Supplementary materials for Turner et al. "Anthropogenic activities in source watersheds lead to wide disparities in potential contamination of urban drinking water supplies in the United States"

## Contents:

Supplemental Figure 1 – Point and nonpoint PPCS metrics for all cities, with and without groundwater included.

Supplemental Table 1 – Details of all relevant health-based water supply violations affecting major US cities.

Supplemental Figure 2 (a - d) – E90 Effluent violations.

Supplemental Figure 3 – Worked example of Indirect Potable Reuse implementation.

## **Supplemental Figure 1**



De facto wastewater reuse (i.e. point PPCS) and supply generated on non-pristine lands (i.e., nonpoint PPCS) for all cities studied. Results show all supply sources combined (i.e., including groundwater contribution) and surface water sources only (grey extensions to each bar).

## Supporting Table 1. Water supply violations summary.

Water supply violations for community water systems are recorded in EPA Safe Drinking Water Information System (SDWIS) Violations Report. We obtained Public Water System (PWS) IDs for all 116 cities in this study. We filtered the SDWIS Violations Report for these PWS IDs, and for "health-based" violations (i.e., monitoring, reporting, and other violations removed) for the following rules: Inorganic Chemicals (IOCs), Synthetic Organic Chemicals (SOCs), Nitrates, Arsenic, and Radionuclides. This removes violations unrelated to human activity in watersheds (e.g., violations related to disinfection processes or plumbing). A "health-based violation" means an amount of contaminant exceeded the safety standard.

| City                         | PWS ID    | PWS Name                                  | # violations | Rule(s)                    | Year(s)                   |
|------------------------------|-----------|-------------------------------------------|--------------|----------------------------|---------------------------|
| Columbus,<br>Ohio            | OH2504412 | Columbus Public<br>Water System           | 5            | Nitrates                   | 2006, 2007,<br>2015, 2016 |
| Louisville,<br>Kentucky      | KY0560258 | Louisville Water<br>Company               | 3            | IOCs                       | 2001                      |
| Des Moines,<br>Iowa          | IA7727031 | Des Moines Water<br>Works                 | 1            | Nitrates                   | 1984                      |
| Fort Wayne,<br>Indiana       | IN5202020 | Fort Wayne – 3<br>Rivers Filtration Plant | 1            | SOCs                       | 1994                      |
| Fresno,<br>California        | CA1010007 | City of Fresno                            | 2            | Nitrates,<br>SOCs          | 1998, 2010                |
| Modesto,<br>California       | CA5010010 | City of Modesto                           | 3            | Nitrates,<br>Radionuclides | 1998, 2008,<br>2013       |
| Santa Clarita,<br>California | CA1910017 | Santa Clarita Valley<br>Water Agency      | 2            | Nitrates                   | 2003, 2007                |
| Tucson,<br>Arizona           | AZ0410112 | City of Tucson                            | 1            | Nitrates                   | 1981                      |
| Mesa,<br>Arizona             | AZ0407095 | City of Mesa                              | 3            | Nitrates, IOCs             | 1981, 1982,<br>2006       |







Supp. Fig 2b. Watershed area developed for non-agricultural purposes (%) versus E90 Effluent Violations (all categories except mining, gas extraction, and agriculture).



Supp. Fig 2c. Point PPCS versus wastewater effluent violations.

(C)



Supp. Fig 2d. Mining facilities versus mining facility violations.

## **Supplemental Figure 3**

Hypothetical supply system





Example of IPR implementation and PPCS calculations for a hypothetical system with two water supply sources (Source A, with 5% de facto reuse and Source B, with 10% de facto reuse). With IPR, "city X" returns water commensurate with 1/3 of total water supply back to the nearest supply source. Withdrawals from each natural water sources are reduced by 1/3 to accommodate this new supply.