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Short description of Supporting Online Material 
In this Supporting Online Material (SOM), we show a more thorough performance 
assessment and provide more details about the used data set and the underlying 
redundancy reduction (2.1), the Machine Learning (ML) method (Fig. S13), the 
MMseqs2 commands (Section 2.3), the calculation of error estimates (Section 2.4) 
and related work (Section 3).  
Section 1.1 provides more details about the performance of bindEmbed21DL 
showing an assessment on various data sets (Table S1, Table S3), a comparison to 
random (Table S2) and a binarized version of bindEmbed21DL, namely 
bindEmbed21DL-binary (Table S6), and a more thorough analysis of the effect of 
over-prediction (Table S4) and cross-predictions (Table S5) on the overall 
performance of bindEmbed21DL.  
Over-predictions could be reduced and therefore performance increased by only 
considering residues as binding if at least x residues were predicted as binding in 
this protein (Fig. S6). Additionally, the output probability of the method could be used 
to influence CovOneBind, CovNoBind, and precision (Section 1.5). 
A more thorough comparison of different annotations used to define binding showed 
that the used annotations could highly affect the performance of a prediction method 
(Section 1.2&1.4, Fig. S3). However, the performance improvement of 
bindEmbed21DL over its predecessor bindPredictML17 was mainly due to replacing 
MSA-based input features with embeddings (Section 1.3, Fig. S2). 
Combining bindEmbed21DL with homology-based inference (HBI) allowed an 
increase of precision and F1 even for high E-value thresholds, while recall dropped 
below the level of bindEmbed21DL for E-values >10-3 (Fig. S7). Small changes in 
performance were due to only few new residues being inferred as binding for higher 
E-values (Fig. S8). Combining both approaches at an E-value cutoff of 10-3 led to an 
increase in CovNoBind but a drop in CovOneBind (Table S9). 
bindEmbed21DL could be applied to obtain binding residues predictions for 92% of 
the human proteome (Section 1.7, Table S10, Table S11). A comparison of the 
distributions of prediction scores for experimentally verified binding residues, 
residues inferred through HBI, and previously unknown binding residues showed 
that previously unknown binding residues were predicted with on average slightly 
lower probability (Fig. S9). Neither an enrichment of disorder proteins nor 
transmembrane proteins nor a different length distribution could explain this 
difference (Fig. S10). 
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1. Additional Results 

1.1. Details on performance assessment of bindEmbed21DL. 

Table S1: Average performance for development set, test set, and new 
independent set. * 

Set  Precision Recall F1 MCC 

DevSet1014 

Metal ions 25±3% 27±3% 24±2% 0.24±0.02 
Nucleic acids 18±3% 21±4% 18±3% 0.15±0.03 
Small 
molecules 

27±2% 30±2% 26±2% 0.23±0.02 

Any ligand 
binding 

37±2% 52±2% 39±2% 0.36±0.02 

TestSet300 

Metal ions 23±4% 25±5% 22±4% 0.22±0.04 
Nucleic acids 32±7% 23±6% 24±6% 0.22±0.06 
Small 
molecules 

34±4% 37±4% 33±3% 0.31±0.03 

Any ligand 
binding 

46±3% 52±3% 43±2% 0.41±0.02 

TestSetNew46 

Metal ions 25±14% 28±15% 26±14% 0.3±0.1 
Nucleic acids 22±15% 37±20% 19±11% 0.2±0.1 
Small 
molecules 

31±10% 34±12% 29±9% 0.25±0.09 

Any ligand 
binding 

37±7% 60±10% 37±6% 0.35±0.06 

* We show precision, recall, F1, and MCC for the three sets used to evaluate 
bindEmbed21DL: Validation (DevSet1014), test (TestSet300), and a new 
independent test set of proteins added to BioLiP after November 2019 and non-
redundant in itself and to the other two sets (TestSetNew46). Performance was 
similar for DevSet1014 and TestSetNew46, while bindEmbed21DL achieved 
better values for TestSet300. Therefore, bindEmbed21DL achieved good 
performance on the original data as well as succeeded in predicting binding 
residues for newer proteins. Error estimates indicate 95% confidence intervals. 
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Table S2:Average performance for random approach on the test set. * 

TestSet300 

Metal ions 2±1% 1±1% 1±1% -0.01±0.01 
Nucleic acids 8±3% 6±3% 6±2% 0.01±0.02 
Small 
molecules 

7±1% 7±1% 6±1% 0.00±0.01 

Any ligand 
binding 

11±1% 11±1% 9±1% 0.00±0.01 

* We show precision, recall, F1 and MCC for the test set (TestSet300) using a 
random prediction. Random was generated by randomly shuffling the prediction 
probabilities of bindEmbed21DL. Error estimates indicate 95% confidence 
intervals. 

 
Performance differed between ligand classes (Table S1). This could be due to 
differences in biophysical properties (i.e., small molecule binding was more clearly 
encoded in the embeddings) or due to differences in the data distribution (i.e., small 
molecule binding was more abundant in the development set, Table S12). To 
investigate, we re-trained bindEmbed21DL using a smaller development set of 515 
proteins (DevSet515, Table S3) with only 108 proteins binding to small molecules. 
For this new set, performance of small molecule binding dropped immensely by 22 
percentage points (Table S3). This suggested that rather data abundance than 
biophysical properties explained the difference in performance. If anything, it rather 
seems that nucleic acid binding was easier to predict due to the biophysical 
properties being more clearly encoded in the embeddings because this ligand class 
was predicted with an acceptable performance (Table S1) even though the number 
of proteins in DevSet1014 was fairly small compared to the other two classes (Table 
S12). 
 

Table S3: Average performance when training on subset of the development 
set. * 

Set  Precision Recall F1 MCC 

DevSet515 

Metal ions 33±3% 39±4% 34±3% 0.34±0.03 
Nucleic 
acids 

26±4% 24±4% 22±4% 0.18±0.03 

Small 
molecules 

12±4% 3±1% 4±2% 0.05±0.02 

Any ligand 
binding 

41±3% 48±3% 39±3% 0.37±0.02 

* We show precision, recall, F1, and MCC for a smaller development set 
(DevSet515) with only 108 proteins binding to small molecules. Training on this 
set, performance for small molecule binding dropped immensely indicating that 
this class was predicted better than the other classes on the original development 
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set (DevSet1014, Table S1) because it was overrepresented in the training set. 
Error estimates indicate 95% confidence intervals. 

 
While for all three ligand classes for over 86% of the proteins at least one residue 
was predicted as binding (CovOneBind, Eqn. 8 in main text) (metal 86%, nucleic 
93%, small 96%, Table S4), this high coverage of experimentally known ligands 
came from what appeared to be over-prediction as measured by the fraction of 
proteins not experimentally known (yet) to bind a particular ligand for which one was 
deemed to have been incorrectly predicted (1-CovNoBind(l), Eqn. 9 in main text): 
While binding to nucleic acids was only predicted for 19% of proteins without 
experimental data for nucleic acid binding (1-CovNoBind(nucleic acid)=100%-81%), 
this number rose to three fourth of the proteins for small molecules (Table S4). Metal 
ions and small molecules were also most often cross-predicted, i.e., residues in fact 
binding to small molecules were often predicted as binding to metal ions and vice 
versa (Table S5). This also explained the higher performance of the binary prediction 
(binding vs non-binding) compared to the performance for the individual ligand 
classes: Some residues were incorrectly predicted as binding to a certain ligand 
class and, therefore, were considered as false positives for this ligand class, but they 
could be in general involved in binding.  
 

Table S4: CovOneBind and CovNoBind for bindEmbed21DL. * 
 CovOneBind (Eqn. 8) CovNoBind(l) (Eqn. 9) 
Metal ions 86% 37% 
Nucleic acids 93% 81% 
Small molecules 96% 25% 
Any ligand binding 99% n/a 

* In each row, CovOneBind (Eqn. 8 in main text) indicates the number of proteins for 
which at least one residue was (correctly or incorrectly) predicted to bind to this 
ligand class (or any ligand class for the last row). CovNoBind(l) (Eqn. 9 in main 
text) is the percentage of proteins not annotated to bind to a certain ligand class 
for which also no residue was predicted as binding. Since the data set did not 
contain proteins without any binding annotations, the negative coverage is not 
defined for the general prediction of binding residues (last cell in the table). While 
bindEmbed21DL achieved a reasonable coverage, the negative coverage was 
low for metal ions and small molecules indicating that too many residues were 
predicted to bind to one of these two ligand classes. Data set: DevSet1014. 
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Table S5: Confusion table of bindEmbed21DL for development set. * 
 Metal ions Nucleic acids Small 

molecules 
Non-Binding 

Metal ions 1,195 (34%) 56 (2%) 598 (17%) 1,670 (47%) 
Nucleic acids 67 (1%) 1,647 (36%) 83 (2%) 2,824 (61%) 
Small 
molecules 

784 (6%) 124 (1%) 4,341 (33%) 7,725 (60%) 

* Rows indicate residues predicted by bindEmbed21DL as binding to a specific 
ligand; columns show the experimental (true) annotations. Values in the diagonal 
in bold font marked correct predictions. Most incorrect binding predictions were in 
fact non-binding residues. In addition, many residues predicted to bind metal ions 
are in fact binding to small molecules and vice versa. Data: DevSet1014. 

 
Separately predicting whether a residue binds to a metal ion, a nucleic acid, or a 
small molecule is a more complicated prediction task than the binary distinction of 
binding and non-binding residues. To investigate whether performance could 
improve by only training on the binary task, we developed bindEmbed21DL-binary 
trained to distinguish binding from non-binding residues. On the same validation set 
as bindEmbed21DL, bindEmbed21DL-binary achieved F1=40±2%, i.e., one 
percentage point higher than bindEmbed21DL trained on three different ligand 
classes (Table S6). The two results could not be distinguished statistically, implying 
that the higher complexity in training on three ligand classes did not clearly affect 
performance. On the one hand, ML models tend to do better when applied to the 
same problem used for training, i.e., the class-agnostic method, bindEmbed21DL-
binary, should have performed better. On the other hand, when the task is better 
defined, it is better to learn, i.e., the method trained on three classes, 
bindEmbed21DL, should have performed better. The observation of “no significant 
improvement” might have been the result of these two opposing trends. 
 

Table S6: Performance of bindEmbed21DL and bindEmbed21DL-binary. * 
 Precision Recall F1 MCC 
bindEmbed21DL 37±2% 52±2% 39±2% 0.37±0.02 
bindEmbed21DL-binary 37±2% 57±2% 40±2% 0.36±0.02 

* While being trained on the more complex task of distinguishing between three 
different ligand classes, bindEmbed21DL achieved F1=39±2% being only one 
percentage point worse than bindEmbed21DL-binary (F1=40±2%) which was 
only trained on predicting binding vs non-binding residues. All performance values 
are reported on the validation set. Error estimates indicate 95% confidence 
intervals. 
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1.2. AI identified annotation errors. 
Unlike bindEmbed21DL, bindPredictML171 was trained using annotations available 
through PDB2 for enzymes and through PDIdb3 for DNA-binding proteins. However, 
some binding annotations in the PDB might reflect crystal-induced rather than 
biologically relevant binding4. Therefore, we used annotations from BioLiP4 for the 
training of bindEmbed21DL. Considering the predictions of bindPredictML17 for the 
225 test proteins, we observed a better performance when using annotations from 
BioLiP for evaluation than when using annotations from PDB or PDIdb, although 
bindPredictML17 was trained on those annotations (Fig. 2A in the main text, lighter 
shaded bars higher than lightest shade bars). First, while training on noisy data, the 
seemingly false negative predictions of bindPredictML17 (Fig. 2B in the main text, 
rightmost bar labeled ‘FN’) were in fact often due to wrong annotations in the PDB. 
Without any re-training, the number of FN dropped by almost 40% when evaluating 
on annotations from BioLiP (Fig. 2B in the main text). Hence, bindPredictML17 had 
correctly captured incorrect binding annotations as non-binding. Secondly, these 
differences highlighted the importance of using high-quality binding annotations. 
Training on less noisy data might have been one reason for the improvement of 
bindEmbed21DL over bindPredictML17. 
 

Fig. S1: Seemingly false negative predictions in fact incorrect annotations. 

 
 
Investigating the number of true positives (TP), false positives (FP), true negatives (TN), and 
false negatives (FN) revealed that bindPredictML17 predicted many more FN when 
measured by PDB annotations than by BioLiP annotations. Hence, bindPredictML17 
captured the incorrect binding annotations from the PDB correctly predicting those as non-
binding which worsened its performance when assessing on those annotations but actually 
better captured the true binding residues. More details on the comparison of 
bindPredictML17 using BioLiP or PDB annotations can be found in SOM, Section 1.2. 
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1.3. Performance gain mainly attributed to the replacement of MSAs with 
embeddings. 

To investigate whether the performance gain of bindEmbed21DL over 
bindPredictML17 was mainly due to training on less noisy data or due to the 
replacement of MSA-based input features with embeddings, we re-trained 
bindEmbed21DL using the original training set of 412 proteins and the corresponding 
binding annotations of bindPredictML17. bindEmbed21DL-PDB already 
outperformed bindPredictML17 by, e.g., 13 percentage points in terms of F1 score 
(29±2% vs. 42±3%; Fig. S2). The replacement of PDB annotations with BioLiP 
annotations which also led to an increase in data set size from 412 to 1,014 resulted 
in a performance improvement of another five percentage points. Hence, training on 
BioLiP annotations instead of PDB annotations clearly improved performance, but 
the major gain in performance was achieved by replacing MSA-based features with 
data-driven inputs, namely embeddings. 
 

Fig. S2: Embeddings outperformed MSA-based predictions. 

 
 
bindPredictML17 trained on a set of 412 proteins and PDB annotations achieved F1=29±2% 
(rightmost, lightest shaded bars). Training bindEmbed21DL on the same set but using 
embeddings as input improved performance by 13 percentage points leading to F1=42±3% 
(middle, darker shaded bars). Replacing PDB annotations with less noisy annotations from 
BioLiP improved performance by another five percentage points to F1=47±2% (leftmost, 
darkest shaded bars). This clearly showed that while using high-quality data was important, 
the major improvement was achieved by replacing MSA-based features with embeddings. 

1.4. Definition of binding highly influences performance. 
In general, bindEmbed21DL achieved a higher F1 score and precision than 
ProNA20205, while ProNA2020 achieved a higher recall indicating that ProNA2020 
predicted larger binding sites (see main text). ProNA2020 was trained on a different 
set of annotations obtained from PDIdb3 and the Protein-RNA Interface Database 
(PRIDB)6. In this set, on average 21% of residues are annotated to bind to DNA or 
RNA compared to 12% for nucleic acid binding proteins in the test set of 
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bindEmbed21DL. Therefore, ProNA2020 was trained on data where binding sites to 
DNA and RNA are more broadly defined, and therefore, consist of more binding 
residues leading to an over-prediction of binding residues from ProNA2020 for the 
test set of bindEmbed21DL. Since ProNA2020 was trained on different annotations, 
evaluating it using annotations from BioLiP is an unfair comparison. Therefore, we 
also assessed performance using the test set and annotations from ProNA2020. 
Using the 106 proteins binding to DNA or RNA from the test set of ProNA2020, 
ProNA2020 achieved F1=44±4% (Precision=45±5%, Recall=58±6%), while 
bindEmbed21DL-XNA achieved F1=38±5% (Precision=66±7%, Recall=32±5%) 
(Fig. S3). Therefore, bindEmbed21DL-XNA performed worse in terms of F1 score 
than ProNA2020 on its test set. However, the precision for bindEmbed21DL was 
significantly higher than for ProNA2020. Hence, the major difference between 
ProNA2020 and bindEmbed21DL seems to lie in the definition of what is involved in 
binding: While predictions from ProNA2020 focus on larger patches of binding 
residues, and therefore covering more of the actual binding site, bindEmbed21DL 
rather focuses on the prediction of key binding residues losing recall by making fewer 
predictions but resulting in more precise ones. 
 

Fig. S3: Comparison of bindEmbed21DL and ProNA2020 using binding 
annotations as defined by ProNA2020. 

 
 
ProNA2020 (lightest shaded bars) was trained on a different set of annotations where, on 
average, 21% of residues were annotated to bind to DNA or RNA compared to 12% in the 
test set of bindEmbed21DL. To assess the effect of this different definition of binding, we 
evaluated performance using the test set and annotations from ProNA2020. Using the 106 
proteins binding to DNA or RNA from the test set of ProNA2020, ProNA2020 achieved 
F1=44±4%, while bindEmbed21DL-XNA achieved F1=38±5%. Therefore, bindEmbed21DL-
XNA performed worse than ProNA2020 in terms of F1, recall, and MCC on its test set. 



Littmann, et al. & Rost Binding residue prediction through embeddings SOM 

Appendix p. 11 

However, the precision for bindEmbed21DL was significantly higher. Error bars indicate 95% 
confidence intervals. 

1.5. Refinement of predictions through focus on probability cutoff or 
number of predictions. 

We analyzed the trade-off between precision, recall, and CovOneBind in 
dependence of the output probability of bindEmbed21DL for the different ligand 
classes. For higher cutoffs, precision increased, while CovOneBind dropped; the 
opposite trends were observed for lower cutoffs (Fig. S4). Based on the results for 
binding in general (Fig. 3 in the main text), we expected recall to increase for lower 
and decrease for higher cutoffs. However, the trend was not that consistent: While 
recall decreased as expected for higher cutoffs for small molecules (Fig. S4C), it first 
decreased and then increased for metal ions (Fig. S4A), and first increased and then 
decreased for nucleic acids (Fig. S4B). For proteins not binding to a certain ligand 
class x for which any residue was predicted to bind to x, precision and recall were 
set to 0. Increasing the cutoff to define a residue as binding decreased the number 
of residues incorrectly predicted to bind to x. Therefore, for more proteins not bound 
to x, there were also no residues predicted to bind to x, and those proteins were then 
ignored for the performance assessment (i.e., recall and precision are not set to 0). 
Therefore, recall could increase for higher cutoffs because CovNoBind increased 
(Fig. S4).  
 

Fig. S4: Performance of bindEmbed21DL for the three different ligand classes 
for different probability cutoffs. 

 
 
Residues were considered as binding to a certain ligand class if the output probability of 
bindEmbed21DL for this class was greater or equal to a specific cutoff. Choosing larger 
cutoffs led to an increase in precision and a decrease in coverage for A. metal ions, B. 
nucleic acids, and C. small molecules. The trend was not as clear for recall. While we would 
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expect recall to decrease for higher cutoffs, it could also increase in this scenario due to an 
increase in negative coverage, i.e., if a residue is predicted to bind to a certain ligand class 
in a protein not binding to this class at all, recall is set to 0. If the number of such false 
positive predictions decreases (as it does for higher cutoffs), and therefore, less proteins are 
evaluated with a recall of 0, the recall could increase overall while actually decreasing for 
individual proteins. Black line at 0.5 marks performance for the default cutoff. 
 
Seemingly incorrect binding predictions could in fact point towards new binding sites 
not yet experimentally verified. This is especially true for binding residues predicted 
with high probability (p≥0.95). To investigate whether this assumption holds, we 
compared 1024-dimensional ProtT5 embeddings and the internal representations 
from the first CNN layer (128 dimensions) of bindEmbed21DL for annotated binding 
residues, residues correctly predicted as binding (TP), and residues incorrectly 
predicted as binding (FP). The dimensionality of the input embeddings and 
representations from bindEmbed21DL was first reduced to 32 dimensions applying 
a Principle Component Analysis (PCA)7 and was then further reduced to two 
dimensions using t-SNE8. For the original ProtT5 embeddings, falsely predicted 
binding residues formed wider spread clusters than correct predictions with the 
highly reliable predictions spread across those clusters for both false and correct 
binding predictions (Fig. S5B&C). Using the internal representations from 
bindEmbed21DL, clusters for false predictions were still more widely spread. 
However, highly reliable predictions were concentrated on the borders of the clusters 
(Fig. S5F). A similar pattern was observed for correct predictions with p≥0.95 (Fig. 
S5E). This indicated that highly reliable but false predictions were similar to correct 
predictions and could therefore point towards new potential binding residues. 
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Fig. S5: t-SNE visualizations for ProtT5 embeddings and internal 
representations of the first CNN layer for binding annotations, true positive 
and false positive predictions. 

 
 
ProtT5 embeddings (1024 dimensions) and internal representations from the first CNN layer 
of bindEmbed21DL (128 dimensions) were first reduced to 32 dimensions using a PCA and 
were then further mapped to 2-dimensional representations using t-SNE. Those 2-
dimensional representations were visualized for ProtT5 embeddings (Panel A-C) and 
representations from the first CNN layer (Panel D-F). While all residues (including non-
binding) were used to generate the 2-dimensional representations, we only visualize known 
binding residues (Panel A and D), correctly predicted binding residues (TP; Panel B and 
E), and falsely correct binding residues (FP; Panel C and F). While highly reliable 
predictions were spread among all clusters for ProtT5 embeddings, they were more 
concentrated to the borders of the clusters for the internal representations of 
bindEmbed21DL. The similar patterns for highly reliable correct and false predictions 
indicated that highly reliable but incorrectly predicted binding residues could point towards 
new potential binding residues. 
 
To provide binding predictions for as many proteins as possible, we considered a 
protein to bind to a specific ligand class if at least one residue was predicted to bind 
to this class. However, binding usually involves more than one residue, i.e., 
predicting only one residue as binding could indicate a wrong prediction. Predictions 
could be refined by only considering binding predictions if at least x residues were 
predicted to bind to this ligand class in a protein. Applying this filter led to an increase 
in CovNoBind(l) (Eqn. 9 in main text) for larger x, while decreasing CovOneBind 
(Eqn. 8; Fig. S6). While precision and recall were set to 0 for proteins annotated but 
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not predicted to bind to a certain ligand class, those performance values still 
increased up to a certain threshold (Fig. S6; optimal threshold of 3, 10, and 8 
residues for metal ions, nucleic acids, and small molecules, respectively). For those 
thresholds, more proteins falsely predicted to bind to this ligand class were removed 
than proteins actually binding to a certain ligand. Therefore, a low number of binding 
predictions in a protein indicated that those predictions were incorrect, and taking 
the number of predicted residues into consideration could help refining predictions 
(too few residues predicted: prediction less likely correct). 
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Fig. S6: Performance of bindEmbed21DL in dependence of the minimum 
number of predictions considered. 

 
 
We show precision, recall, CovOneBind (Eqn. 8 in main text), and CovNoBind (Eqn. 9 in 
main text) if proteins were only considered to bind to a certain ligand class if at least x 
residues were predicted for this class, i.e., for proteins with <x binding predictions, we 
assumed that no binding residue was predicted. While no binding prediction was generated 
for more proteins (CovOneBind decreased) for larger x, CovNoBind increased because 
erroneous predictions were removed. Precision and recall also increased to a certain point 
(optimal x indicated by black, vertical line) indicating that proteins incorrectly predicted to 
bind to a ligand class had on average fewer binding predictions than proteins correctly 
predicted to bind. 
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Table S7: Performance of bindEmbed21DL for different probability cutoffs. * 
 Precision Recall F1 Neg. Precision Neg. Recall Neg. F1 CovOneBind 
0.0 10 100 16 0 0 0 100.0 
0.02 12 96 20 95 29 42 100.0 
0.04 14 93 23 96 42 57 100.0 
0.06 16 90 25 97 51 65 100.0 
0.08 17 87 27 97 57 70 100.0 
0.1 19 84 28 97 54 68 100.0 
0.12 20 82 30 97 65 77 100.0 
0.14 21 80 31 97 69 79 100.0 
0.16 22 78 32 97 72 81 100.0 
0.18 23 76 33 97 74 83 100.0 
0.2 24 74 33 97 76 84 100.0 
0.22 25 72 34 96 78 85 100.0 
0.24 26 71 35 96 79 86 100.0 
0.26 27 69 35 96 81 87 100.0 
0.28 28 67 36 95 82 88 100.0 
0.3 29 66 37 96 83 88 99.9 
0.32 30 64 37 96 84 89 99.9 
0.34 31 63 37 96 85 90 99.8 
0.36 32 62 38 96 86 90 99.7 
0.38 33 61 38 95 87 91 99.7 
0.4 34 59 39 95 88 91 99.5 
0.42 34 58 39 95 89 91 99.4 
0.44 35 57 39 95 89 92 99.2 
0.46 36 56 39 95 90 92 99.1 
0.48 37 55 39 95 91 92 98.8 
0.5 38 53 39 95 91 93 98.6 
0.52 39 52 39 95 92 93 98.3 
0.54 39 50 39 95 92 93 98.2 
0.56 40 49 39 94 93 93 98.0 
0.58 41 48 39 94 93 93 97.9 
0.6 42 47 39 94 94 94 97.4 
0.62 43 46 39 94 94 94 97.0 
0.64 45 45 39 94 94 94 96.3 
0.66 46 44 39 94 95 94 95.6 
0.68 47 42 39 94 95 94 95.2 
0.7 48 41 39 94 95 94 94.0 
0.72 49 40 39 93 96 94 92.6 
0.74 50 39 38 93 96 94 91.0 
0.76 51 38 38 93 97 95 90.0 
0.78 53 37 38 93 97 95 88.9 
0.8 54 35 37 93 97 95 87.3 
0.82 57 34 37 93 97 95 85.2 
0.84 59 33 36 93 98 95 82.8 
0.86 60 31 36 92 98 95 80.0 
0.88 62 30 35 92 98 95 75.9 
0.9 65 29 34 92 98 95 71.2 
0.92 69 27 33 92 99 95 65.6 
0.94 72 26 33 92 99 95 56.6 
0.95 73 25 32 92 99 95 51.2 
0.96 75 25 33 92 99 95 44.9 
0.97 76 25 33 91 99 95 37.9 
0.98 78 25 33 91 99 94 29.3 
0.99 81 23 32 90 99 94 18.9 
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* We show performance values for (negative) precision, (negative) recall, (negative) 
F1 score and CovOneBind for different probability cutoffs. Values marked in 
orange are discussed in the main text, value marked in dark orange corresponds 
to the default cutoff of 0.5. Values marked in grey indicate probability steps of 0.1 
for easier readability. 

1.6. Combination of bindEmbed21DL with homology-based inference. 
 

Fig. S7: Performance of homology-based inference for different E-value 
thresholds. 

 
 

Performance for homology-based inference (HBI) as measured by A. the F1 score, B. the 
precision, and C. the recall varied with the E-value thresholds (red bars). The highest F1 of 
56±4% was reached at E-value ≤ 10!"#. However, if forcing predictions for all proteins by 
assigning binding residues at random if no homolog was available, F1 dropped to 21±2% 
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(leftmost light red bar). The combination of HBI with bindEmbed21DL (blue bars) performed 
numerically best for E-value ≤ 10!$ achieving F1=45±2%. However, performance values 
behaved similarly for all three measures (F1, precision, recall). To allow annotation transfer 
for the largest number of proteins possible without having the performance drop below that 
of bindEmbed21DL, we chose a final E-value threshold of 10!% where F1 and precision are 
higher than for bindEmbed21DL (dashed line) and the recall is the same. Error bars indicate 
95% confidence intervals. 
 

Fig. S8: Number of proteins and number of binding residues inferred through 
homology-based inference. 

 
 
A. For lower E-value thresholds, binding residues could be inferred through homology-based 
inference (HBI) for fewer proteins. With increasing E-values, the number of hits increased. 
However, for some proteins, the local alignment did not contain any binding annotations, 
and those hits were discarded (difference between light and darker red). B. For many higher 
E-values, the increase in the number of inferred binding residues was small. This also 
explained why we did not observe a difference in performance for these different E-values 
(Fig. S7). 
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Table S8: Average performance for bindEmbed21DL and bindEmbed21. * 
  Precision Recall F1 MCC 

bindEmbed21DL 

Metal ions 23±4% 25±5% 22±4% 0.22±0.04 
Nucleic 
acids 

32±7% 23±6% 24±6% 0.22±0.06 

Small 
molecules 

34±4% 37±4% 33±3% 0.31±0.03 

Any ligand 
binding 

46±3% 52±3% 43±2% 0.41±0.02 

bindEmbed21 

Metal ions 31±6% 29±6% 29±6% 0.29±0.06 
Nucleic 
acids 

28±8% 24±8% 24±7% 0.22±0.07 

Small 
molecules 

45±5% 42±5% 41±4% 0.39±0.04 

Any ligand 
binding 

56±4% 51±4% 48±3% 0.46±0.04 

* We show precision, recall, F1 and MCC for bindEmbed21DL (only using the 
Machine Learning (ML) method) and bindEmbed21 (combining ML with 
homology-based inference). Error estimates indicate 95% confidence intervals. 
Data set: TestSet300. 

 

Table S9: CovOneBind and CovNoBind for bindEmbed21DL and 
bindEmbed21. * 
 bindEmbed21DL (only ML) bindEmbed21 (ML+HBI) 
 CovOneBind 

(Eqn. 8) 
CovNoBind(l) 

(Eqn. 9) 
CovOneBind 

(Eqn. 8) 
CovNoBind(l) 

(Eqn. 9) 
Metal ions 96% 30% 82% 62% 
Nucleic acids 77% 89% 53% 95% 
Small 
molecules 

94% 20% 87% 55% 

Any ligand 
binding 

98% n/a 99% n/a 

* In each row, CovOneBind (Eqn. 8 in main text) indicates the number of proteins for 
which at least one residue was (correctly or incorrectly) predicted to bind to this 
ligand class (or any ligand class for the last row). The CovNoBind(l) (Eqn. 9 in 
main text) is the percentage of proteins not annotated to bind to a certain ligand 
class for which also no residue was predicted as binding. Combining 
bindEmbed21DL with HBI led to an increase in CovNoBind(l) but a drop in 
CovOneBind. Since HBI only used binding annotations from one local alignment, 
binding to multiple ligand classes is hard to predict because we could not identify 
different binding sites not close in the sequence. Data set: TestSet300. 
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1.7. Full proteome prediction allows identification of previously unknown 
binding residues. 

Table S10: Binding information for human proteome. * 
  Overall Metal 

ions 
Nucleic 
acids 

Small 
molecules 

Annotations 
(BioLiP, ≤ 𝟐. 𝟓Å) 

# Proteins with 
binding 

2,211 
(11%) 

1,130 231 1,640 

% of binding 
residues per protein 

5.5% 
(0.4%) 

2.0% 5.4% 5.7% 

Annotations 
(BioLiP, all 
structures) 

# Proteins with 
binding 

3,121 
(15%) 

1,618 506 2,089 

% of binding 
residues per protein 

5.7% 
(0.6%) 

2.1% 6.4% 5.6% 

HBI (E-value ≤
𝟏𝟎!𝟑) 

# Proteins with 
binding 

9,694 
(48%) 

4,746 1,622 6,365 

# New proteins with 
binding 

7,199 
(35%) 

3,763 1,381 4,811 

% of binding 
residues per protein 

4.4% 
(1.6%) 

1.8% 4.8% 4.4% 

HBI (E-value ≤
𝟏) 

# Proteins with 
binding 

10,526 
(52%) 

5,121 1,695 7,018 

# New proteins with 
binding 

 7,973 
(39%) 

4,127 1,448 5,436 

% of binding 
residues per protein 

4.4% 
(1.7%) 

1.7% 4.7% 4.5% 

All annotations 
+ HBI (E-value ≤

𝟏𝟎!𝟑) 

# Proteins with 
binding 

10,320 
(51%) 

5,381 1,887 6,900 

% of binding 
residues per protein 

5.1% 
(1.9%) 

2.0% 5.4% 5.0% 

Predictions 
using 

bindEmbed21DL 

# Proteins with 
binding 

18,663 
(92%) 

14,301 6,190 14,411 

# New proteins with 
binding 

8,510 
(42%) 

9,419 4,567 8,063 

% of binding 
residues per protein 

3.9% 
(3.1%) 

1.2% 2.0% 3.1% 
 

Highly reliable 
predictions from 
bindEmbed21DL 

# Proteins with 
binding 

5,962 
(29%) 

3,698 1,310 1,529 

# New proteins with 
binding 

1,751 
(9%) 

1,503 556 520 

% of binding 
residues per protein 

1.0% 
(0.2%) 

0.7% 1.0% 0.7% 

* We show the number of proteins from the 20,386 sequences in the human 
proteome with binding information and the percentage of binding residues of (i) 
proteins with binding information and (ii) all proteins (in brackets). Using all 
available information from BioLiP (2nd row), 15% could be annotated with binding 
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information. Homology-based inference (HBI) (3rd row) adds another 36%. 
bindEmbed21DL provides predictions for another 42% corresponding to 8,510 
proteins (5th row). Of those 8,510 proteins, 5,962 proteins contain highly reliable 
binding predictions (residues predicted with a probability ≥ 0.95), i.e., for 29% of 
the human proteome, highly reliable binding predictions could be provided by 
bindEmbed21DL while no annotations were available from experiments or 
homologs. 

 

Table S11: Percentage of predicted residues for human, DevSet1014, 
TestSet300, and TestSetNew46. * 
  Metal ions Nucleic 

acids 
Small 
molecules 

Total 

Human 

Predicted 
residues 

1.2% 2.0% 3.1% 6.3% 

% of 3 
classes 

19.0% 31.7% 49.2% 100% 

Reliably 
predicted 
residues 

0.7% 1.0% 0.7% 2.4% 

% of 3 
classes 

29.2% 41.7% 29.2% 100% 

DevSet1014 

Predicted 
residues 

2.1% 2.7% 7.5% 12.3% 

% of 3 
classes 

16.6% 18.7% 64.7% 100% 

TestSet300 

Predicted 
residues 

1.6% 1.4% 6.6% 9.6% 

% of 3 
classes 

14.1% 23.5% 62.4% 100% 

TestSetNew46 

Predicted 
residues 

2.0% 5.6% 7.2% 14.8% 

% of 3 
classes 

13.3% 13.3% 73.4% 100% 

* We show the percentage of predicted residues in each ligand class (metal ions, 
nucleic acids, small molecules) and the percentage of all three classes those 
residues account for (predicted residues/total). The composition for the human 
proteome (20:30:50 for metal:nucleic:small) was most similar to TestSet300. Data 
sets: Human: Predictions for 92% of the human proteome (Table S11); 
DevSet1014: Development set with 1,014 proteins, TestSet300: Test set with 300 
proteins; TestSetNew46: New independent set with 46 proteins. 

 
For almost half of the human proteins, no binding annotation is known, and for 
previously annotated proteins, many residues were newly predicted as binding. This 
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could indicate a high prediction error of our method. On the other hand, those 
predictions could indicate previously unknown binding sites. The distributions of 
prediction scores for residues predicted as binding and (i) annotated as binding or 
(ii) inferred as binding through homology-based inference were similar (Fig. S9), 
while residues not annotated or inferred as binding were on average predicted with 
lower scores (Fig. S9). We expected a certain shift to the left (i.e., to 0.5) because 
the residues predicted as binding without any annotations will contain some false 
positive predictions which are predicted less reliably (Fig. 4 in the main text). Also, 
proteins with known or inferred binding annotations could have been similar to 
proteins in our training set. However, also other aspects could lead to this shift in the 
observed prediction probabilities. We investigated whether predictions were more 
difficult for (i) disordered proteins, (ii) transmembrane proteins, or (iii) proteins with 
different length than in the development set. Disorder was calculated using 
MetaDisorder9, and we removed all proteins with at least 30 consecutive disordered 
residues to obtain a set of ordered proteins. Transmembrane helices (TMH) were 
predicted using TMSEG10, and we excluded every protein with at least two TMHs to 
obtain a set of non-membrane proteins. In addition, for each of the three sets 
(proteins with experimentally verified annotations, proteins with inferred annotations, 
proteins with no annotations), we drew a subset of proteins mirroring the length 
distribution of the development set. None of these three aspects could explain the 
observed shift in distributions (Fig. S10). While this analysis did not reveal any 
insights whether new binding predictions could indicate previously unknown binding 
residues, it clearly showed that our method was not biased to ordered proteins, non-
membrane proteins, or proteins of a specific length. Since no bias in the data set 
explained the shift in distribution, some of the shift is most likely explained by 
prediction mistakes, i.e., the large fraction of residues predicted with a probability 
close to 0.5 is probably pointing to wrong predictions. On the other hand, the 
distributions overlap to a certain extent, and especially residues predicted with a 
large probability could still point towards previously unknown binding residues. 
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Fig. S9: Distribution of prediction scores for predicted binding residues 
annotated and not annotated as binding. 

 
 
Residues which were not experimentally verified as binding residues or could be inferred 
through homology-based inference (HBI) were on average predicted with lower probability 
as binding (dark blue box lower than the other 2 boxes). Proteins with any binding 
information (either annotated or inferred) were similar to proteins in our training set. 
Therefore, bindEmbed21DL had seen those data points before and could make more 
reliable predictions. However, also some residues without any binding annotation could be 
predicted reliable and the distributions for all three sets overlapped to a large extent 
indicating that those residues not annotated as binding but predicted as such did not only 
originate from prediction mistakes but could indicate previously unknown binding 
annotations. 
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Fig. S10: Distribution of prediction scores for ordered proteins, non-
membrane proteins, and proteins of specific length. 

 
 
Distribution of prediction probabilities were similar for A. all proteins compared to ordered 
proteins (<30 consecutive disordered residues; predicted with MetaDisorder9, B. all proteins 
compared to non-membrane proteins (< 2 transmembrane helices (TMHs), predicted with 
TMSEG10, and C. all proteins compared to proteins of the same length as in the development 
set DevSet1014. We distinguished 3 subsets of human proteins: Proteins with 
experimentally verified binding annotations, proteins with binding annotations inferred 
through homology-based inference (HBI), and proteins without any known binding residues. 
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2. Materials & Methods 

2.1. Data sets. 
For the construction of our non-redundant data sets, we applied UniqueProt11 with 
an HVAL<0. This was a rather strict cutoff which resulted in a reduction of our dataset 
by more than 90% from 14,894 to 1,314 proteins. To assess whether a less strict 
cutoff would still lead to a data set of proteins where no pair shares a common 
binding annotation, we tested how well homology-based inference (HBI) for our 
training set DevSet1014 (Table S12) would perform using the non-redundant set as 
lookup set and the HVAL as criterion to decide whether a protein is a homolog or 
not. Comparing the performance of HBI with our method bindEmbed21DL showed 
that HBI outperformed bindEmbed21DL for HVAL>0. Only for HVAL=0, performance 
dropped to the level of bindEmbed21DL. Therefore, the choice of our strict cutoff 
was necessary to ensure a non-redundant data set although it led to a huge 
reduction in protein sequences available for training. 
 

Fig. S11: Homology-based inference using HVAL. 

 
 

F1 score for homology-based inference using HVAL using DevSet1014 as query set. For 
HVAL>0, homology-based inference outperformed our Machine Learning method 
bindEmbed21DL (dashed line). Only when using HVAL=0, performance dropped to the level 
of bindEmbed21DL. For even lower H-values, no additional hits could be found, probably 
because no meaningful alignment could be generated. Therefore, performing redundancy 
reduction at a higher HVAL threshold than zero would lead to a dataset where proteins could 
share a common binding site.  
 
On the other hand, using even stricter HVAL cutoffs would have led to a tremendous 
drop in data set size. When reducing our test set TestSet300 at HVAL=-1 against 
DevSet1014, only 44 proteins remained in the test set. While the number of test 
proteins dropped further to 11 proteins for an HVAL cutoff of -5, we did not observe 
any difference in performance (Fig. S12A), indicating that no information leakage 



Littmann, et al. & Rost Binding residue prediction through embeddings SOM 

Appendix p. 26 

appeared for HVAL=0 compared to using even stricter HVAL cutoffs. However, due 
to the small data set size, confidence intervals were very large for lower HVAL 
cutoffs. We observed similar results for a redundancy reduction of TestSet300 
against DevSet1014 using the E-value: We removed every protein in TestSet300 
where we could find a local alignment with a smaller E-value than a certain threshold. 
For this reduction, the number of proteins was not reduced so largely as for the HVAL 
cutoff. At E-value=1, our test set still consisted of 202 proteins; for E-value=10, this 
number dropped to 89 proteins. While the F1 score dropped to 38±5% for E-
value=10, it remained within the confidence interval of the performance for the entire 
set, and performance at lower cutoffs was similar to the overall set (Fig. S12B), again 
indicating that the redundancy reduction at HVAL=0 yielded a non-redundant data 
set which did not allow information leakage between train and test set. 
 

Fig. S12: F1 score for TestSet300 redundancy reduced at different HVAL and 
E-value cutoffs. 

 
 
To ensure that our data set split in training (DevSet1014) and test (TestSet300) represented 
an unbiased split without information leakage between the two independent sets, we 
assessed performance of further reduced versions of TestSet300 using A. stricter HVAL 
cutoffs and B. E-value cutoffs. For both approaches, the F1 score did not change 
tremendously except for applying an E-value cutoff of 10, where F1 dropped by five 
percentage points, while remaining within the confidence interval of the performance of the 
full set.  
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Table S12: Development set for bindEmbed21. * 
  DevSet1014 TestSet300 TestSetNew46 

Metal ions 

# Proteins 455 (45%) 122 (41%) 15 (33%) 
# Binding residues 2,374 881 77 
# Non-binding 
residues 

77,404 26,763 2,198 

Nucleic 
acids 

# Proteins 108 (11%) 66 (22%) 10 (22%) 
# Binding residues 2,689 1,470 77 
# Non-binding 
residues 

15,582 14,698 874 

Small 
molecules 

# Proteins 606 (60%) 220 (73%) 25 (54%) 
# Binding residues 9,281 3,906 425 
# Non-binding 
residues 

94,119 42,629 3,269 

All 

# Proteins 1,014 300 46 
# Binding residues 13,999 5,869 575 
# Non-binding 
residues 

156,684 56,820 5,652 

* The number of proteins, binding residues, and non-binding residues for the three 
ligand classes (metal ions, nucleic acids, and small molecules) and the three used 
data sets (DevSet1014, TestSet300, TestSetNew46; see main text for more 
details). Values from the different ligand classes do not sum to the number for 
“All” because some proteins are annotated to bind multiple ligands. 
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2.2. ML architecture 

Fig. S13: Sketch of prediction method.  

 
 

To generate binding residue predictions for three ligand classes, we (1) embed the protein 
sequence (“SEQ…”) using ProtT512 to generate 1024-dimensional embeddings for each 
residue. (2) Those embeddings serve as input for the supervised method consisting of a 2-
layer Convolutional Neural Network (CNN). For each residue, the method provides three 
outputs indicating whether a residue is binding (1) to metal ions, nucleic acids, or small 
molecules or non-binding (0). 
 
To evaluate whether the fine-grained distinction of three classes of binding residues 
reduced performance compared to a more coarse-grained binary distinction of 
binding and non-binding residues, we also trained bindEmbed21DL-binary using the 
same dataset and architecture as for bindEmbed21DL, but with a dropout rate of 
50%, a weight of 4.2 for the positive class (binding residues), and only two output 
classes to predict whether a residue is binding or non-binding. 

2.3. MMseqs2 commands 
Our protocol for homology-based inference was entirely based on MMseqs2. To 
obtain local alignments of query proteins without binding annotations against a set 
of proteins with known annotations, we performed the following steps and executed 
the given MMseqs2 commands: 
1. Create MMseqs2 database for unlabeled database (used to create profiles), 

lookup data set with known binding annotations, and query set: 
mmseqs created in.fasta out.db 
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2. Create profiles of query set against large unlabeled database: 
mmseqs search query.db unlabeled.db result.out tmp/ --num-
iterations 2 
mmseqs result2profile query.db unlabeled.db result.out 
query.profiles 

3. Search profiles against lookup data set: 
mmseqs search query.profiles lookup.db aln_result_raw.out 
tmp/ --min-seq-id 0 -s 7.5 – max-seqs 100000 -e 1e-3 -a 

4. Extract local alignments in desired format:  
mmseqs convertalis query.db lookup.db aln_result_raw.out 
aln_result.out –format-output 
“query,target,evalue,nident,mismatch,qstart,tstart,qaln,ta
ln” 

A sample script to perform homology-based inference as implemented for 
bindEmbed21HBI can also be found on GitHub: 
https://github.com/Rostlab/bindPredict/blob/master/run_bindEmbed21HBI.py  

2.4. Error estimates 
We calculated symmetric 95% confidence intervals (CI) assuming a normal 
distribution of the performance values as error estimates. To investigate whether this 
could be assumed without affecting the final estimates, we also calculated 
bootstrapped CIs, i.e., we randomly chose n proteins (n=data set size) with 
replacement from our data set, calculated the different performance values for each 
protein and calculated the mean performance over these values. This process was 
repeated 1,000 times yielding 1,000 mean performances for each metric. 
Bootstrapped CIs were then calculated as 
 

𝐶𝐼!.#$(𝑥) = (�̅� − 𝑡!.!%$ ∙ 𝑆𝐷(𝑥), �̅� + 𝑡!.!%$ ∙ 𝑆𝐷(𝑥)) 
 
where �̅� is the average of the 1,000 performance values, 𝑡!.!%$ is the Student’s t 
distribution for the confidence level of 95%, and SD is the standard deviation. The 
resulting performances are given in Table S13. Performance values and error 
estimates were similar for both calculations of CIs. Therefore, we concluded that a 
normal distribution can be safely assumed. 
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Table S13: Performance estimates for DevSet1014 using CIs and bootstrapped 
CIs. * 

Set  Precision Recall F1 MCC 

DevSet1014 
CIs 37±2% 52±2% 39±2% 0.36±0.02 
Bootstrapped 
CIs 

37±2% 52±2% 39±2% 0.36±0.02 

TestSet300 
CIs 46±3% 52±3% 43±2% 0.41±0.02 
Bootstrapped 
CIs 

46±3% 51±3% 43±2% 0.41±0.03 

* We compared performance calculated using CIs assuming a normal distribution of 
the per-protein performance values and bootstrapped CIs for the development set 
(DevSet1014) and the test set (TestSet300). For both sets, we did not observe a 
difference in the estimated performance.  

3. Related Work 
Many methods focusing on prediction of binding have been reported in the past13. 
However, we did not compare bindEmbed21DL to most of them for various reasons. 
First, we excluded template-based methods from our comparisons because we see 
the strength of our method in the area where template-based methods could not be 
applied (because no template is available). Also, most template-based methods use 
structural templates and annotations from PDB or BioLiP, i.e., use the annotations 
from our test set in their template databases. This makes them incomparable to our 
method because the predictions would just be based on a self-hit of the query protein 
against its respective template. Secondly, many methods, while focusing on the 
prediction of binding, do not predict binding residues but rather binding pockets or 
binding cavities without providing the exact residues involved in binding. Therefore, 
such methods were not comparable to our approach. Other methods could not be 
used for comparison because they were simply not available (anymore), or 
instructions were insufficient for a local installation. Also, other DNA- or RNA-binding 
prediction methods were excluded because it has been shown that ProNA2020 
outperformed its competitors5. Table S14 gives a general overview of reasons why 
methods could not have been used for comparison and lists known binding 
prediction methods excluded because of those reasons. 
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Table S14: Examples of methods not used for comparison and reasons for 
exclusion. * 
Reason for exclusion from comparison Examples of methods 
Template-based GASS-WEB14, COFACTOR15, 

COACH16, CB-DOCK17, LIBRA-WA18, 
I-LBR19, COACH-D20, IonCom21, 
3DLigandSite22 

Prediction of binding pockets or cavities CSmetaPred23, CavityPlus24, 
DeepSite25, Kalasanty26, DeepSurf27, 
DeepDrug3D28, DeepConv-DTI29, 
DeepFRI30, PrankWeb31 

Prediction of catalytic residues GASS-WEB14 
Not available, installation not possible, or 
insufficient instructions 

FunSite32, FSCNN33, CSmetaPred23, 
mFASD34, ZincBinder35, LigandRFs36, 
DeepCSeqSite37 

* While many methods focusing on the prediction of binding exist, many could not 
be compared to our method bindEmbed21DL. Here, we show some example 
methods and the reasons for not using them for comparison. 
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