Supporting Information for "Tropospheric NO_2 and O_3 response to COVID-19 lockdown restrictions at the national and urban scales in Germany".

Vigneshkumar Balamurugan¹, Jia Chen¹, Zhen Qu², Xiao Bi¹, Johannes

Gensheimer¹, Ankit Shekhar³, Shrutilipi Bhattacharjee⁴, Frank N. Keutsch^{2,5}

 $^1\mathrm{TUM}$ Department of Electrical and Computer Engineering, Technische Universität München, Munich, Germany

²School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts, USA

³Department of Environmental Systems Science, ETH Zurich, Switzerland

⁴Department of Information Technology, National Institute of Technology Karnataka, Surathkal, India

⁵Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA

Contents of this file

1. Figures S1 to S13

Figure S1. Spatial relationship between the TROPOMI NO₂ concentration (mean NO₂ concentration between January 1 and February 28, 2019) and population density. Population density map was retrieved from Statistisches Bundesamt [\bigcirc Federal and State Statistical Offices, Germany, 2020].

Figure S2. Graphical representation of NO_X saturated and NO_X limited ozone production regime.

Figure S3. Visualization of the location of the urban study regions.

Figure S4. TROPOMI uncertainty distribution for different study period in 2019 (top) and 2020 (bottom).

Figure S5. Mean of eight metropolitan area's in-situ NO₂ (left) and O₃ (right) concentrations in 2019 and 2020.

Figure S6. Comparison between 2019 GEOS-Chem vs in-situ NO₂ and O₃ (left and middle), and 2019 GEOS-Chem vs TROPOMI NO₂ (right) for Cologne metropolitan area.

Figure S7. Mean TROPOMI NO₂ and GEOS-Chem NO₂ column densities in 2019 (January to June) at national scale.

Figure S8. The absolute difference in wind condition (left) and temperature (right) between 2020 and 2019 (2020-2019). Wind speed difference and temperature difference is plotted in 0.25-degree grid, whereas, wind direction difference (black arrow) is plotted in 1-degree grid.

Munich

Figure S9. Comparison between TROPOMI NO₂ and in-situ NO₂ (column converted) at TROPOMI overpass time (left). Comparison between TROPOMI NO₂ and 24 hour mean in-situ NO₂ (column converted) (right).

Figure S10. Same as Figure 4, but for different time period.

:

Figure S11. Monthly mean NH_3 total columns measured by IASI for the period from 2018 January to 2020 June.

Figure S12. Mean NH_3 total column measured by IASI in 2019 (left) and in 2020 (right). Daily IASI NH_3 measurements gridded at 0.25 degree resolution.

Figure S13. Mean of 2019 (from January to June) TROPOMI NO₂ measurements on weekdays

and weekends in Germany.

Figure S14. Weekly cycle of 2018 and 2019 in-situ NO₂ and O₃ concentration in Munich. Error bars represent the 1 σ of mean of respective days.