
Supplementary Material

Precautionary breaks: planned, limited duration circuit

breaks to control the prevalence of COVID-19.

Here we present the basic model formulation that underpins the age-structured predictions of COVID-
19 dynamics in the UK, and how the parameters of this model have been inferred from the available
data. Much of the background to the model formulation is covered in more detail in [1], while the
parameter estimation is described in [2].
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We first show the underlying system of equations that account for the transmission dynamics, including
symptomatic and asymptomatic transmission, household saturation of transmission and household
quarantining. The population is stratified into multiple compartments: individuals may be susceptible
(S), exposed (E), infectious with symptoms (I), or infectious and either asymptomatic or with very
mild symptoms (A). Asymptomatic infections are assumed to transmit infection at a reduced rate given
by τ . To some extent, the separation into symptomatic (D) and asymptomatic (U) within the model
is somewhat artificial as there are a wide spectrum of symptom severity that can be experienced.

We let superscripts denote the first infection in a household (F ), a subsequent infection from a symp-
tomatic household member (SI) and a subsequent infection from an asymptomatic household member
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(SA). A fraction (H) of the first detected cases (necessarily symptomatic) in a household are quaran-
tined (QF ), as are all their subsequent household infections (QS) - we ignore the impact of household
quarantining on the susceptible population as the number in quarantine is assumed small compared
with the rest of the population. The recovered class is not explicitly modelled, although it may become
important once we have a better understanding of the duration of immunity. Natural demography and
disease-induced mortality are also ignored in the formulation of the epidemiological dynamics.

Model equations

The full equations are given by

dSa
dt

= −
(
λFa + λSIa + λSAa + λQa

) Sa
Na

,

dEF1,a
dt

= λFa
Sa
Na
−MεEF1,a,

dESI1,a
dt

= λSI
Sa
Na
−MεESI1,a,

dESA1,a
dt

= λSA
Sa
Na
−MεESA1,a ,

dEQ1,a
dt

= λQS −MεEQ1,a,

dEXm,a
dt

= MεEXm−1,a −MεEm,a X ∈ {F, SI, SA,Q}

dIFa
dt

= da(1−H)MεEFM,a − γIFa ,

dISIa
dt

= daMεESIM,a − γISIa ,

dISAa
dt

= da(1−H)MεESAM,a − γISAa ,

dIQFa
dt

= daHMεEFM,a − γIQFa ,

dIQSa
dt

= daHMεESAM,a + daεE
Q
a − γIQSa ,

dAFa
dt

= (1− da)MεEFM,a − γAFa ,

dASa
dt

= (1− da)Mε(ESIM,a + ESAM,a)− γASa ,

dAQa
dt

= (1− da)MεEQM,a − γA
Q
a ,

Here we have included M latent classes. The rate of progression from each latent class was εM , with
the length of the total latent period (ε−1) equivalent to the mean of an Erlang distribution with shape
parameter M and rate parameter εM . Throughout we have taken M = 3. The infectious period, γ−1,
matched the mean of an exponential distribution with rate parameter γ.
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The forces of infection which govern the non-linear transmission of infection obey:

λFa = σa
∑
b

(
IFb + ISIb + ISAb + τ(AFb +ASb )

)
βNba,

λSIa = σa
∑
b

IFb β
H
ba,

λSAa = σaτ
∑
b

AFa β
H
ba,

λQa = σa
∑
b

DQF
b βHba,

where βH represents household transmission and βN = βS+βW +βO represents all other transmission
locations, comprising school-based transmission (βS), work-place transmission (βW ) and transmission
in all other locations (βO). These matrices are taken from Prem et al [3] to allow easily translation to
other geographic settings, although other sources such as POLYMOD [4] could be used.

Two key parameters, together with the transmission matrix, govern the age-structured dynamics:
σa corresponds to the age-dependent susceptibility of individuals to infection; da the age-dependent
probability of displaying symptoms (and hence potentially progressing to more severe disease). Taken
together σa and da define the early age-distribution of identified symptomatic cases; as such we can
match the dominant eigenvalue at invasion to the recorded age-distribution. However, this does
not uniquely determine σa and da as either could be used to achieve the required distribution. We
therefore introduce a parameter α which scales between the situation where the age-distribution is
generated entirely through the probability of displaying symptoms (α = 0, σa is constant) and when
it is generated through differential susceptibility (α = 1, da is constant). (In particular, we require
σada to be an age-dependent value, say Qa, and hence define da ∝ Q1−α and σ ∝ Qα.)

We define τ as the reduced transmission from asymptomatic infections compared to symptomatic in-
fections; given the probability of displaying symptoms is less in the younger age groups, this parameter
also shapes the role of younger ages in onward transmission.

1.1 Amendments to within-household transmission

We require our model to capture both individual level quarantining of infected individuals and isolation
of households containing identified cases. In a standard ODE framework this level of household
structure is only achievable at large computational expense [5, 6], so instead we make a relatively
parsimonious approximation to achieve a comparable effect.

We assume that all within household transmission originates from the first infected individual within
the household (denoted with a superscript F , or QF if they become quarantined). This allows us to
assume that secondary infections within a household in isolation (denoted with a superscript QS or
Q) play no further role any of the transmission dynamics. As a consequence, high levels of household
isolation can drive the epidemic extinct, even if within household transmission is high – an effect not
achievable with the standard SEIR-type modelling approach. This improved methodology also helps
to capture to some degree household depletion of susceptibles (or saturation of infection), as secondary
infections in the household are incapable of generating additional household infections. A more thor-
ough investigation of this extension to the basic model is reviewed in the Supplementary Material of [1].
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1.2 Capturing social distancing

Age-structured contact matrices for the United Kingdom were obtained from Prem et al. [3] and used to
provide information on normal levels household transmission (βHab, with the subscript ab corresponding
to transmission from age group a against age group b), school-based transmission (βSab), work-place
transmission (βWab ) and transmission in all other locations (βOab).

We assume that any instigated non-pharmaceutical interventions (patterns of social-distancing or
lockdown measures) leads to a reduction in the work, school and other matrices while increasing
the strength of household contacts. Any given level of non-pharmaceutical interventions (NPIs),
captured by the parameter φ between zero and one, therefore scales the scales the four transmission
matrices between their normal values (when φ = 0) and their value under the most severe lockdown
(φ = 1).

This level of NPIs, is inferred as a slowly varying parameter in the MCMC processes on a weekly basis.
In turn the weekly value of φ allows us to calculate the growth rate r by an eigenvalue approach.

2 Parameter Inference

As with any model of this complexity, there are multiple parameters that determine the dynamics.
Some of these are global parameters and apply for all geographical regions, with others used to capture
the regional dynamics. Some of these parameters are matched to the early outbreak data (including
the resultant age-distribution of infection), however the majority are inferred by an MCMC process
(Table 1).

We would highlight that the parameters of α and τ are key in determining age-structured behaviour
and are therefore essential in quantifying the role of school children in transmission [7]. We argue
that a low τ and a low α are the only combination that are consistent with the growing body of
data suggesting that levels of seroprevalence show only moderate variation across age-ranges [8], yet
children do not appear to play a major role in transmission [9, 10] - as evidenced by the relatively low
numbers of school-based outbreaks.

Throughout the current epidemic, there has been noticeable heterogeneity between the different regions
of England and between the devolved nations. In particular, London is observed to have a large
proportion of early cases and a relatively steeper decline in the subsequent lock-down than the other
regions and the devolved nations. In our model this heterogeneity is captured through three regional
parameters (DR

S , HR
S and IRS ) which act on the heterogeneous population pyramid of each region to

generate key observables.
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Table 1: Key model parameters and their source

Parameter Description Source
β Age-dependent transmission, split into household,

school, work and other
Matrices from Prem et al. [3]

γ Recovery rate, changes with τ , the relative level of
transmission from undetected asymptomatics com-
pared to detected symptomatics

Fitted from early age-stratified UK
case data to match growth rate
and R0

da Age-dependent probability of displaying symptoms
(and hence being detected), changes with α and τ

Fitted from early age-stratified UK
case data to capture the age profile
of infection.

σa Age-dependent susceptibility, changes with α and τ Fitted from early age-stratified UK
case data to capture the age profile
of infection.

HR Household quarantine proportion = 0.8φR Can be varied according to sce-
nario

NR
a Population size of a given age within each region ONS

ε Rate of progression to infectious disease (1/ε is the
duration in the exposed class). ε ∼ 0.2

MCMC

α Scales the degree to which age-structured hetero-
geneity is due to age-dependent probability of symp-
toms (α = 0) or age-dependent susceptibility (α =
1)

MCMC

τ Relative level of transmission from asymptomatic
compared to symptomatic infection

MCMC

φR Regional relative strength of the lockdown restric-
tions; scales the transmission matrices. Can also be
varied according to scenario.

MCMC

σR Regional modifier of susceptibility to account for dif-
ferences in level of social mixing

MCMC

ER
0 Initial regional level of infection, rescaled from early

age-distribution of cases
MCMC

ST Sensitivity of the serological test MCMC
SD Rate of decay of seropositivity associated with the

serological test
MCMC

DR
S Regional scaling for the mortality probability

Pa(Death|Hospitalised))
MCMC

HR
S Regional scaling for the hospitalisation probability

Pa(Hospitalised|Symptomatic))
MCMC

IRS Regional scaling for the ICU probability
Pa(ICU|Symptomatics))

MCMC
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2.1 Public Health Measurable Quantities

The main model equations focus on the epidemiological dynamics, allowing us to compute the number
of symptomatic and asymptomatic infectious individuals over time. However, these quantities are
not directly measured - and even the number of confirmed cases (the closest measure to symptomatic
infections) is highly biased by the testing protocols at any given point in time. It is therefore necessary
to convert infection estimates into quantities of interest that can be compared to data. We considered
seven such quantities which we calculated from the number of new symptomatic infections on a given
day Ida .

1. Hospital Admissions: An age-dependent fraction of symptomatic individuals are assumed to
need hospital treatment, with a distributed lag between infection and hospitalisation.

2. ICU Admissions: Similarly, an age-dependent fraction of symptomatic individuals are assumed
to need treatment in an Intensive Care Unit. This is not a quantity that is generally reported,
and therefore we cannot match our model predictions to this data source.

3. Hospital Beds Occupied: By convolving hospital admissions with the distributions of lengths
of stay, we can estimate the number of hospital beds occupied.

4. ICU Beds Occupied: A similar process generates the number of occupied ICU beds.

5. Number of Deaths: Mortality is assumed to occur to a fraction of hospitalised individuals,
with the probability of mortality dependent upon age, and occurring after a distributed lag.

6. Proportion testing seropositive: Seropositivity is a function of time since the onset of symp-
toms; we therefore define an increasing sigmoidal function followed by slow exponential decay
which determines the probability that someone who first displayed symptoms q days ago would
generate a positive serology test from a blood sample. The shape of this sigmoidal function is
matched to data from PHE, while the peak sensitivity of the test (ST ) and the decay of seropos-
itivity (SD) are free parameters determined by the MCMC. We match our age-dependent pre-
diction against antibody seroprevalence from weekly blood donor samples from different regions
of England (approximately 1000 samples per region) [11].

7. Proportion of Pillar 2 positives: Given that the raw number of detected cases in any region
is substantially influenced by the number of tests conducted, we consider the proportion of
pillar 2 tests that are positive as a less biased figure. We assume that those symptomatically
infected with COVID-19 compete with individuals suffering symptoms for other infections for
the available testing capacity. This leads to proportion of pillar 2 tests that are positive being a
saturating function of the number of symptomatic infections, with a single scaling parameter.

We compared these model predictions to the data by assuming that the true numbers are drawn
from a negative binomial distribution with the model value as the mean, while the true proportions
(seropositives and Pillar 2 positives) are from a beta-binomial.

6



References

[1] Keeling MJ, Hill E, Gorsich E, Penman B, Guyver-Fletcher G, et al. Predictions of COVID-19
dynamics in the UK: short-term forecasting and analysis of potential exit strategies. PLoS Comp.
Biol. 17(1):e1008619 (2021). doi:10.1371/journal.pcbi.1008619.

[2] Keeling MJ, Dyson L, Guyver-Fletcher G, Holmes A, Semple MG, et al. Fitting to the UK
COVID-19 outbreak, short-term forecasts and estimating the reproductive number. medRxiv
page 2020.08.04.20163782 (2020). doi:10.1101/2020.08.04.20163782.

[3] Prem K, Cook AR, Jit M. Projecting social contact matrices in 152 countries using contact surveys
and demographic data. PLOS Comput. Biol. 13(9):e1005697 (2017). doi:10.1371/journal.pcbi.
1005697.

[4] Mossong J, Hens N, Jit M, Beutels P, Auranen K, et al. Social Contacts and Mixing Patterns
Relevant to the Spread of Infectious Diseases. PLoS Med. 5(3):e74 (2008). doi:10.1371/journal.
pmed.0050074.

[5] House T, Keeling MJ. Deterministic epidemic models with explicit household structure. Mathe-
matical biosciences 213(1):29–39 (2008).

[6] Hilton J, Keeling MJ. Incorporating household structure and demography into models of endemic
disease. Journal of the Royal Society Interface 16(157):20190317 (2019).

[7] Keeling MJ, Tildesley MJ, Atkins BD, Penman B, Southall E, et al. The impact of school
reopening on the spread of COVID-19 in England. Philos. Trans. R. Soc. B Biol. Sci.
376(1829):20200261 (2021). doi:10.1098/rstb.2020.0261.

[8] Pollán M, Pérez-Gómez B, Pastor-Barriuso R, Oteo J, Hernán MA, et al. Prevalence of sars-
cov-2 in spain (ene-covid): a nationwide, population-based seroepidemiological study. The Lancet
396(10250):535–544 (2020).

[9] Fontanet A, Tondeur L, Madec Y, Grant R, Besombes C, et al. Cluster of COVID-19 in northern
France: A retrospective closed cohort study. medRxiv page 2020.04.18.20071134 (2020). doi:
10.1101/2020.04.18.20071134.

[10] Heavey L, Casey G, Kelly C, Kelly D, McDarby G. No evidence of secondary transmission of
COVID-19 from children attending school in Ireland, 2020. Eurosurveillance 25(21):2000903
(2020). doi:10.2807/1560-7917.ES.2020.25.21.2000903.

[11] Public Health England. National covid-19 surveillance reports (2020). URL https://www.gov.uk/
government/publications/national-covid-19-surveillance-reports. [Online] (Accessed: 29 Septem-
ber 2020).

7

https://www.gov.uk/government/publications/national-covid-19-surveillance-reports
https://www.gov.uk/government/publications/national-covid-19-surveillance-reports

	Model description
	Amendments to within-household transmission
	Capturing social distancing

	Parameter Inference
	Public Health Measurable Quantities


