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Table S1:  Expanded version of main text Table 1 with additional details and
references.

Overview of
identification and
mitigation approach1,2

● Establish a governance committee with multidisciplinary expertise
in the AI system and how it will be used clinically.

● Partner with solution developers in implementing a checklist and
ongoing monitoring process 3 that periodically evaluates for AI
malfunction risk from dataset shift related to the categories listed
below (e.g., new data acquisition devices, new information
technology (IT) practices and so on).

● Implement a process for frontline staff to flag scenarios where
there may be concern for a dataset shift in order to facilitate a
more formal review process by the governance committee.

Checklist
Considerati
ons

Example Comments and
References

Recognition strategies Mitigation
Strategies

Dataset Shift Category: Changes in Technology

Are there
new data
acquisition
device
types
upstream
from the
model?

A
computer-ai
ded
diagnostic
(CAD)
model
developed
to predict
hip
fractures
was shown
to rely on
specific
x-ray
scanner
models and
technicians.

Badgely et al 4

investigated a diagnostic
model for hip fractures
built on deep learning.
Even when fed only raw
radiographs as input, the
algorithm had learned to
detect and depend heavily
upon clinical confounding
factors such as scanner
model, scanner brand,
and radiograph order date.
When patient images were
matched on these
variables, diagnostic
performance dropped
significantly. This
demonstrated that sudden
changes in scanner model
(or other healthcare
process variables) could
result in the sudden
malfunction of such an AI
system.

Governance Committee:

For new
implementations, check
for differences in input
device types between
what the model expects
versus what is being
used in the current care
environment.

For ongoing monitoring,
proactively identify when
data acquisition devices
or acquisition protocols
change.

Frontline clinicians:

Flag when there are
changes in data
acquisition protocols.

When new input
devices are
added, model
outputs are
checked for
validity and
models are
retrained or
tuned if needed.

https://paperpile.com/c/2TrmQb/bxq9+UDXu
https://paperpile.com/c/2TrmQb/Lcew
https://paperpile.com/c/2TrmQb/3lDi


The
adoption of
high-sensiti
vity
troponin
assays
changes
clinical
interpretatio
n of
detectable
troponin
levels.

Vaz et al 5 describe the
challenges faced by
human clinicians in
adapting to new
high-sensitivity troponin
assays. Previous versions
of the laboratory test were
positive almost exclusively
in the setting of acute
myocardial infarction,
whereas newer tests can
be positive in a variety of
settings. AI models need
to be updated to account
for this and other new lab
assays in the same way.

Governance Committee:

For new
implementations, check
for differences in input
device types between
what the model expects
versus what is being
used in the current care
environment.

For ongoing monitoring,
proactively identify when
data acquisition devices
or acquisition protocols
change.

Frontline clinicians:

Flag when there are
changes in data
acquisition protocols.

When new input
devices are
added, model
outputs are
checked for
validity and
models are
retrained or
tuned if needed.

Are there
new IT
practices
(e.g.,
terminologie
s used to
store data)
upstream
from the
model?

A model
developed
with
diagnoses
defined
using ICD-9
codes may
not be
accurate in
hospitals
that have
adopted
ICD-10
because of
differences
in
definitions.

Ellis et al 6 analyzed
insurance claims data
from more than 18 million
adults around the time of
transition from ICD-9 to
ICD-10, and found that 1
in 6 of diagnostic
categories experienced an
instantaneous shift in
prevalence of more than
20%.  As the authors
conclude, “diagnostic
classification systems
developed with ICD-9-CM
data may need to be
refined for use with
ICD-10-CM data for
disease surveillance,
performance assessment,
or risk-adjusted payment.”

Governance Committee:

Routine IT protocols
should flag all
institution-wide IT
changes that are
upstream from clinical
predictive models.

Frontline clinicians:

Flag changes in IT and
electronic documentation
practices (e.g. new
templates) that may be
missed by IT.

Retrain models
whose data
cannot be
directly mapped
from previous
format.

https://paperpile.com/c/2TrmQb/Rx0ua
https://paperpile.com/c/2TrmQb/9cbmM


Are there
new IT
software/inf
rastructure
(e.g., EHR
Systems) on
which the
model
relies?

Adopting a
new EHR
platform (or
module) or
even
routine
updates to
an existing
platform
can cause
models to
malfunction
. For
example,
routine
EHR
updates
may result
in internal
changes in
variable
definitions
that may
inadvertentl
y change
definitions
of
predictors
that lead to
incorrect
model
predictions.

Nestor et al 7 describe an
ML algorithm that was
successfully trained to
predict mortality in ICU
patients using laboratory
tests and vital signs, but
experienced a sudden
deterioration in
performance. The
researchers revealed that
the drop in accuracy
occurred when the data
management software
was switched from
CareVue to MetaVision,
subtly altering how even
identical clinical
measurements would be
recorded in the electronic
health record (EHR) and
destroying precise
relationships on which the
model relied. A
modification to the data
input then allowed the
model to generalize
across vendors.

Governance Committee:

Prior to deployment of
new EHR platforms,
carefully review variable
mapping for predictive
models (similar to the
process followed for
clinical decision support
alerts).

After deployment of new
EHR platforms, rigorously
monitor for statistical
changes in the inputs to
or outputs of predictive
models.

Frontline clinicians:

Flag inadvertent errors in
variable mappings
introduced during EHR
updates. Flag models
that appear to have
changed in behavior for
one or more patient
populations after EHR
update.

When model
behavior
changes after a
major IT update,
multidisciplinary
root cause
analysis may
identify updates
for variable
mappings,
and/or require
model
retraining.

Dataset Shift Category: Changes in Population and Setting

Is the model
being
applied to
new clinical
demographi
cs?

Models
trained in
predominan
tly white
populations
may
underperfor
m on
patients
from
underrepre
sented
racial or

Adamson and Smith8

provide an excellent and
clinically-accessible primer
on the risk of health
disparities that emerges
when specific populations
are excluded from an ML
algorithm’s training data.
They point to several
real-world examples of
this phenomenon, which
amount to a special case
of dataset shift.

Demographics for the
population in which the
model was developed
are typically available in
a peer-reviewed
publication or model
information sheet. Model
vendors will commonly
provide updated local
performance measures.

Retrain and/or
redesign models
using more
inclusive
datasets with
careful attention
to accuracy
across
subgroups.

Specialized
algorithms can
detect and

https://paperpile.com/c/2TrmQb/Fp5qP
https://paperpile.com/c/2TrmQb/7CHBz


ethnic
groups.

Governance Committee:

Carefully monitor
baseline characteristics
of populations on which
clinical models are
deployed -- including
demographic and
phenotypic breakdowns.
Flag patient populations
(demographic and/or
comorbidity-based) for
whom predictive models
exhibit poorer accuracy 3.

adapt when
data from new
populations
arise.

Is the model
being
deployed in
a new
clinical
practice
setting?

Models
developed
in
academic
or specialty
settings
may not
generalize
to
community
use.

Many papers have
generalized this
phenomenon.
One prominent example is
the CC-Cruiser AI system
for cataract diagnosis,
which demonstrated high
accuracy (>98%) in an
initial pilot study, but
showed worse
performance (<89%) when
tested in a multi-hospital
trial that included various
clinical practice settings
across China9.

Similarly, Norgeot et al 10

developed an algorithm for
predicting rheumatoid
arthritis outcomes using
data from a university
hospital, and saw AUROC
decrease from 0.91 to
0.74 when tested in a
public safety-net hospital.

Governance Committee:

Consider “locally
validating” models by
running them silently first
(without showing the
output to clinicians) when
rolling out to new clinical
contexts.

Frontline clinicians:

Flag models whose
outputs appear to be less
sensible when applied,
for example, in outpatient
versus inpatient settings.

Model
retraining/tuning
with additional
data from new
deployment
contexts.

Shift-stable
learning
algorithms can
often be
adopted that are
insensitive to
site-specific
biases 11,12.

Have new
treatments
or standard
of care been
implemented
for patients
and
diseases for

Statin
therapies
result in
miscalibrati
on of
cardiovasc
ular
predictive

Pate et al 13 analyzed
cardiovascular disease
risk predictions generated
by a predictive model, and
found significant
miscalibration develop
over time due to shifting
trends in cardiovascular

Governance Committee:

Monitor model accuracy
and calibration.

Retrain models
with data from
after the
adoption of new
therapies.

https://paperpile.com/c/2TrmQb/Lcew
https://paperpile.com/c/2TrmQb/evB64
https://paperpile.com/c/2TrmQb/VUieh
https://paperpile.com/c/2TrmQb/kFeZ+kqWk
https://paperpile.com/c/2TrmQb/iPBS2


whom the
model is
applied?

models. disease that could be best
attributed to the adoption
of statins.

Other examples may
occur primarily on the
consumer-side: for
example, Hajek et al 14

shows improvements in
smoking cessation among
e-cigarrete users, which
could have great impact
on clinical predictive
models for smoking
cessation such as that of
Luo et al.

Frontline clinicians:

Flag models that begin to
systematically
overpredict or
underpredict risk due to
shifting standard of care.

Have there
been
changes in
disease
incidence in
patients for
whom the
model is
applied?

A CAD
model for
chest-xray
interpretatio
n exhibited
a poor
ability to
generalize
across
hospitals
with
different
underlying
rates of
pneumonia.

Zech et al 15 conducted a
thorough analysis of
convolutional neural
networks trained to
analyze chest radiographs
for detection of
pneumonia. Even when
trained on pooled data
from multiple sites with
different rates of
pneumonia, they found
that their models failed to
generalize to external data
from hospitals with
different incidences.

Governance Committee:

Monitor distribution of
diagnoses over time, as
well as model accuracy
and calibration. Employ
monitoring solutions that
automatically flag shifts
leading to deterioration in
model performance.3,16

Frontline clinicians:

Flag models that begin to
systematically
overpredict or
underpredict risk for
specific clinical
populations.

Recalibrate
models in light
of shifting
incidence.
Re-train models
if necessary.

Shift-stable
learning
algorithms can
often be
adopted that are
insensitive to
site-specific
biases 1,12.

Is the
model’s
clinical
application
affected by
seasonality

Influenza
cases spike
in winter so
incidence
varies by
month.

The Google Flu Trends
product illustrates several
phenomena, described by
Lazer et al 17 as the
“Parable of Google Flu.”
Google Flu Trends, a
product developed to
predict U.S. flu burden,
exhibited an over-reliance
on simple seasonal trends
and an under-utilization on

Governance Committee:

Monitor model
performance, establish
open channels for
clinician reports.

Frontline clinicians:

Retrain models
to account for
seasonality, or
deploy distinct
models at
different times
of year.

Has the
model’s
clinical

Google Flu
showed
high

Mitigation
measures
(temporary

https://paperpile.com/c/2TrmQb/aw1Ak
https://paperpile.com/c/2TrmQb/k78gx
https://paperpile.com/c/2TrmQb/Lcew+vlvp
https://paperpile.com/c/2TrmQb/kqWk+bxq9
https://paperpile.com/c/2TrmQb/f69jn


additional available public
data. This caused the
model to steadily worsen
over time and grow to
markedly overestimate flu
prevalence. The model
was especially unprepared
to detect the non seasonal
influenza A–H1N1
pandemic, which it
completely missed.

Flag models that may be
affected by recent
unexpected events.

application
been
affected by
new
diseases or
other
unexpected
“black
swan”
events?

accuracy in
monitoring
influenza,
but failed
completely
to capture
the
influenza
A–H1N1
pandemic

model
deactivation,
model
retraining) will
depend on the
specific etiology
of the problem.

Dataset Shift Category: Changes in Behavior

Have new
clinical
behavioral
incentives
arisen that
influence the
data on
which the
model is
applied?

Differential
reimbursem
ent of
sepsis
relative to
other
causes of
death has
resulted in
a
measurable
rise in
documente
d diagnosis
of sepsis.

Gohil et al18 investigated
the pattern of sepsis
diagnoses before and
after the Centers of
Medicare and Medicaid
Services (CMS)
introduced new sepsis
codes and and medical
severity diagnosis-related
group (MS-DRG) systems.
They found that these
policies resulted
effectively overnight in a
2-fold increase in
non-severe sepsis, a
2.8-fold increase in severe
sepsis, a 3.8-fold increase
in sepsis on admission.
Concomitantly, the
reported mortality in this
population decreased.
Such policy-induced
changes in clinical
practice and reporting
have clear ramifications
for sepsis predictive
models, which are one of
the more common
use-cases for clinical
predictive modeling.19,20

Governance Committee:

Monitor model accuracy
and calibration. Solicit
feedback on major
forthcoming changes in
coding practices from
clinical and administrative
groups.

Use of
high-quality
clinical
phenotypes
independent of
billing practices
can ensure
models that are
stable to
coding-related
shifts.19,20

Retrain or tune
models, as
needed.

Have new
changes in
patient
behavior

Following
the
diagnosis
of a

The “Angelina Jolie
effect,” in which a high
profile celebrity diagnosis
led to increased patient

Governance Committee:

Review and assess
implicit underlying

Retrain or
redesign models
as necessary to
account for

https://paperpile.com/c/2TrmQb/qA1rN
https://paperpile.com/c/2TrmQb/VQMT+DquuF
https://paperpile.com/c/2TrmQb/VQMT+DquuF


arisen that
influence the
data on
which the
model is
applied?

high-profile
celebrity,
patients
self-refer
for
diagnostic
evaluation
with fewer
or no
symptoms.

self-referral for genetic
testing for breast cancer,
is an example where
public opinion and patient
behavior changed quickly
about a specific health
behavior.21

behavioral assumptions
of any AI model.  (Note:
Models predicting health
behavior may issue
predictions with
disproportionate impacts
on vulnerable
populations even in the
absence of dataset shift.)

Frontline clinicians:

Flag models that may be
affected by patient
behavioral trends noted
in the clinic or in the
literature.

dynamic patient
behavior.

Have new
changes in
clinical
practice
arisen that
influence the
data on
which the
model is
applied?

Adoption of
new order
sets, or
changes in
their timing,
can heavily
impact
predictive
model
output.

Agniel et al 22, found that
in up to 86% of lab tests,
the timing of the laboratory
test order was more
important to a clinical
predictive model than the
resultant value of the test.
Thus, changes in lab
timing could heavily alter
model output. More
broadly, many clinical
predictive models rely on
specific lab orders. If
those lab orders are
placed routinely as part of
an order set, they may
artificially inflate patient
risk scores.

Governance Committee:

Coordinate with health
system leadership (e.g.,
chief medical officer),
clinical
departments/groups
(e.g., internal medicine),
or health system
committees (e.g.,
cardiopulmonary
resuscitation committee)
to flag major institutional
changes in practice
patterns. Employ
monitoring solutions that
automatically flag high
risk scenarios.3,16

Frontline clinicians:

Flag subtle changes in
practice patterns that
may be relevant to
clinical predictive models.

Retrain or
redesign (e.g.
predictor
redefinition) in
light of new
practices.

Shift-stable
learning
algorithms can
often correct for
biases related to
practice
patterns 11,12.

Surgical
skin
markings
impact the
accuracy of
dermatolog
y
classifiers,
a practice
which

Winkler et al 23

investigated a
commercially-available
deep neural network for
the detection of
melanoma, and analyzed
the diagnostic
performance on the same
lesions before and after
they were marked with a

https://paperpile.com/c/2TrmQb/0qm8X
https://paperpile.com/c/2TrmQb/dRtpq
https://paperpile.com/c/2TrmQb/Lcew+vlvp
https://paperpile.com/c/2TrmQb/kFeZ+kqWk
https://paperpile.com/c/2TrmQb/5oX7A


varies by
clinical
setting.

surgical skin marker. They
found that the specificity of
the algorithm differed by
up to 40% depending on
the skin marker. This
implies that such models
could behave very
differently when used by
dermatologists versus
primary care physicians or
patients themselves, who
may mark the lesions at
different rates or with
different techniques.

Have new
changes in
clinical
nomenclatu
re arisen
that
influence the
data on
which the
model is
applied?

Guidelines
for sepsis
phenotypin
g changed
over the
last decade
to
incorporate
more
granular
clinical
criteria.

Saria and Henry 20

describe the large
variance in meaning of a
“sepsis” diagnosis as a
result of many competing
clinical criteria. As
hospitals shift their
diagnostic criteria, clinical
predictive models will
need to be adjusted
accordingly.

Governance Committee:

Coordinate with clinical
committees (e.g., hospital
sepsis committee) to
recheck model
performance when
clinical criteria
meaningfully change for
a condition being
predicted by a model.

Frontline clinicians:

Flag relevant models for
reassessment when
clinical societies or new
literature result in new
nomenclature.

Retraining or
redesign will
likely be
necessary to
account for new
phenotypes.

Retraining or
redesign will
likely be
necessary to
account for new
nomenclature.

Formal
reclassificat
ion of
disorders,
such as the
creation of
autism
spectrum
disorders
under the
DSM-5,
require
updating of
models
operating
on clinical
text or
diagnostic
codes.

Nalfon and Kuo 24 and
others have described the
significant impact of the
redefinition of “autism” by
the DSM-5, which
reclassification by the
DSM-5 of Autism and
associated conditions
such as Asperger
syndrome into a single
Autism Spectrum
Disorder. Models
operating on clinical notes
or diagnostic codes need
to be adjusted whenever
terminology changes so
substantially.

Has the
AI-system

Automation
bias:

Lyell and Coiera 25 provide
an overview of the

Governance Committee: Recalibrated or
retrained

https://paperpile.com/c/2TrmQb/DquuF
https://paperpile.com/c/2TrmQb/JwQCt
https://paperpile.com/c/2TrmQb/D76Zi


induced
behavioral
changes
that affect
how it is
used?

Overrelianc
e on a CAD
system for
mammogra
phy
worsened
the
sensitivity
of human
radiologists
to disease.

phenomenon of
automation bias, one of
many ways in which the
users of an automated
system can become over
reliant on decision
support.

CAD systems for
mammography provide a
case study in automation
bias, because they
appeared to improve
human clinician
performance based on
preliminary studies, but
some subsequent
analyses --  such as
Lehman et al26 and Alberdi
et al.27.
-- demonstrated human
performanced when using
CAD.

Support ongoing clinical
education for clinicians
and clinical departments
using any AI model, to
ensure that they
understand how to
correctly use any such
model, and specifically
how not to use it. Employ
automated monitoring
solutions to check for
under- and over-reliance
on AI.3,16

Frontline clinicians:

Understand the intended
use of any AI system,
and strive to remain
vigilant for cognitive
biases.

models over
time to account
for behavioral
changes.

https://paperpile.com/c/2TrmQb/BWLQ
https://paperpile.com/c/2TrmQb/AWma
https://paperpile.com/c/2TrmQb/Lcew+vlvp
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