Supporting Information

Design, synthesis and *in vitro* evaluation of novel SARS-CoV-2 3CL^{pro} covalent inhibitors.

Julia K. Stille,^{#,1} Jevgenijs Tjutrins,^{#,1} Guanyu Wang,^{#,1} Felipe A. Venegas,^{#,1} Christopher Hennecker,¹ Andrés M. Rueda¹ Itai Sharon,² Nicole Blaine¹ Caitlin E. Miron,¹ Sharon Pinus,¹ Anne Labarre,¹ Jessica Plescia,¹ Mihai Burai Patrascu,¹ Xiaocong Zhang,¹Alexander S. Wahba,¹ Danielle Vlaho,¹ Mitchell J. Huot,¹ T. Martin Schmeing,² Anthony K. Mittermaier^{*,1} and Nicolas Moitessier^{*,1}

¹ Department of Chemistry, McGill University, 801 Sherbrooke St W, Montreal, QC, Canada H3A 0B8. ² Department of Biochemistry, McGill University, 3649 Promenade Sir William Osler Montreal, QC, Canada H3G 0B1.

nicolas.moitessier@mcgill.ca anthony.mittermaier@mcgill.ca

Table of content

1.	Purification of 3CL ^{pro}	2
2.	Dose-response curves	3
3.	Time dependent IC ₅₀ 's and Mass Spectrometry	8
4.	Isothermal Titration Calorimetry	10
5.	Crystallography	12
6.	Compound purity	14
7.	¹ H and ¹³ C NMR spectra	17
8.	References	184

1. Purification of 3CL^{pro}.

Figure S1. SDS-PAGE at each of the purification step.

2. Dose-response curves

Figure S2a. Dose-response curves. **GC376:** $IC_{50} = 0.11 \pm 0.06$.

Figure S2b. Dose-response curves. Top: X77: $IC_{50} = 4.1 \pm 1$; ML188: $IC_{50} = 1.4 \pm 0.4$.

Figure S2c. 6a: $IC_{50} = 11.1 \pm 1.5$; 13a: $IC_{50} = 5.3 \pm 0.8$.

Figure S2d. 14a: $IC_{50} = 0.50 \pm 0.1$; **16a**: $IC_{50} = 0.40 \pm 0.16$.

Figure S2e. 18a: $IC_{50} = 5.2 \pm 1.2$; 20a: $IC_{50} = 7.0 \pm 0.2$.

Figure S2f. 22a: $IC_{50} = 12.4 \pm 5.2$; **23a**: $IC_{50} = 0.85 \pm 0.42$.

Figure S2g. 13b: $IC_{50} = 15.0 \pm 9.3$; **13c**: $IC_{50} = 9.7 \pm 3.8$.

Figure S2h. 13d: $IC_{50} > 30$; **16b**: $IC_{50} = 0.38 \pm 0.09$.

Figure S2i. 16c: $IC_{50} = 0.92 \pm 0.24$; 14b: $IC_{50} = 0.28 \pm 0.10$;

Figure S2j. 14c: $IC_{50} = 0.17 \pm 0.07$; **14d**: $IC_{50} = 0.24 \pm 0.15$.

Figure S2k. 14e: $IC_{50} = 0.52 \pm 0.16$; 14f: $IC_{50} = 0.22 \pm 0.08$

Figure S2l. 14g: $IC_{50} = 0.32 \pm 0.10$; **14h**: $IC_{50} = 6.0 \pm 2.7$.

Figure S2m. 13e: $IC_{50} = 5.0 \pm 2.3$; 16e: $IC_{50} = 0.84 \pm 0.30$.

Figure S2m. 16f: $IC_{50} = 0.98 \pm 0.35$.

Figure S3a. Cathepsin L inhibition: 16a and 14a.

Figure S3b. Cathepsin L inhibition: 14c.

3. Time dependent IC₅₀'s and Mass Spectrometry

Covalent binding. To evaluate the covalent inhibition hypothesis, we measured the time dependence of the inhibition of our most potent inhibitor, **16a**. As can be seen in Figure 6, the level of inhibition increases over time when the inhibitor is used close to its IC_{50} concentration, while it remains constant for the non-covalent inhibitor **X77**. This observation is consistent with the slow formation of a covalent adduct. Furthermore, the presence of the $3CL^{pro}$ -**16a** and $3CL^{pro}$ -**14a** adducts were confirmed by LC-MS (Figures S4 and S5). When the protease was incubated with inhibitor **16a**, the population of unmodified protein decreases as a new population with mass of the protease-inhibitor complex ($3CL^{pro} + 16a$) appears, persists while denaturation occurs.

Figure S4. Time-dependent potency for X77 (black) and 16a (left, red) and 14a (right, red).

Figure S5a. Deconvoluted mass spectra of $3CL^{pro}$ in the absence, a), and presence, b), of **16a**. While the mass of $3CL^{pro}$ (red) is present in both spectra, the mass corresponding to the covalent $3CL^{pro}$ -**16a** adduct (blue) is only observed in the presence of **16a**.

Figure S5b. Deconvoluted mass spectrum for 3CL^{pro} in the presence of 14a. The expected mass for 3CL^{pro}-14a adduct is 35228.

4. Isothermal Titration Calorimetry

Enzyme Fitting Scripts. All curve fitting was performed with MATLAB. Differential equations shown below describing Michaelis-Menten kinetics, competitive inhibition, and covalent inhibition were integrated using MATLAB's built in ODE solver ode15s.

Michaelis-Menten Kinetics

$$[E]_{inj} = [E]_{cell} + \frac{V_{inj}[E]_{syringe}}{V_{cell}}$$
$$\frac{d[S]}{dt} = -\frac{\left(k_{cat}[E]_{inj}[S]_t\right)}{K_m + [S]_t}$$
$$\frac{d[P]}{dt} = \frac{\left(k_{cat}[E]_{inj}[S]_t\right)}{K_m + [S]_t}$$

Rapid equilibrium inhibition

$$[E]_{inj} = [E]_{cell} + \frac{V_{inj}[E]_{syringe}}{V_{cell}}$$
$$K_{m(app)} = K_m * \left(1 + \frac{[I]}{K_i}\right)$$
$$\frac{d[S]}{dt} = -\frac{\left(k_{cat}[E]_{inj}[S]_t\right)}{K_{m(app)} + [S]_t}$$
$$\frac{d[P]}{dt} = \frac{\left(k_{cat}[E]_{inj}[S]_t\right)}{K_{m(app)} + [S]_t}$$

Irreversible inhibition

$$[E]_{inj} = [E]_{cell} + \frac{V_{inj}[E]_{syringe}}{V_{cell}}$$

$$\frac{d[S]}{dt} = -\frac{\left(k_{cat}[E]_{inj}[S]_t\right)}{K_{m(app)} + [S]_t}$$

$$\frac{d[P]}{dt} = \frac{\left(k_{cat}[E]_{inj}[S]_t\right)}{K_{m(app)} + [S]_t}$$

$$[E]_{free} = [E]_{inj} * \left(1 - \frac{[S]_t}{[S]_t + K_m}\right)$$

$$\frac{d[E]_{inj}}{dt} = -k_{on}[I][E]_{free}$$

Pre-equilibrium irreversible inhibition

$$[E]_{inj} = [E]_{cell} + \frac{V_{inj}[E]_{syringe}}{V_{cell}}$$
$$[ES]_t = \frac{K_i[S]_t[E]_{inj}}{K_m K_i + K_i[S]_t + K_m[I]}$$
$$[EI]_t = \frac{K_i[I]_t[ES]_t}{K_i[S]_t}$$
$$\frac{d[S]}{dt} = -\frac{\left(k_{\text{inact}}[E]_{inj}[S]_t\right)}{K_m + [S]_t}$$
$$\frac{d[P]}{dt} = \frac{\left(k_{\text{inact}}[E]_{inj}[S]_t\right)}{K_m + [S]_t}$$
$$\frac{d[E]_{inj}}{dt} = -k_{\text{inact}}[EI]$$

where k_{cat} and K_m are the catalytic rate and the Michaelis constant respectively, and $[E]_t$, $[S]_t$, and $[P]_t$ are the total concentrations of enzyme, substrate, and product at time = t. $[E]_{cell}$ and $[E]_{syringe}$ are the concentrations of enzyme in the cell and syringe respectively. V_{inj} and V_{cell} are the volume of each injection and total volume of the cell respectively. The instantaneous heat h(t) is calculated from the enthalpy of the reaction, dH_{react} , and the total volume of the cell according to

$$h(t) = \Delta H_{cat} * V_{cell} * \frac{d[P]}{dt}$$

to account for injection artifacts, only the last half of each injection was used for fitting. Furthermore, a linear baseline was fit to account for any baseline drift during the experiment. Enzyme kinetic parameters were globally fit to both data sets by minimizing the target function

$$RSS = \sum_{n=0}^{N} [h(t) - \Delta P(t)]^2$$

where the RSS is the residual sum of squared differences and $\Delta P(t)$ is the change in experimental heat from the baseline. Errors for fitted parameters were calculated using a bootstrapping approach, in which each bootstrap sample was obtained by random resampling of the original data. For example, if the original dataset contained N points, each bootstrap sample was constructed by randomly selecting N of these data points, such that points may be selected more than once or not at all. 500 bootstrap samples were constructed and fitted using the thermodynamic models described above. The errors in the extracted parameters were taken as the standard deviations of the 500 sets of parameters obtained for all bootstrap samples.¹

	k_{cat} K_m		ΔH		DCC			
3CL ^{pro}	(s^{-1})		(μM)		(kcal/mol)		кээ	
	2.9 ± 0.2		80 ± 10		-1.91 ± 0.06	(0.70	
	Pre-equilibrium Irreversible		Pre-equilibrium Reversible		le			
	K_i	RSS	k_{on}	RSS	kinact	K_i	RSS	
	(nM)	Roo	$(\mu M^{-1} s^{-1})$	RSS	(s^{-1})	(μM)	RSS	
16a	$1.0e5 \pm 1e4$	0.40	$3.9e2 \pm 0.5e2$	1.1	$3e-3 \pm 1e-3$	16 ± 2	0.20	
14a	870 ± 80	4.09	$1.7e3 \pm 0.3$	1.55	$6.1e-3 \pm 0.5e-3$	4.5 ± 0.3	0.19	
14c	35 ± 9	2.75	$6.1e3 \pm 0.9e3$	2.11	$1.7e-2 \pm 0.2e-2$	2.3 ± 0.3	2.00	

Table S1: Best fit kinetic parameters

Figure S6. ITC enzyme activity assay in the presence of a) **16a**, b) **14a**, c) **14c**, each successive injection is shown in separate color, ITC simulations corresponding to the minimized kinetic parameters for a pre-equilibrium inhibition are shown in red, irreversible inhibition are shown as blue, and pre-equilibrium irreversible inhibition is shown in black.

5. Crystallography

	3CL ^{pro} – 16a	3CL ^{pro} – 14a
Wavelength (Å)	1.521	0.97918
Resolution range	38.38 - 2.6 (2.693 - 2.6)	48.06 - 2.5 (2.59 - 2.5)
Space group	C 1 2 1	C 1 2 1
Unit cell	116.81 53.54 45.33 90 98.917 90	113.45 53.318 45.4745 90 101.876 90
Total reflections	16512 (1645)	17032 (1708)
Unique reflections	8544 (862)	9105 (901)
Multiplicity	1.9 (1.9)	2.9 (3.1)
Completeness (%)	93.18 (48.82)	97.59 (98.79)
Mean I/sigma(I)	6.00 (0.45)	9.37 (1.14)
Wilson B-factor	71.23	54.62
R-merge	0.04975 (1.3)	0.03943 (0.2481)
R-meas	0.07036 (1.838)	0.05576 (0.3509)
R-pim	0.04975 (1.3)	0.03943 (0.2481)
CC1/2	0.996 (0.679)	0.997 (0.777)
CC*	0.999 (0.899)	0.999 (0.935)
Reflections used in refinement	8072 (435)	9104 (901)
Reflections used for R-free	417 (20)	434 (40)
R-work	0.2146	0.2242 (0.3611)
R-free	0.2677	0.2680 (0.3928)
Number of non-hydrogen atoms	2417	2407
macromolecules	2347	2347
ligands	30	32
solvent	40	28
Protein residues	304	304
RMS(bonds)	0.013	0.012
RMS(angles)	1.67	1.65
Ramachandran favored (%)	96.36	96.36
Ramachandran allowed (%)	3.31	3.64
Ramachandran outliers (%)	0.33	0
Rotamer outliers (%)	0	0.38
Clashscore	1.5	3.83
Average B-factor	65.04	63.73
macromolecules	65.15	63.38
ligands	79.53	107.2
solvent	47.9	43.37

Table S2. Statistics for crystallography data and structure refinement.

6. Additional figures

Figure S7. Docked molecule 13a to 3CLpro catalytic site.

7. Compound purity

Table S3.	Purity of	of Biologi	ically Test	ed Compounds
		0		

Entry	Compound	Retention time (min) ^a	Purity $(\%)^{b}$	
Lifti y	Compound	Retention time (init.)	1 unity (70)	
1	X77	15.45	99.1	
2	ML188	15.09	98.9	
3	4 a	14.52	95.6	
4	4b	13.99	97.8	
5	5a	15.77	96.7	
6	6a	15.18	98.9	
7	6b	14.72	99.6	
8	7a	16.59	97.6	
9	8a	15.53	99.8	
10	8b	14.89	99.8	
11	8c	15.10	97.5	
12	9a	15.56	96.4	
13	10a	15.34	95.2	
14	11a	16.06	95.1	
15	11b	15.77	97.1	

16	11c	17.45	95.1
17	11d	17.03	98.37
18	11e	15.54	95.7
19	11f	16.17	95.7
20	11g	16.04	96.4
21	11h	16.93	99.5
22	11i	14.50	98.3
23	12a	16.37	94.0
24	13a	15.25	94.2
25	13b	14.69	97.2
26	13c	15.1	96.0
27	13d	14.53	97.5
28	13e	16.80	99.5
29	13f	16.30	95.1
30	13g	15.56	95.7
31	13h	17.41	91.8
32	13i	14.61	99.5
33	13j	14.84	97.6
34	13k	14.01	97.5
35	131	15.46	99.0
36	13m	12.96	92.3
37	13n	15.88	96.1
38	130	15.67	95.8
39	13p	14.52	98.0
40	13q	14.07	95.9
41	14a	15.76	91.0
42	14b	15.39	99.4
43	14c	15.93	97.4
44	14d	15.45	99.2
45	14e	15.84	94.5
46	14f	11.6	87.8
47	14g	15.58	92.7
48	14h	15.42	95.3
49	15a	15.03	94.7

50	16a	15.37	95.6
51	16b	12.80	96.1
52	16c	15.3	91.2
53	16d	15.52	93.5
54	16e	15.46	95.4
55	16f	15.84	90.6
56	17a	16.00	99.5
57	18 a	15.34	97.7
58	18b	14.224	76.6
59	19 a	15.80	99.8
60	20a	15.08	90.9
61	21a	15.71	98.5
62	22a	15.32	97.7
63	23a	14.52	98.2
64	24a	11.99	96.7
65	25a	12.05	93.1

^a Conditions: (gradient of 95% water, 5% MeOH or MeCN, 1 mL/min). ^b UV detection at 254 nm.

8. ¹H and ¹³C NMR spectra

3. Compound ML188 ¹H NMR

4. Compound ML188 ¹³C NMR

5. Compound $4a^{1}HNMR$

7. Compound $4b^{1}HNMR$

9. Compound $5a^{1}HNMR$

10. Compound 5a ¹³C NMR

11. Compound 6a¹H NMR

13. Compound $6b^{-1}HNMR$

15. Compound 7a¹H NMR

17. Compound 8a ¹H NMR

19. Compound $8b^{-1}HNMR$

Stille et al. Design, synthesis and biological evaluation of novel SARS-CoV-2 3CL^{pro} covalent inhibitors. Supporting Information
21. Compound 8c ¹H NMR

JT-35-Produc∉,1.fid

22. Compound 8c ¹³C NMR

23. Compound 9a ¹H NMR

25. Compound 10a ¹H NMR

5.0

f1 (ppm)

4.5

4.0

3.5

2.5

2.0

1.5

3.0

-11

0.0

0.5

1.0

43

9.5

9.0

.0.C

8.5

8.0

7.5

7.0

6.5

6.0

5.5

29. Compound **11b** ¹H NMR

31. Compound $11c^{-1}HNMR$

33. Compound **11d** ¹*H NMR*

35. Compound 11e¹H NMR

JT-41.2.fid

37. Compound $11f^{1}HNMR$

39. Compound $11g^{-1}HNMR$

JT-47,2.fid 9.06 8.55 26 24 87 87
 41

 41

 339

 338

 338

 338

 338

 338

 338

 338

 338

 338

 338

 338

 338

 338

 338

 338

 338

 338

 338

 338

 338

 338

 338

 338

 338

 338

 338

 338

 338

 338

 338

 338

 338

 338

 338

 338

 338

 338

 338

 338

 338

 338

 338

 338

 338

 338

 338

 348

 358

<t .24 .23 .23 .21 .21 .21 86 85 83 63 62 21 20 20 0.88 | Sr s s <u>____</u> 1.03 2.47 ____0.98 $1.08 \end{bmatrix}$ 1.37^{-1} 1.92-1.081.78≖ 9.00 3.23 96 ģ g 4 $\rightarrow \prime$ 10.0 9.5 8.5 7.5 6.5 5.5 4.5 4.0 9.0 8.0 7.0 5.0 3.5 3.0 2.5 2.0 1.5 0.5 0.0 6.0 1.0 f1 (ppm)

43. Compound 11i¹H NMR

44. Compound 11i ¹³C NMR

45. Compound 12a ¹H NMR

60.

<u></u>_∕∕

0.0

51. Compound $13c^{-1}HNMR$

52. *Compound* **13***c* ¹³*C NMR*

53. Compound **13d** ¹*H NMR*

57. Compound $13f^{1}HNMR$

59. Compound $13g^{-1}HNMR$

61. Compound **13h** ¹H NMR

62. Compound **13h** ¹³C NMR

63. Compound 13i¹H NMR

64. Compound **13i** ¹³C NMR

65. Compound $13j^{1}HNMR$

66. Compound **13***j* ¹³*C* NMR

67. *Compound* **13k** ¹*H NMR*

68. Compound 13k ¹³C NMR

69. *Compound* **13***l* ¹*H NMR*

70. Compound 13 1	¹³ C NMR										
JT-70.22.fid	— 167.88	ノ 153.20 人 149.46 人 148.97	135.07 134.31	— 124.12		85.46	- 74.64		< 32.84 < 32.68 < 25.70 < 24.90		
210 200 190 180	170	160 150	140 13) 120	110 100 f1 (ppm	90)	80 70	60 50	40 30 20	10 0	-10

71. Compound **13m** ¹H NMR

JT-71.3.fid

72. Compound **13m** ¹³C NMR

73. Compound $13n^{-1}HNMR$

75. Compound **130** ¹H NMR

77. *Compound* **13***p* ¹*H NMR*

78. Compound **13p** ¹³C NMR

JT-74.4.fid

79. Compound **13***q* ¹³*C NMR*

80. Compound **13***q* ¹³*C* NMR

81. Compound 14a ¹H NMR

82. Compound **14a** ¹³C NMR

83. Compound **14b** ¹*H NMR*

84. Compound **14b** ¹³C NMR

85. *Compound* **14***c* ¹*H NMR*

86. *Compound* **14***c* ¹³*C NMR*

87. *Compound* **14***d* ¹*H NMR*

88. Compound **14d** ¹³C NMR

89. Compound 14e 1H NMR

90. Compound 14e 13C NMR

91. Compound 14f 1H NMR

92. Compound 14f 13C NMR

93. Compound 14g¹H NMR

94. Compound **14g** ¹³C NMR

96. Compound **14h** ¹³C NMR

97. Compound **15a** ¹*H NMR*

99. Compound **16a**¹H NMR

61. Compound 17a ¹H NMR

62. Compound **17a** ¹³C NMR

63. Compound 18a ¹H NMR

65. *Compound* **18b** ¹*H NMR*

67. Compound 19a ¹H NMR

68. Compound **19a** ¹³C NMR

69. *Compound* **20a** ¹*H NMR*

70. Compound **20a** ¹³C NMR

71. Compound 21a ¹H NMR

72. Compound **21a** ¹³C NMR

73. Compound 22a ¹H NMR

74. Compound **22a** ¹³C NMR

75. Compound **22a** ¹⁹F NMR

76. *Compound* **23a** ¹*H NMR*

77. Compound **23a** ¹³C NMR

78. Compound 24a ¹H NMR

80. Compound 25a ¹H NMR

83. Compound **26b** ¹³C NMR

85. Compound 26c ¹³C NMR

		1 1		·	·	- I - I		·	'		·	'	'	'	'				'			
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
										1	f1 (ppm)											

86. *Compound* **26d** ¹*H NMR*

e ^{se} → → → → → → → → → → → → → → → → → → →	87. Compound 26d ¹³ C	NMR					
$\begin{array}{c} \downarrow \downarrow$		imes 161.12 imes 159.89	— 140.09	\sim 129.75 $\scriptstyle >$ 121.05 $\scriptstyle >$ 114.54 $\scriptstyle >$ 111.93	77.31 77.05 76.80	- 55.21	> 39.05> 35.54
		I					

88. Compound 26 $e^{-1}HNMR$

90. Compound $26f^{1}HNMR$

	'	'											·			'				·		· · · · ·
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
										1	f1 (ppm)											

92. Compound **26g** ¹H NMR

93. Compound 26g ¹³ C NI	MR							
	— 160.34	— 142.63	$\frac{128.74}{127.53}$		77.34 77.09 76.83	- 47.61	- 21.76	
€ L L L L L L L L L L L L L L L L L L L								
		ļ						
210 200 190 180 170		I	, , , , , , , , , , , , , , , , , , ,	· · · · · · · · · · · · · · · · · · ·	90 80 70		30 20 1	 0 0 -10

f1 (ppm)

94. Compound **27b** ¹*H NMR*

95. Compound 27b ¹³ C	C NMR							
	158.83 156.47 156.43 156.38	129.74	- 114.20	77.32 77.07 76.81	55.30 7 43.34	₹ 43.28 43.23 34.88		
MeO								
							1414-0112-1112-111-11-11-11-11-11-11-11-11-11-	

		- I '	·	- I I	·		- I I	1 1				- I - I	1 1	1 1	1 1	1 1	I	- I I	- I I		- I - I	· · · · · ·
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
210	200	150	100	170	100	150	TIO	150	120	110	100	50	00	70	00	50	10	50	20	10	U	10
	f1 (npm)																					
											· + (pp)											

96. Compound **27***c* ¹*H NMR*

97. Compound **27c** ¹³C NMR

f1 (ppm)

98. Compound 27d¹H NMR

99. Compound 27d ¹³ C	C NMR			
NC NC	159.89 156.67 156.62 156.58	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	77.33 77.08 76.83	- 55.24 42.95 42.89 35.74
оме				
		una desente en la construction de construction de des nomes constructions de la construcción de la construcción	anan kana kana kana kana kana kana kana	หลายกระโทยหาสายในขางกระโบสำหรัดของไขมางแห่งรายหาสายรูปส่งใหญ่และแห่งสายสายสายสายสายสายสายสายสายสายสายสายสายส

	I				- I I	- I I	- I - I	- I I	1 1	1 1	1 1								- I I	1 1	1	1 1
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
											f1 (ppm)	l I										

100. Compound $27e^{-1}HNMR$

101.	Compound 27e ^{13}C NM	MR					
	∠ 156.33 ∠ 156.33	\ 156.24 	< 128.67 $ < 128.49 $ $ < 126.46$	77.30 77.05	76.79	$\begin{cases} 40.70 \\ 40.70 \\ 32.20 \\ 30.56 \end{cases}$	
NC	:						
						I	
						i	
ĸĸĸĸĸĸŢŎĬĬĊŢŎĸĹĸŎŎĬŎŢŎŢŎĸŎŎĸŎĬĬĊŎĬĬŎŎŎŎŎŎ		ماليان ورخان ، المراجع بعالي ورخان ماليان ورخان ماليان ورخان ماليان ورخان المراجع والمحالي ورخان المراجع و	hereacher and the second second second	undergröffingeren zwie aller die eine die eine die der der die der die eine die die eine set aller eine off	hadralaniteteening video variationening	lasangalina ang sikang saga sa sa	

21	0	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	
21		200	150	100	170	100	150	110	150	120	110	100	50	00	70	00	50	10	50	20	10	0	10	
												f1 (ppm))											

103. Compound $27f^{13}C$	NMR		
	— 155.19	<pre>/ 138.12 / 129.01 / 128.31 / 127.18</pre>	- 31.91
NC NC			

					- · · · · · ·
210 200 190 180 170	160 150 140 130 120 110 1	00 90 80 70	60 50 40	30 20	10 0 -10
210 200 100 100 100			00 00 10	50 20	10 0 10
	f1 (nnm)			

105.	Compound 27g ¹³ C NMR				
	156.41 156.37 156.33	 138.57 128.96 128.31 125.41 	77.33 77.08 76.82	53.88 53.83 53.78 53.78	
NC					
			J		L

		1 1		1 1	1 1			· · ·			1 '	1				1 1				· ·	1	
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
											·				•••						-	
f1 (ppm)																						

111. Compound **28d** ¹³*C NMR*

112. Compound **28e** ¹*H NMR*

114. Compound**28f**¹H NMR

115. Compound **28***f* ¹³*C NMR*

116. Compound**28g**¹H NMR

11	7.	Compou	nd 28g ¹	¹³ C NMR	2														
	$\left[\begin{array}{c} 169.64 \\ 169.55 \end{array} ight]$	149.90 149.84 148.98	148.92 143.86	ر 142.54 ر 142.60 ر 135.04	-∫ 134.95 ∫ 134.83 ∫ 134.74	128.78 128.50 177.58	127.31	126.17	123.98 113.84	[113.74 ∠ 77.31 ∠ 77.06	/ 76.80	$\begin{pmatrix} 62.44 \\ 62.15 \end{pmatrix}$		$\int \frac{34.03}{34.01}$	31.50 31.48	21.86 21.23	14.22		
		Ì																	
·																			
								ı											
	na ka na	dummaning works die to only	rine interesting and the second	ungan was was not a subset of the					มรู้จะรู้จักรูป 1.5 เป็นสารประเทศ	Aginangtangang inggan Ku	enger ^t ischapping, soo		0.00 ⁽ 0-\100,000,00,000,00,000,00,000,000,000,00	yicesquareships, may 9	ligilariyyayi		ana sun has sub-sub-sub-sub-sub-sub-sub-sub-sub-sub-		11.40T-bestygingensen
210	200	190 18	30 170	160	150 14		120	110	100 9 (ppm)	0 80	70	60	50	40	30	20	10	0	-10

183

9. References

(1) Efron, B.; Tibshirani, R. Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy. *Stat. Sci.* **1986**, *1*, 54-75.