-9 Localization

\*\*









# Supplemental Figure 4. Dual-color labeling strategy tracks presumed VA $\rightarrow$ AVA gap junctions, related to Figure 4.

**A.** Subcellular localization of GFP::UNC-9 in VA motor neurons at the L3 larval stage in wild type (blue) and *unc-4* mutants (black). *unc-4* mutant VAs show significantly more GFP::UNC-9 puncta in the VA cell soma and significantly fewer GFP::UNC-9 puncta in the VA axon compared to wild type, as predicted by EM reconstruction (White et al., 1986, 1992). Two-way ANOVA used to determine significance. \*\* = p < 0.001. N = 15 for each group.

**B.** Subcellular localization of GFP::UNC-9 in VA motor neurons at the L4 stage in wild type (blue) and *unc-4* mutants (black). *unc-4* mutant VAs shown significantly more GFP::UNC-9 puncta in VA cell soma and significantly fewer GFP::UNC-9 puncta in the VA axon compared to wild type. Two-way ANOVA used to determine significance. \*\* = p < 0.001. N >10 for each group.

**C.** GFP::UNC-9 puncta in the VA axon in wild type (blue) and *unc-4* mutant (black). In the wild type, significantly more GFP::UNC-9 puncta are detected in the VA axon in L4 vs L3 stage larva whereas the number of GFP::UNC-9 puncta in the VA axon of *unc-4* mutants is not elevated during development from the L3 to L4 larval stage. Two-way ANOVA used to determine significance. \*\* = p < 0.001. NS = Not Significant. N >10 for each group. *unc-4(e2323)* used in all experiments.

**D.** Percent of puncta with directed locomotion for *punc-4::*GFP::UNC-9 (green), UNC-7::tagRFP (red), or dual-labeled puncta. Puncta labeled with both *punc-4::*GFP::UNC-9 and UNC-7::tagRFP were entirely stationary over 30 minutes. N = 10 VA neurons.

**E. (left)** Representative kymograph of dual-color live cell images of *punc-4::GFP::UNC-9* (green) in VA motor neurons and UNC-7::tagRFP (red) in AVA. Example of mobile UNC-7::tagRFP puncta. Dual-labeled (GFP::UNC-9 + UNC-7::tagRFP) punctum (yellow) is stationary. (**right**) Tracing of kymograph.







# Supplemental Figure 5: Detection of functional VA $\rightarrow$ AVA electrical synapses, related to Figure 5.

**A.** Functional VA $\rightarrow$ AVA electrical synapses are not detected when VA $\rightarrow$ AVA gap junction assembly is disrupted in *unc*-7 mutants (Starich et al., 2009). (**left**) Quantification of AVA::GCaMP6s fluorescence in *unc*-7(*e*5). Three successive VA activations (500 ms) are denoted by pink vertical bars. Shaded area = SEM. N = 9 worms. (**Right**) Quantification of  $\Delta$ F/F<sub>0</sub> before versus after 561 stimulation. Paired t-test. N = 9 worms, 18 activations. NS = Not Significant.

**B.** AVA::GCaMP response depends on VA activation. Calcium influx in AVA is not detected in wild-type worms grown in the absence of ATR, the necessary cofactor for Chrimson. (**left**) Quantification of wild type (-ATR) AVA::GCaMP6s fluorescence. Three successive VA activations (500 ms) are denoted by pink vertical bars. Shaded area = SEM. N = 9 worms. (**Right**) Quantification of  $\Delta F/F_0$  before versus after 561 stimulation. Paired t-test. N = 9 worms, 18 activations. NS = Not Significant.

C. Functional VA $\rightarrow$ AVA electrical synapses are detected in *unc-13* mutants in which chemical synaptic release is disabled. (**left**) Quantification of AVA::GCaMP6s fluorescence in *unc-13(e51)*. Three successive VA activations (500 ms) are denoted by pink vertical bars. Shaded area = SEM. N = 9 worms. (**Right**) Quantification of  $\Delta$ F/F<sub>0</sub> before versus after 561 stimulation. Paired t-test. N = 9 worms, 18 activations. \*\*\* p < 0.001.



#### Supplemental Figure 6: Elevated cAMP restores trafficking of GFP::UNC-9, related to

#### Figure 6.

**A.** (top) *unc-4* mutant larvae were treated with 8-Br-cAMP during the larval developmental period in which *unc-4* function is required for VA motor circuit wiring. *unc-4(e2323)* larvae expressing *Punc-4::GFP::UNC-9* were fed 8-Br-cAMP for 10 hours during the L2-L3 larval period. (bottom) Quantification of GFP::UNC-9 movement in *unc-4* worms that were either treated (+) or not treated (-) with 8-Br-cAMP. (-) data are the same as in Figure 6B. Data are percent of motile puncta in a 3-minute period for given VA. N > 15 for each group. Mann-Whitney test. \* p= 0.0481 Results from VA2, VA3, VA4. **B)** Representative kymograph of GFP::UNC-9 in *unc-4* worms fed 8-Br-cAMP depict anterograde (red arrow) and retrograde tracks of GFP::UNC-9.

**Supplemental Table 1:** Genes tested for suppression of backward locomotion defect of *unc- 4*(*e*2323), related to Figure 1.

| Gene Tested for Backward<br>Suppression | Method          | Suppressed? |
|-----------------------------------------|-----------------|-------------|
| acr-15                                  | RNAi            |             |
| asah-1                                  | RNAi            |             |
| C30B5.7                                 | RNAi            |             |
| C30F12.5                                | RNAi            |             |
| C34C6.7                                 | RNAi            |             |
| C35E7.2                                 | RNAi            |             |
| C35E7.4                                 | RNAi            |             |
| C47D2.1                                 | RNAi            |             |
| ccb-2                                   | RNAi            |             |
| ceh-12                                  | Mutant and RNAi | Yes         |
| ceh-24                                  | RNAi            |             |
| ceh-31                                  | RNAi            |             |
| ces-1                                   | RNAi            |             |
| ckr-1                                   | Mutant          |             |
| cof-2                                   | RNAi            |             |
| cup-4                                   | RNAi            |             |
| D2024.4                                 | RNAi            |             |
| exc-5                                   | RNAi            |             |
| F10B5.3                                 | RNAi            |             |
| F11E6.6                                 | RNAi            |             |
| F14F11.2                                | RNAi            |             |
| F26B1.1                                 | RNAi            |             |
| F32f2.1                                 | RNAi            |             |
| F34D10.4                                | RNAi            |             |
| F42A8.1                                 | RNAi            |             |
| F43G6.4                                 | RNAi            |             |
| F44G4.7                                 | RNAi            |             |
| flp-1                                   | Mutant          |             |
| flp-10                                  | RNAi            |             |
| flp-15                                  | RNAi            | Yes         |
| flp-9                                   | RNAi            |             |
| frpr-15                                 | RNAi            |             |
| frpr-17                                 | Mutant and RNAi | Yes         |

| gcy-11   | RNAi   |     |
|----------|--------|-----|
| gcy-15   | RNAi   |     |
| gcy-21   | RNAi   |     |
| glr-2    | RNAi   |     |
| hil-7    | RNAi   |     |
| K01A2.3  | RNAi   |     |
| K01A6.6  | RNAi   |     |
| K07D4.5  | RNAi   |     |
| lec-2    | RNAi   |     |
| lim-4    | RNAi   |     |
| lim-7    | RNAi   |     |
| lin-12   | RNAi   |     |
| lin-31   | RNAi   |     |
| nlp-12   | RNAi   |     |
| nlp-15   | RNAi   |     |
| nlp-38   | RNAi   |     |
| nlp-40   | RNAi   |     |
| pax-2    | RNAi   |     |
| pct-1    | RNAi   |     |
| pde-1    | Mutant | Yes |
| prkl-1   | Mutant |     |
| R05G6.10 | RNAi   |     |
| R06C1.6  | RNAi   |     |
| rgs-3    | RNAi   |     |
| sem-4    | RNAi   |     |
| ser-5    | Mutant |     |
| sod-4    | RNAi   |     |
| sue-1    | RNAi   |     |
| T19C3.5  | RNAi   |     |
| T23G7.3  | RNAi   |     |
| unc-122  | RNAi   |     |
| unc-129  | RNAi   |     |
| unc-30   | RNAi   |     |
| unc-71   | RNAi   |     |
| unc-86   | RNAi   |     |
| vab-23   | RNAi   |     |
| vab-8    | Mutant |     |
| W04A8.4  | RNAi   |     |
| Y43C5A.3 | RNAi   |     |

| Y47H9A.1 | RNAi |  |
|----------|------|--|
| ZC581.3  | RNAi |  |
| zig-5    | RNAi |  |
| zip-8    | RNAi |  |
| ZK265.7  | RNAi |  |

**Supplemental Table 2: Adjacent neurons that fail to form electrical synapses, related to Figure 1.** Tab 1: List of pairs of neurons that form chemical synapses but not electrical synapses. This list does not include neurons that are in physical contact but do not form electrical synapses and therefore likely underestimates the number of neurons that are in physical contact and express compatible innexins but do not form gap junctions. Tab 2: Neurons from Tab 1 color-coded for expression of the innexins UNC-7 and UNC-9 (Bhattacharya et al., 2019). Over 600 neurons express compatible innexins and physically contact one another (based on presence of chemical synapses) but do not form gap junctions.

| REAGENT or RESOURCE            | SOURCE                | IDENTIFIER |
|--------------------------------|-----------------------|------------|
| wdis54                         | Von Stetina, 2007,    | NC1809     |
|                                | Figure 1B, 2H, 3F     |            |
| unc-4(e2323); wdis54           | Von Stetina, 2007,    | NC1939     |
|                                | Figure 1B, 2H, 3E     |            |
| unc-4(e2323)                   | Winnier et al., 1999, | NC2289     |
|                                | Figure 1C, 2B, 3C     |            |
| unc-4::mCh unc-4c::gfp         | Figure 1D, Figure S1  | NC2957     |
| unc-4(e120); unc-4::mCh unc-   | Figure 1D, Figure S1  | NC2958     |
| unc-4(e2323):eri-1:lin-15b     | Von Stetina 2007      | NC1558     |
|                                | Figure 1D Figure S2   |            |
| unc-4(e2322)                   | Miller et al., 1992   |            |
|                                | Figure 2B             |            |
| unc-4(e2322);pde-1             | Figure 2B             | NC3771     |
| unc-4(e2322);frpr-17           | Figure 2B             | NC3763     |
| unc-4(e2323);pde-1;wdis54      | Figure 2H             | NC3772     |
| unc-4(e2323);frpr-17;wdis55    | Figure 2H             | NC3764     |
| bnc-1::GFP                     | Oliver Hobert Lab,    | OH15624    |
|                                | Figure 2D, 2F         |            |
| unc-4(e120);bnc-1::GFP         | Figure 2D, 2F         | NC3664     |
| unc-4(e2323);goa-1;wdis54      | Figure 3D, E          | NC3765     |
| unc-4(e2323);gsa-1(gof);wdis54 | Figure 3D, E          | NC2456     |
| unc-4(e2323;acy-1(gof);wdis54  | Figure 3D, E          | NC3774     |
| unc-4(e2323);goa-1             | Figure 3C             | NC3773     |
| unc-13;wdis54                  | Figure S3             | NC2300     |
| unc-17;wdis54                  | Figure S3             | NC2444     |

#### Supplemental Table 3: C. elegans strains used in study, related to STAR Methods.

| unc-4(e120);dgk-1;wdis54                                                                       | Figure S3                  | NC2755 |
|------------------------------------------------------------------------------------------------|----------------------------|--------|
| unc-4(e120);wdis54                                                                             | Figure 3I, Figure S3       | NC1813 |
| unc-4(e2323);Punc-17::bPAC                                                                     | Figure 3G                  | NC3815 |
| EX[Punc-4::PDE-4]                                                                              | Figure 3H                  | NC3670 |
| unc-4(e2322);EX[Punc-4::GOA-<br>1(gof)]                                                        | Figure S2                  | NC2367 |
| unc-4(e120);goa-1; wdis54                                                                      | Figure 3I                  | NC2010 |
| unc-4(e120);goa1;EX[Punc-<br>4::GOA-1]; wdis54                                                 | Figure 3I                  | NC2608 |
| unc7::frt_stop_frt_tagRFP;EX[Pflp-<br>18::flppase, Punc-4::GFP::UNC-9]                         | Figure 4B-E, 7B            | NC3775 |
| unc-4(e2323);unc-<br>7::frt_stop_frt_tagRFP;EX[Pflp-<br>18::flppase, Punc-4::GFP::UNC-9]       | Figure 4B-C, 7B            | NC3789 |
| unc-4(e2323);goa-1;unc-<br>7::frt_stop_frt_tagRFP;EX[Pflp-<br>18::flppase, Punc-4::GFP::UNC-9] | Figure 4B-C                | NC3790 |
| unc4::Chrim;EX[Pflp18::GCaMP6s]                                                                | Figure 5C                  | NC3666 |
| unc-4(e2323);unc-<br>4::Chrim;EX[Pflp18::GCaMP6s]                                              | Figure 5D                  | NC3667 |
| unc-4(e2323);goa-1;unc-<br>4::Chrim;EX[Pflp18::GCaMP6s]                                        | Figure 5E                  | NC3669 |
| unc-7;unc-<br>4::Chrim;EX[Pflp18::GCaMP6s]                                                     | Figure S6                  | NC3668 |
| EX[Punc-4::GFP::UNC-9]                                                                         | Figure 6, 7, Figure S4     | NC3653 |
| unc-4(e2323);EX[Punc-<br>4::GFP::UNC-9]                                                        | Figure 6, 7, Figure S4, S5 | NC3654 |
| unc-4(e2323);goa-1;EX[Punc-<br>4::GFP::UNC-9]                                                  | Figure 6                   | NC3816 |
|                                                                                                |                            |        |