Table 1 Antibacterial efficacy of EOs nanoemulsion in foods

S.	EO/Component	Effective	Biopolymer	Fabrication	Effective over/ Test	Key findings	References
No.	nanoemulsion	constitutes		Method	organism		
				Gram (+)ve		
1	Piper nigrum	β -	Hydroxypropyl β-	Inclusion	Staphylococcus	• Minimum Inhibitory	Rakmai et al.
		caryophyllene	cyclodextrin	complex	aureus	Concentration (MIC):	(2017)
		, limonene, δ-				MIC value of	
		3-carene and				Nanoemulsion of,	
		pinene				black pepper was	
						improved 4 times	
						against the S. aureus	
						(from 1000 to 250	
						μg/mL).	
						• Effective mechanism:	
						Encapsulated oil	
						primarily acted on cell	
						membrane and inside	
						the cytoplasm.	

2	Eugenia	Eugenol and β	Chitosan	Ionic gelation		• Minimum inhibitory	Hadidi et al.
	caryophyllata	-				volume (MIV) of oil	(2020)
		caryophyllene				loaded nanoparticle is	
						2 μL against S. aureus	
						and L. monocytogenes	
						• Effective mechanism:	
						Nano-sized Clove EO	
						can penetrate bacterial	
						cell wall and destroyed	
						cell membrane.	
3	Origanum	Thymol, γ -	Polymeric poly (ε-	Nanoprecipitation		• MIC of Thymus	Granata et al.
	vulgare	terpinene, and	caprolactone)			nanoemulsion against	(2018)
		Cymene			S. aureus and	S. aureus and L.	
		Carvacrol, p-			L.	monocytogenes was	
	Thymus	Cymene, β –			monocytogenes	0.5 and 0.25 mg/mL,	
	capitatus	caryophyllene				respectively.	
		, and γ -				• In case of O. vulgare	
		terpinene				nanoemulsion MIC	
						was 0.5 and 1 mg/mL	
						against S. aureus and	
						L. monocytogenes,	
						respectively.	

						•	Effective me	chanism:			
							Effective cor	nstituents			
							of EO encaps	ulated in			
							polycaprolact	one able			
							to interact w	ith outer			
							cell me	embrane,			
							increasing				
							permeability	and			
							fluidity, whic	h causes			
							structural	and			
							functional da	mage to			
							cell membran	e.			
4	Moringa	Palmitic acid	Chitosan	Ionic gelation		•	М.	oleifera	Lin	et	al.
	oleifera	and phytol					nanoemulsion	acted as	(2019))	
							promising				
							antibacterial	agent			
							against S. au	reus and			
							L. monocytog	enes at 4			
							°C and 25 °C o	during 10			
							days storage of	of cheese			
							without	affecting			
1	1		1	1	1	1					

						organoleptic	
						properties.	
						• Effective mechanism:	
						After treatment	
						bacteria with	
						encapsulated oil	
						disturbed the cell	
						membrane resulting	
						the leakage of cell	
						contents.	
5	d-Limonene	-	ϵ -polylysine (ϵ -	High pressure	S. aureus	• d-limonene	Zahi et al.
			PL)	Homogenization	Bacillus	nanoemulsion	(2017)
					subtilis and	encapsulated into ε-PL	
					Saccharomyces	resulted in synergistic	
					cerevisiae	antimicrobial activity	
						against the wide range	
						Gram +ve and Gram -	
						ve bacteria.	
	1	1		Gram (-)ve	-		1
6	Piper nigrum	-	Hydroxypropyl β-	Inclusion		Minimum Inhibitory	Rakmai et al.
			cyclodextrin	complex		Concentration (MIC):	(2017)
						Improvement in MIC	
1						-	

						value from against E.
						coli from 2000 to 500
						μg/IIIL.
						• Effective mechanism-
						Encapsulated oil
					Escherichia coli	primarily acted on cell
						membrane and
						cytoplasm
7	Thymus	-	Tween 80 (2%	Sonication	-	Minimum Inhibitory Moghimi et
	daenensis		w/w), and lecithin			Concentration (MIC): al. (2016b)
			(0.001% w/w)			The nanoemulsion
						showed effective
						inhibitory action
						against <i>E. coli</i> with
						MIC 0.4 mg/mL.
						• Effective
						mechanism:The
						formulation inhibited
						the E. coli population
						by enhancing
						mechanism of action,
						bringing the EOs into
1	1	1		1		

							close proximity with
							the plasma membrane.
8	Thymus	Thymol, para-	Casein	and	Spray drying		Minimum Inhibitory Radünz
	vulgaris	cymene,	maltodextrin				Concentration (MIC): (2020)
		linalool,					Encapsulated EO
		terpinene,α-					showed 0.1 mg/mL
		pinene, and					MIC value against S.
		carvacrol					typhimurium, L.
							monocytogens, S.
							aureus and E. coli.
							• Effective mechanism:
							Encapsulated EO
							showed higher
							antimicrobial activity
							in comparison to
							thyme EO through
							slow release of volatile
							components that
							protected by wall
							materials during in situ
							storage of hamburger
							like meat product.

9	Utrica dioica	Carvacrol,	Chitosan	Ionic gelation	•	The nanoencapsulated	Bagheri et al.
		carvone,				nettle EO boosted the	(2021)
		naphthalene,				antibacterial activity	
		and anethol				against the foodborne	
						bacteria viz. S. aureus,	
						L. monocytogenes, S.	
						typhi, E. coli, and B,	
						cereus	
10	Melaleuca	Terpinene-4-	β-cyclodextrin	Inclusion	•	TTO/ β -CD inclusion	Cui et al.
	alternifolia	ol, γ-		complex		complex enhanced the	(2018)
		terpinene, and				shelf life of beef	
		terpinene				against E. coli and	
						inhibited 99.99% food	
						spoilage bacteria at 4	
						°C over 7 days storage.	
11	Cinnamomum	Cinnamaldehy	Medium-chain	Emulsification	•	MIC value of	Tian et al.
	zeylanicum	de	triglyceride			cinnamaldehyde	(2016)
						nanoemulsion was 98	
						µg/mL against <i>E. coli</i> .	
					•	Effective mechanism:	
						Encapsulation of	
						cinnamaldehyde	

						showed strong inhibitory effect against <i>E. coli</i> within 9	
						h of treatment.	
12	Cinnamon oil	Eugenol and cinnamaldehy de	Coconut oil, and Tween 80	Microfluidizati on and Ultrasonication		• Nanoemulsion showed promising application in food sector against the <i>E.coli</i> .	Yildirim et al. (2017)
13	Cinnamaldehy de	-	Chitosan	Ionic gelation	Pseudomonas aeruginosa	• MIC of cinnamaldehyde nanoemulsion against	Subhaswaraj et al. (2018)

						P. aeruginosa was
						found to be 1000
						μg/mL.
						• Cinnamaldehyde
						nanoemulsion
						inhibited quorum
						sensing activity and
						prevented food
						spoilage with
						controlled as well as
						slow release at specific
						sites.
14	Cinnamon oil	Cinnamaldehy	Chitosan and	Nanoprecipitati	E. coli,	• Antibacterial activity Yang et al.
		deand α-	whey protein	on	P. fragi, and	of cinnamon oil (2021)
		pinene			Shewanella	emulsion against S.
					putrefaciens	aureus was observed
						at 0.041%.
						• Cinnamon oil
						emulsion acted as
						strong antimicrobial
						and long-lasting
						biological molecule

						against various food contaminating Gram +ve and Gram –ve bacteria indicating utilization as potential preservative in food
1.5						industry.
15	Rosmarinus	-	Chitosan (CS) and	Sonication	Salmonella	• Nanogel of <i>R</i> . Hadian et al.
	officinalis		benzoic acid (BA)		typhimurium	officinalis showed the (2017)
						MIC value 5 µg/mL
						against the S.
						typhimurium.
						• Nanogel of <i>R</i> .
						officinalis applied on
						beef cutlet at the rate
						of 0.5 mg/g had
						positive effects on the
						color and shelf-life.
16	Cinnamodendr	1,8-cineole	Chitosan and Zein	Nanoprecipitati	S. typhimurium	• Nanoemulsion of C. Xavier et al.
	on dinisii			on	and Shigella	dinisii film showed (2021)
					flexneri	greater antimicrobial
						activity against Gram

						-ve bacteria and
						stabilized the
						deterioration reaction
						in ground beef leading
						to prolong shelf-life
						under refrigerated
						storage.
17	Lime oil	-	Chitosan	Nanoprecipitati	Shigella	Chitosan nanoparticles Sotelo-Boyás
				on	dysenteriae	incorporating lime EO et al. (2017)
						performed highest
						antibacterial activity
						against S. dysenteriae
						and inhibition halo
						(HI) value was 3.5 cm
						(HI) value was 3.5 cm

S. No.	Effective over/ Test organism	EO/Component (nanoemulsion)	Effective constituents	Biopolymer	Method	Key findings	References
1		Origanum majorana	Terpinen-4-ol, α-terpineol, linalool, and caryophyllene	Chitosan	Ionic gelation	 MIC of <i>O. majorana</i> EO nanoemulsion was observed to be 1µL/mL against <i>A. flavus</i>. Effective mechanism: <i>O.</i> 	Chaudhari et al. (2020)
	A. flavus					majoranaEOnanoemulsionshowedremarkableinhibitory efficacy against theA. flavusgrowth and AFB1productionascomparedtofreeO.majoranaEObyenhancingreductionofergosterolconcentration.	
2		Eugenia caryophyllata	Eugenol and caryophyllene	Chitosan	Sonication	 <i>E.</i> caryophyllata EO nanoemulsion showed remarkable antifungal (0.25 μL/mL) and aflatoxin B₁ 	Kujur et al. (2021)

Table 2. Antifungal efficacy of EOs nanoemulsion in food

					•	inhibitory $(0.15 \ \mu L/mL)$ activity. <i>E. caryophyllata</i> EO nanoemulsion exhibited promising fungitoxic, aflatoxin B ₁ inhibitory activity and preserved the sensory properties of six month stored maize seeds.	
3	Cuminum cyminum	-	Chitosan and Caffeic acid	Sonication	•	Encapsulated <i>C. cyminum</i> EO showed promising MIC (350 ppm) against <i>A. flavus</i> under sealed condition as compared to free oil (650 ppm).	Zhaveh et al. (2015)
4	Orange oil	-	β- cyclodextrin	Inclusion complex	•	Orange EO nanoemulsion showed complete inhibition at 900 mg/mL. Nanoencapsulated EO improved the antimicrobial activity in contaminated cakes	Kringel et al. (2021)

5		Cananga	Linalool and	Chitosan	Ionic	C. odorata EO nanoemulsion Upadhyay	et
		odorata	benzyl acetate		gelation	reduced the A. flavus growth al. (2021)	
						and aflatoxin B_1 secretion at	
						1.0 and 0.75 μL/mL,	
						respectively.	
6		Eugenol	-	Chitosan	Ionic	• Eugenol nanoemulsion Das et a	ıl.
					gelation	showed antifungal and (2021a)	
						aflatoxin B ₁ inhibitory	
						activity at 0.07 and 0.06	
						μL/mL concentration,	
						respectively.	
						• Eugenol-loaded chitosan	
						nanoemulsion significantly	
						protected the rice seeds from	
						fungal, AFB ₁ contamination,	
						lipid peroxidation and	
						maintained their mineral	
						contents and macronutrients	
7	A. niger	Eugenia	Eugenol	Chitosan	Ionic	• Inhibition of A. niger Hasheminejad	
		caryophyllata			gelation	mycelial growth was 1.5 et al. (2019)	
						mg/mL.	

8		Cinnamon leaf	Eugenol,	Whey protein	High	• 0.25 µg/mL concentration of Ribes et al.
		oil	benzyl		pressure	CEO inhibited 75% fungal (2017)
			benzoate,		homogeniza	population, whereas, the
			caryophyllene,		tion	same concentration in
			and			nanoemulsion form was
			aceteeugenol			noted to completely inhibit A.
						niger population.
9		Schinus molle	D-limonene, O-	Chitosan	Ionotropic	Nanoencapsulated S. molle López-
			cimene, β-		gelation	EO at 500 μ g/mL Meneses et al.
			phellandrene,			concentration showed strong (2018)
	A. parasiticus		δ -cadinene and			antifungal and
			caryophillene			antiaflatoxigenic activity.
10		Schinus molle	D-limonene, β -	Chitosan	Nanoprecipi	• S. molle EO nanoemulsion Luque-Alcaraz
			phellandrene,a		tation	effectively reduced (40-50%) et al. (2016)
			nd o-cimene			viable spores of A.
						parasiticus.
						• Antifungal effect of emulsion
						due to cytoplasmic
						coagulation, protoplast
						leakage and loss of
						conidiation.

11		Origanum	α-pinene, β-	Chitosan	Electrospray	• Oil loaded chitosan emulsion Yilmaz et al.
		vulgare	myrcene,		ing	showed antifungal activity (2019)
			carvacrol,		deposition	associated with destruction
			borneol,			of cell membrane
	Alternaria		caryophyllene,			permeability as well as
	alternata		γ-terpinene, ρ-			remarkable depolarization of
			cymene and			membrane.
			terpinolene			Oregano EO loaded
						nanoemulsion can be used in
						agriculture and food industry
						as a promising fungicidal
						agent against A. alternata.
12		α-pinene	-	Chitosan	Nanoprecipi	• Nanoemulsion inhibited A. Hernández-
					tation	alternata growth during the López et al.
						cold storage of bell peppers (2020)
						and maintained the
						physiochemical property
13	Penicillium	Litsea cubeba	Neral and	β-	Inclusion	• MIC values of <i>L. cubeba</i> EO Wang et al.
	italicum		limonene	cyclodextrin	complex	nanoemulsion was found to (2020)
	P. digitatum					be 3.13, 1.56, and 0.78
	and					mg/mL against P. italicum, P.

	Geotrichum					digitatum and G. candidum,	
	citri-aurantii					respectively.	
						• L. cubeba EO nanoemulsion	
						exhibited antifungal activity	
						and preserved citrus fruits	
						from postharvest decay and	
						disease.	
14	Р.	Ocimum	Methyl	Saponin	Ultrasonicat	• The nanoemulsion of basil oil Gundewa	idi et
	chrysogenum	basilicum	chavicol and		ion	had higher antifungal activity al. (2018))
	and		linalool			against food spoilage fungi.	
	A. flavus					Nanoemulsion at 1000 ppm	
						concentration displayed 64-	
						67% inhibitory activity over	
						P. chrysogenum and A.	
						flavus.	
15	Fusarium	Cymbopogon	Geraniol,	Chitosan	Ionic	• C. martini EO nanoemulsion Kalagatu	r et al.
	graminearum	martini	geranial,		gelation	completely inhibited the (2018)	
			geranyl			growth of F. graminearum	
			propionate and			and mycotoxins at 700 and	
			geranyl			900 ppm.	
			acetone			• C. martini EO nanoemulsion	
						showed remarkable	

			antifungal and	
			antimycotoxigenic activity	
			against F. graminearum	
			during 28 days storage of	
			maize grain.	

S.	Essential oil or	Packaging types/	Food products	Type of	Biological activity	Reference
No.	their active	Emulsifier/Carrier		microorganism		
	ingredients					
1	Citral	Tween 80/Sodium	Pineapple fruit	Salmonella	• Sodium alginate based edible	Prakash et al.
		alginate		enterica S.	coating of different	(2020)
				typhimurium and	concentration of citral	
				L. monocytogenes	nanoemulsion i.e. 0.1%	
					(NE1), 0.5% (NE2), and 1%	
					(NE3) significantly reduced	
					the microbial load of fresh cut	
					pineapples during storage for	
					12 days.	
					• High concentration of citral in	
					NE3 led to improvement in the	
					sensory quality and texture of	
					pineapple, thus the NE2 could	
					be explored as for commercial	
					application.	
2	Carvacrol	Tween 80/ Starch	Vegetables and	E. coli	Carvacrol nanoemulsion	de Souza et al.
		Polymer/Montmori	fruits		showed strong antimicrobial	(2020)
		llonite			efficacy in food packaging	

Table 3. Application of nanoencapsulated EO in active packaging of food products

					against <i>E. coli</i> due to destabilization and partial destruction of bacterial cell membrane, electron transport, respiration and permeability.
3	Linalool	Tween 80	Pineapple fruit	S. typhimurium	 Nanoemulsion biofilm on the surface of cut pineapple (2019) effectively reduced the <i>S</i>. <i>typhimurium</i> and increased the shelf life of cut pineapple. Nanoemulsion enhanced twofold antibacterial activity against <i>S</i>. <i>typhimurium</i> by increasing ability to cell membrane integrity.
4	Origanum virens	Whey protien	Sausages	L. monocytogenes	 Coating of Portuguese sausage Catarino et al. delayed the lipid peroxidation (2017) and inhibited the growth of <i>L. monocytogenes</i> during storage condition. EO coating enhanced the antibacterial activity of oil via

					sustained release as well as	
					increased the solubility of oil.	
5	Rosmarinus	Chitosan/ ε-Poly-	Carbonado	All types of	• Total bacterial count reduced	Huang et al.
	officinalis	L-lycine	chicken	microorganism viz.	effectively by nanoemulsion	(2020)
				Coliform, molds	coating and enhances the shelf	
				and Yeast	life of carbonado chicken meat	
					during 6 days storage.	
					• Similar results found in case of	
					Yeast and molds.	
6	Zataria	Tween 80/	Turkey fillet	S. enteritidis and L.	• Shelf life of turkey fillet could	Keykhosravy et
	multiflora and	Chitosan		monocytogens	be extended to 9 days by using	al. (2020)
	Bunium				nanoemulsion containing oil	
	persucum				during 20 days storage at	
					refrigeration condition.	
					• Turkey meat coated with	
					nanoemulsion of Zataria	
					multiflora EO (1%) showed	
					best antibacterial activity.	
7	Thymus	Tween 80/	Ground beef	Staphylococcus	• Active biopolymer films	Almasi et al.
	vulgaris	Calcium alginates		aureus, E. coli,	revealed high antimicrobial	(2021)
				Yeast and Molds	activity in agar test agar	

					diffusion tests, when apply to
					package ground beef.
8	Lemmon grass	Tween 80/	Grape berries	S. typhimurium	• The nanoemulsion coating Oh et al. (2017)
	oil	Chitosan			showed greater efficiency in
					microbial safety against
					Salmonella and preserving
					ready-to-eat grape berries.
9	Ferulago	Gelatin-Chitosan	Turkey Meat	S. aureus and	• Turkey meat packed with Naseri et al.
	angulate			Coliform	gelatin-chitosan film (2020)
					containing 0.5% Ferulago
					angulate EO reduced the
					microbial growth and
					enhances the shelf life of
					preserved the turkey meat.
10	Cuminum	Tween 80	Fruits and	E. coli, and S.	• Cumin and pepper oil Amrutha et al.
	cyminum and		vegetables	enterica	nanoemulsion inhibited the (2017)
	Piper nigrum				bacterial population on fruits
					and vegetable by forming
					biofilm.
					• MIC of Cumin oil
					nanoemulsion against E. coli,

					 and S. enterica was 100 and 80 μL/mL receptively. MIC of Pepper oil against E. coli, and S. enterica was 120 and 140 μL/mL, receptively.
11	Eryngium	Tween	Cherry fruit	Mesophilic aerobic	• Coating on cherries decreased Arabpoor et al.
	campestre	80/Chitosan		bacteria	the microbial population and (2021)
					weight loss compared to
					control during storage.
					• Coating enhanced the
					firmness, pH, antioxidant
					activity and total phenolic
					content.
12	Thymol	Poly-(lactic)	Bread	Aspergillus spp.	• The antifungal activity of Suwanamornlert
		acid/poly		and <i>Penicillium</i>	thymol coated film was very et al. (2020)
		(butylene-		spp.	efficacious against the
		succinateco-			Aspergillus and Penicillium
		adipate)			spp. in both packed bread and
		(PLA/PBSA)			<i>in vitro</i> condition.
		blend film			
13	Cinnamon Oil	Tween 80	Bread	P. digitatum	• The film having 1.5 and 3% Fasihi et al.
					Cinnamon oil showed no (2019)

		/Carboxymethyl			n	nycelial growth of <i>P</i> .	
		cellulose/polyvinyl			d	<i>ligitatum</i> over 60 days	
		alcohol			ir	ncubation of bread.	
					• A	Active coating at 0.5, 1.5 and	
					3	% exhibited complete fungal	
					g	growth inhibition on bread	
					s	lices.	
					• T	Thus, coating showed the	
					h	igher effectivity in	
					C	comparison to films during	
					ir	nhibition of fungal growth in	
					b	pread slices.	
14	Origanum	Tween 20/ Basil	Apricot	Yeast and Molds	• C	Coating significantly	Hashemi et al.
	vulgare	Seed Gum (BSG)			ir	mproved the EO	(2017)
					d	lispersibility.	
					• C	Coatings of BSG + 6%	
					C	Driganum oil was showed the	
					n	nost effective in reducing	
					y	reast and molds population,	
					e	extending the shelf life of	
					aj	pricot cuts.	

15	Mentha	Chitosan	Grape fruits	A. niger, Botryti.	•	The	combined	effect	of	Guerra	et	al.
	piperata			cinerea, P		chitosa	an and	Mentha	oil	(2016)		
				expansum and R		effecti	vely delay	ed the rat	e of			
				stolonifer		grape	decay duri	ing storag	e at			
						room and low temperature.						
					•	Coatin	igs of gi	rape barı	riers			
						strong	ly reduce	d the n	nold			
						infecti	ons by	increa	sing			
						antiba	cterial	activity	of			
						coating	gs.					
16	Cinnamon Oil	Chitosan	Cherry Fruits	P. citrinum and A	•	Cinna	mon oil i	improved	the	Xing et a	ıl. (20	016)
				flavus		growtł	n inhibit	ion of	Р.			
						citrinu	um from 3	33.17 mm	1 to			
						36.23 mm with increasing						
						concentration from 1% to 4%						
						respec	tively.					
					•	Simila	r result ob	tained in o	case			
						of <i>A</i> . <i>f</i>	lavus. Grov	wth inhibi	tion			
						from 3	31.12 mm	to 35.28	mm			
						with i	ncreasing	concentra	tion			
						from 1	% to 4% r	respectivel	ly.			
	4				1					1		

17	Lemmon grass	Flaxseed Gum	Pomegranate	Yeast and Molds	•	The coating enhanced the	Yousuf, and
	oil	(FSG)	Arils			potential of oil to enter the cell	Srivastava
						and improves the interaction	(2017)
						between cell and oil.	
					•	The coatings significantly	
						reduce the number of microbes	
						and maintain the intrinsic	
						colour of pomegranate arils.	

Supplementary references:

- Almasi, L., Radi, M., Amiri, S., and McClements, D. J. (2021). Fabrication and characterization of antimicrobial biopolymer films containing essential oil-loaded microemulsions or nanoemulsions. Food Hydrocoll., 117, 106733. https://doi.org/10.1016/j.foodhyd.2021.106733
- Amrutha, B., Sundar, K., and Shetty, P. H. (2017). Spice oil nanoemulsions: Potential natural inhibitors against pathogenic E. coli and *Salmonella* spp. from fresh fruits and vegetables. LWT., 79, 152-159. https://doi.org/10.1016/j.lwt.2017.01.031
- Arabpoor, B., Yousefi, S., Weisany, W., and Ghasemlou, M. (2021). Multifunctional coating composed of *Eryngium campestre* L. essential oil encapsulated in nano-chitosan to prolong the shelf-life of fresh cherry fruits. Food Hydrocoll., 111, 106394. https://doi.org/10.1016/j.foodhyd.2020.106394
- Bagheri, R., Ariaii, P., and Motamedzadegan, A. (2021). Characterization, antioxidant and antibacterial activities of chitosan nanoparticles loaded with nettle essential oil. J. Food Meas. Charact. 15(2), 1395-1402. https://doi.org/10.1007/s11694-020-00738-0
- Catarino, M. D., Alves-Silva, J. M., Fernandes, R. P., Gonçalves, M. J., Salgueiro, L. R., Henriques, M. F., et al., (2017). Development and performance of whey protein active coatings with *Origanum virens* essential oils in the quality and shelf life improvement of processed meat products. Food Cont., 80, 273-280. https://doi.org/10.1016/j.foodcont.2017.03.054
- Chaudhari, A. K., Singh, V. K., Das, S., Prasad, J., Dwivedy, A. K., and Dubey, N. K. (2020).
 Improvement of in vitro and in situ antifungal, AFB₁ inhibitory and antioxidant activity of *Origanum majorana* L. essential oil through nanoemulsion and recommending as novel food preservative. Food Chem. Toxicol. 143, 111536. https://doi.org/10.1016/j.fct.2020.111536
- Cui, H., Bai, M., and Lin, L. (2018). Plasma-treated poly (ethylene oxide) nanofibers containing tea tree oil/beta-cyclodextrin inclusion complex for antibacterial packaging. Carbohydr. Polym. 179, 360-369. https://doi.org/10.1016/j.carbpol.2017.10.011

- Das, S., Singh, V. K., Dwivedy, A. K., Chaudhari, A. K., and Dubey, N. K. (2021a). Eugenol loaded chitosan nanoemulsion for food protection and inhibition of Aflatoxin B1 synthesizing genes based on molecular docking. Carbohydr. Polym. 255, 117-339. https://doi.org/10.1016/j.carbpol.2020.117339
- de Souza, A. G., Dos Santos, N. M. A., da Silva Torin, R. F., and dos Santos Rosa, D. (2020). Synergic antimicrobial properties of Carvacrol essential oil and montmorillonite in biodegradable starch films. Int. J. Biol. Macromol., 164, 1737-1747. https://doi.org/10.1016/j.ijbiomac.2020.07.226
- Fasihi, H., Noshirvani, N., Hashemi, M., Fazilati, M., Salavati, H., and Coma, V. (2019). Antioxidant and antimicrobial properties of carbohydrate-based films enriched with cinnamon essential oil by Pickering emulsion method. Food Packag. Shelf Life., 19, 147-154. https://doi.org/10.1016/j.fpsl.2018.12.007
- Granata, G., Stracquadanio, S., Leonardi, M., Napoli, E., Consoli, G. M. L., Cafiso, V., et al. (2018). Essential oils encapsulated in polymer-based nanocapsules as potential candidates for application in food preservation. Food Chem. 269, 286-292. https://doi.org/10.1016/j.foodchem.2018.06.140
- Guerra, I. C. D., de Oliveira, P. D. L., Santos, M. M. F., Lúcio, A. S. S. C., Tavares, J. F., Barbosa-Filho, J. M., et al., (2016). The effects of composite coatings containing chitosan and *Mentha* (piperita L. or x villosa Huds) essential oil on postharvest mold occurrence and quality of table grape cv. Isabella. Innov Food Sci Emerg Technol., 34, 112-121. https://doi.org/10.1016/j.ifset.2016.01.008
- Gundewadi, G., Sarkar, D. J., Rudra, S. G., and Singh, D. (2018). Preparation of basil oil nanoemulsion using *Sapindus mukorossi* pericarp extract: Physico-chemical properties and antifungal activity against food spoilage pathogens. Ind. Crops Prod. 125, 95-104. https://doi.org/10.1016/j.indcrop.2018.08.076
- Hadian, M., Rajaei, A., Mohsenifar, A., and Tabatabaei, M. (2017). Encapsulation of *Rosmarinus* officinalis essential oils in chitosan-benzoic acid nanogel with enhanced antibacterial activity in beef cutlet against *Salmonella typhimurium* during refrigerated storage. LWT, 84, 394-401. https://doi.org/10.1016/j.lwt.2017.05.075

- Hadidi, M., Pouramin, S., Adinepour, F., Haghani, S., and Jafari, S. M. (2020). Chitosan nanoparticles loaded with clove essential oil: Characterization, antioxidant and antibacterial activities. Carbohydr. Polym. 236, 116-075. https://doi.org/10.1016/j.carbpol.2020.116075
- Hashemi, S. M. B., Khaneghah, A. M., Ghahfarrokhi, M. G., and Eş, I. (2017). Basil-seed gum containing *Origanum vulgare* subsp. viride essential oil as edible coating for fresh cut apricots. Postharvest Biol. Technol., 125, 26-34. https://doi.org/10.1016/j.postharvbio.2016.11.003
- Hasheminejad, N., Khodaiyan, F., and& Safari, M. (2019). Improving the antifungal activity of clove essential oil encapsulated by chitosan nanoparticles. Food Chem. 275, 113-122. https://doi.org/10.1016/j.foodchem.2018.09.085
- Hernández-López, G., Ventura-Aguilar, R. I., Correa-Pacheco, Z. N., Bautista-Baños, S., and Barrera-Necha, L. L. (2020). Nanostructured chitosan edible coating loaded with α-pinene for the preservation of the postharvest quality of *Capsicum annuum* L. and *Alternaria alternata* control. Int. J. Biol. Macromol., 165, 1881-1888. https://doi.org/10.1016/j.ijbiomac.2020.10.094
- Huang, M., Wang, H., Xu, X., Lu, X., Song, X., and Zhou, G. (2020). Effects of nanoemulsionbased edible coatings with composite mixture of rosemary extract and ε-poly-L-lysine on the shelf life of ready-to-eat carbonado chicken. Food Hydrocoll., 102, 105576. https://doi.org/10.1016/j.foodhyd.2019.105576
- Kalagatur, N. K., Nirmal Ghosh, O. S., Sundararaj, N., and Mudili, V. (2018). Antifungal activity of chitosan nanoparticles encapsulated with *Cymbopogon martinii* essential oil on plant pathogenic fungi *Fusarium graminearum*. Front. pharmacol. 9, 610. https://doi.org/10.3389/fphar.2018.00610
- Keykhosravy, K., Khanzadi, S., Hashemi, M., and Azizzadeh, M. (2020). Chitosan-loaded nanoemulsion containing *Zataria multiflora* Boiss and *Bunium persicum* Boiss essential oils as edible coatings: Its impact on microbial quality of turkey meat and fate of inoculated pathogens. Int. J. Biol. Macromol., 150, 904-913. https://doi.org/10.1016/j.ijbiomac.2020.02.092

- Kringel, D. H., Lang, G. H., Dias, Á. R. G., Gandra, E. A., Valente Gandra, T. K., and da Rosa Zavareze, E. (2021). Impact of encapsulated orange essential oil with β-cyclodextrin on technological, digestibility, sensory properties of wheat cakes as well as *Aspergillus flavus* spoilage. J. Sci. Food Agric. https://doi.org/10.1002/jsfa.11211
- Kujur, A., Kumar, A., and Prakash, B. (2021). Elucidation of antifungal and aflatoxin B₁ inhibitory mode of action of *Eugenia caryophyllata* L. essential oil loaded chitosan nanomatrix against *Aspergillus flavus*. Pestic. Biochem. Physiol. 172, 104755. https://doi.org/10.1016/j.pestbp.2020.104755
- Lin, L., Gu, Y., and Cui, H. (2019). Moringa oil/chitosan nanoparticles embedded gelatin nanofibers for food packaging against *Listeria monocytogenes* and *Staphylococcus aureus* on cheese. Food Packag. Shelf Life. 19, 86-93. https://doi.org/10.1016/j.fpsl.2018.12.005
- López-Meneses, A. K., Plascencia-Jatomea, M., Lizardi-Mendoza, J., Fernández-Quiroz, D., Rodríguez-Félix, F., Mouriño-Pérez, R. R., et al., (2018). *Schinus molle* L. essential oilloaded chitosan nanoparticles: Preparation, characterization, antifungal and antiaflatoxigenic properties. LWT, 96, 597-603. https://doi.org/10.1016/j.lwt.2018.06.013
- Luque-Alcaraz, A. G., Cortez-Rocha, M. O., Velázquez-Contreras, C. A., Acosta-Silva, A. L., Santacruz-Ortega, H. D. C., Burgos-Hernández, A., et al. (2016). Enhanced antifungal effect of chitosan/pepper tree (*Schinus molle*) essential oil bionanocomposites on the viability of *Aspergillus parasiticus* spores. J. Nanomater. 2016. https://doi.org/10.1155/2016/6060137
- Moghimi, R., Ghaderi, L., Rafati, H., Aliahmadi, A., and McClements, D. J. (2016b). Superior antibacterial activity of nanoemulsion of *Thymus daenensis* essential oil against E. coli. Food chem. 194, 410-415. https://doi.org/10.1016/j.foodchem.2015.07.13
- Naseri, H. R., Beigmohammadi, F., Mohammadi, R., and Sadeghi, E. (2020). Production and characterization of edible film based on gelatin–chitosan containing *Ferulago angulate* essential oil and its application in the prolongation of the shelf life of turkey meat. J. Food Process. Preserv., 44(8), e14558. https://doi.org/10.1111/jfpp.14558

- Oh, Y. A., Oh, Y. J., Song, A. Y., Won, J. S., Song, K. B., and Min, S. C. (2017). Comparison of effectiveness of edible coatings using emulsions containing lemongrass oil of different size droplets on grape berry safety and preservation. LWT, 75, 742-750. https://doi.org/10.1016/j.lwt.2016.10.033
- Prakash, A., Baskaran, R., and Vadivel, V. (2020). Citral nanoemulsion incorporated edible coating to extend the shelf life of fresh cut pineapples. LWT, 118, 108851. https://doi.org/10.1016/j.lwt.2019.108851
- Prakash, A., Vadivel, V., Rubini, D., and Nithyanand, P. (2019). Antibacterial and antibiofilm activities of linalool nanoemulsions against *Salmonella typhimurium*. Food Biosci., 28, 57-65. https://doi.org/10.1016/j.fbio.2019.01.018
- Radünz, M., dos Santos Hackbart, H. C., Camargo, T. M., Nunes, C. F. P., de Barros, F. A. P., Dal Magro, J., et al., (2020). Antimicrobial potential of spray drying encapsulated thyme (*Thymus vulgaris*) essential oil on the conservation of hamburger-like meat products. Int. J. Food Microbiol. 330, 108-696. https://doi.org/10.1016/j.ijfoodmicro.2020.108696
- Rakmai, J., Cheirsilp, B., Mejuto, J. C., Torrado-Agrasar, A., and Simal-Gándara, J. (2017). Physico-chemical characterization and evaluation of bio-efficacies of black pepper essential oil encapsulated in hydroxypropyl-beta-cyclodextrin. Food Hydrocoll. Food hydrocolloids, 65, 157-164. https://doi.org/10.1016/j.foodhyd.2016.11.014
- Ribes, S., Fuentes, A., Talens, P., Barat, J. M., Ferrari, G., and Donsì, F. (2017). Influence of emulsifier type on the antifungal activity of cinnamon leaf, lemon and bergamot oil nanoemulsions against *Aspergillus niger*. Food Control. 73, 784-795. https://doi.org/10.1016/j.foodcont.2016.09.044
- Sotelo-Boyás, M. E., Correa-Pacheco, Z. N., Bautista-Baños, S., and Corona-Rangel, M. L. (2017). Physicochemical characterization of chitosan nanoparticles and nanocapsules incorporated with lime essential oil and their antibacterial activity against food-borne pathogens. LWT, 77, 15-20. https://doi.org/10.1016/j.lwt.2016.11.022
- Subhaswaraj, P., Barik, S., Macha, C., Chiranjeevi, P. V., and Siddhardha, B. (2018). Anti quorum sensing and anti biofilm efficacy of cinnamaldehyde encapsulated chitosan nanoparticles

against *Pseudomonas aeruginosa* PAO1. LWT. 97, 752-759. https://doi.org/10.1016/j.lwt.2018.08.011

- Suwanamornlert, P., Kerddonfag, N., Sane, A., Chinsirikul, W., Zhou, W., and Chonhenchob, V. (2020). Poly (lactic acid)/poly (butylene-succinate-co-adipate) (PLA/PBSA) blend films containing thymol as alternative to synthetic preservatives for active packaging of bread. Food Packag. Shelf Life., 25, 100515. https://doi.org/10.1016/j.fpsl.2020.100515
- Tian, W. L., Lei, L. L., Zhang, Q., and Li, Y. (2016). Physical stability and antimicrobial activity of encapsulated cinnamaldehyde by self-emulsifying nanoemulsion. J. Food Process Eng., 39(5), 462-471. https://doi.org/10.1111/jfpe.12237
- Upadhyay, N., Singh, V. K., Dwivedy, A. K., Chaudhari, A. K., and Dubey, N. K. (2021). Assessment of nanoencapsulated *Cananga odorata* essential oil in chitosan nanopolymer as a green approach to boost the antifungal, antioxidant and in situ efficacy. Int. J. Biol. Macromol. 171, 480-490. https://doi.org/10.1016/j.ijbiomac.2021.01.024
- Wang, Y., Yin, C., Cheng, X., Li, G., Yang, S., and Zhu, X. (2020). β-Cyclodextrin inclusion complex containing *Litsea cubeba* essential oil: Preparation, optimization, physicochemical, and antifungal characterization. Coatings, 10(9), 850. https://doi.org/10.3390/coatings10090850
- Xavier, L.O., Sganzerla, W.G., Rosa, G.B., da Rosa, C.G., Agostinetto, L., de Lima Veeck, A.P., et al., 2021. Chitosan packaging functionalized with *Cinnamodendron dinisii* essential oil loaded zein: A proposal for meat conservation. Int. J. Biol. Macromol. 169, pp.183-193. https://doi.org/10.1016/j.ijbiomac.2020.12.093
- Xing, Y., Xu, Q., Yang, S. X., Chen, C., Tang, Y., Sun, S., et al., (2016). Preservation mechanism of chitosan-based coating with cinnamon oil for fruits storage based on sensor data. Sensors., 16(7), 1111. https://doi.org/10.3390/s16071111
- Yang, K., Liu, A., Hu, A., Li, J., Zen, Z., Liu, Y., et al., 2021. Preparation and characterization of cinnamon essential oil nanocapsules and comparison of volatile components and antibacterial ability of cinnamon essential oil before and after encapsulation. Food Control. 123, p.107783. https://doi.org/10.1016/j.foodcont.2020.107783

- Yildirim, S. T., Oztop, M. H., and Soyer, Y. (2017). Cinnamon oil nanoemulsions by spontaneous emulsification: Formulation, characterization and antimicrobial activity. LWT. 84, 122-128. https://doi.org/10.1016/j.lwt.2017.05.041
- Yilmaz, M. T., Yilmaz, A., Akman, P. K., Bozkurt, F., Dertli, E., Basahel, A., et al., (2019). Electrospraying method for fabrication of essential oil loaded-chitosan nanoparticle delivery systems characterized by molecular, thermal, morphological and antifungal properties. Innov Food Sci Emerg Technol. 52, 166-178. https://doi.org/10.1016/j.ifset.2018.12.005
- Yousuf, B., and Srivastava, A. K. (2017). Flaxseed gum in combination with lemongrass essential oil as an effective edible coating for ready-to-eat pomegranate arils. Int. J. Biol. Macromol., 104, 1030-1038. https://doi.org/10.1016/j.ijbiomac.2017.07.025
- Zahi, M. R., El Hattab, M., Liang, H., and Yuan, Q. (2017). Enhancing the antimicrobial activity of d-limonene nanoemulsion with the inclusion of ε-polylysine. Food chem. 221, 18-23. https://doi.org/10.1016/j.foodchem.2016.10.037
- Zhaveh, S., Mohsenifar, A., Beiki, M., Khalili, S. T., Abdollahi, A., Rahmani-Cherati, T., et al., (2015). Encapsulation of *Cuminum cyminum* essential oils in chitosan-caffeic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Ind. Crops Prod. 69, 251-256. https://doi.org/10.1016/j.indcrop.2015.02.028