Cell Reports, Volume 37

Supplemental information

SdhA blocks disruption

of the Legionella-containing vacuole

by hijacking the OCRL phosphatase

Won Young Choi, Seongok Kim, Philipp Aurass, Wenwen Huo, Elizabeth A. Creasey, Marc Edwards, Martin Lowe, and Ralph R. Isberg

Motifs	Pattern	No.	Positions in SdhA
Clathrin box	L[IVLMF]X[IVLMF][DE]	2	355-359 (LLSIE) 1177-1181 (LLYIE)
AP2β binding	[DE]x(1,2)Fxx [FL] xxxR	1	360-370 (DSRFLALRLER)
OCRL-binding F&H motif	xFxx[KRIL]Hxx[YLMFH] xxxx	1	1194-1206 (AFCNRHIGLQYTD)

Supplementary Table S1. Conserved Motifs. Linked to Fig. 1.

Supplementary Table S2. From Dataset 1: Icm/Dot Translocated Effectors Having Two or More of the Conserved Motifs. Linked to Fig. 1.

Orf	Gene	Clathrin Box	AP2 beta	F&H	Unique motifs
LPG0376	sdhA	2	1	1	3
LPG0090	lem1	1	1	0	2
LPG2433	ceg30	1	1	0	2
LPG2745		1	1	0	2
LPG3000		1	0	1	2

Supplemental Table S3: Identification of proteins associated with the SdhA CBM2A region. Linked to Figs. 1 and 2.

Gene Symbol	Annotation	Process	Relative abundance	CBM2A/GST
RANGAP1	GAP domain	Nuclear Egress	4.4E+07	1.1E+04
EEF1A1	Elongation factor 1 GTPase	Translation	8.6E+06	3.6E+02
EIF3A	Initiation factor 3A subunit	Translation	2.0E+06	5.4E+01
DDX3X	RNA Helicase	Translation	1.1E+06	3.3E+02
EIF3C	Initiation factor 3C subunit	Translation	1.1E+06	7.9E+01
YARS	Tyr tRNA synthetase	Translation	7.4E+05	4.1E+02
DHX9	RNA helicase A	RNA metabolism	5.9E+05	3.7E+01
AP3D1	AP-3 delta subunit	Vesicle adaptor	5.7E+05	6.9E+01
EIF5B	Initiation factor 5B GTP binding	Translation	5.7E+05	5.2E+01
EIF4G2	Initiation factor 4G2 subunit	Translation	4.0E+05	5.7E+00
EIF3D	Initiation factor 3D subunit	Translation	2.6E+05	2.2E+01
EEF1G	Elongation factor 1 subunit	Translation	2.3E+05	3.3E+01
OCRL	Inositol 5-phosphatase (GAP)	Vesicle traffic	1.9E+05	1.2E+01
IQGAP1	GAP domain	Membrane/cytoskeleton	1.7E+05	3.3E+01
EIF3L	Initiation factor 3L	Translation	1.2E+05	5.2E+01
G3BP2	GAP-binding protein 2	Stress Granules	1.2E+05	5.5E+00
G3BP1	GAP-binding protein 1	Stress Granules	9.8E+04	4.5E+01
SERBP1	RNA-binding protein	Translation	7.6E+04	2.6E+01
EIF3E	Initiation factor 3E	Translation	7.2E+04	1.6E+01
YTHDF3	YTH domain-protein 3 OS	m6A reader	7.1E+04	5.1E+00
CLASP2	CLASP 2 (IQGAP Binding)	Clathrin Associated Sorting	3.1E+04	7.9E+00

Extracts were incubated with either GST or CBM2A-GST immobilized on glutathione beads, and eluted proteins were analysis by LC MS/MS analysis (STAR Methods). Relative quantities of peptides identified from each protein were determined from both the GST and CBM2A-GST eluates and expressed as a ratio (CBM2A/GST). Proteins in which (CBM2A/GST) \geq 5 are displayed.

Supplementary Table S4. Oligonucleotides used in this study. Linked to STAR Methods, Key resources.

Name	Sequences	Purpose
Owy77	gtgaa <u>gaattcg</u> aaaaaggagaagagttactcagtatag	SdhA-CBM1
Owy63	gtgaa <u>ctcgag</u> ttagggggtgtccaatattttgt	
Owy81	gtgaaGAATTCcgaatgatatgtgataaaacaccaatagatc	SdhA-CBM2
Owy82	$gtgaa \underline{CTCGAG} ttaa agat gata at att ttct caa a att at ctct$	
Owy84	tgtcagtgtattgtaaacctatagcacggttgcaggcagcatctaattgtttattaaatg	CBM2 (F1195A
Owy83	$catttaataaacaattagatgct\underline{GCC}tgcaaccgt\underline{GCT}ataggtttacaatacactga$	H1199A) mutation
	ca	
Owy72	cgactcaggaacaagaagatgccgcttatatagaagaatacactacagaatc	CBM2 (L1177A
Owy73	gattetgtagtgtattettetatataageggcatettettgtteetgagteg	L1178A) mutation
Owy89	aaggaatatcgcacaaaacttagagaata	CBM2 Δ FH deletion
Owy90	atctaattgtttattaaatgattctgtagtgtattc	
Owy81	gtgaaGAATTCcgaatgatatgtgataaaacaccaatagatc	CBM2A
Owy113	gtgaa <u>CTCGAG</u> ttaagtggttttgccaccttttg	
Owy114	gtgaaGAATTCaaaggtggcaaaaccactgat	CBM2B
Owy115	gtgaa <u>CTCGAG</u> ttaaggatcaggatctgtattctgg	
Owy79	gtgaaGAATTCagctaccatcattatgaaggctt	CBM2C
Owy117	$gtgaa \underline{CTCGAG} ttatgtagtgtattcttctatataaaggag$	
Owy116	gtgaaGAATTCattcaacgctcaaaatccgcag	CBM2D
Owy82	$gtgaa \underline{CTCGAG} ttaa agatgata at att ttct caa a att at ctct$	
Owy100	gtgaaGGATCCaaggttgtggatgaacgaagg	OCRL-
Owy101	gtgaa <u>CTGCAG</u> ttagtcttcttcgctcccaag	ASH/RhoGAP
Owy100	gtgaaGGATCCaaggttgtggatgaacgaagg	OCRL-ASH

Owy133	gtgaaCTGCAGttaacttgggaggtaatttccactg	
Owy134	gtgaaGGATCCagttgttttggcacatccttagag	OCRL-RhoGAP
Owy101	gtgaaCTGCAGttagtcttcttcgctcccaag	
Owy14	gtgaagtcgacatttcagaaaagatcaagcttttagaatcc	pJB908-3xflag-sdhA
Owy15	gtgaa <u>ctgcag</u> ttatgcggatggcgctaat	
Owy137	5'phos/gatgcagtaagagtcgctttagc	<i>sdhA</i> ∆1029-1260aa
Owy138	5'phos/aatatgtgctttggaatgcagcgc	$(\Delta CBM2)$ deletion
Owy139	5'phos/gatgatgaattaatcgaaacttataaaaaag	<i>sdhA</i> ∆1029-1080aa
Owy138	5'phos/aatatgtgctttggaatgcagcgc	$(\Delta CBM2A)$ deletion

Figure S1. Characterization of SdhA mutants. Linked to Figs. 2 and 3.

(A) Growth of noted strains in AYE broth. Strains with Δ sdhA allele have noted genes inserted into pJB908 (Vector). Shown are singlicate cultures (B) Western blot analysis of expression levels of SdhA variants. Isocitrate dehydrogenase (ICDH) was used for loading control. (C) The presence of SdhA variants on LCV surface was assessed by fluorescence microscopy as in Fig. 3A. SdhA is undetectable in WT strain and must be overproduced on pJB908 to identify by immunofluorescence microscopy. Each of the Δ sdhA strains harbor pJB908 with noted chromosomal fragments. Data represents means and SDs of biological triplicates. More than 100 LCVs were counted per replicate.

Figure S2. Ectopically expressed SdhA associates with OCRL positive compartments. Linked to Fig. 4.

Representative micrographs of fixed COS-7 cells coexpressing mCherry-SdhA (red) and GFP-tagged OCRL. DNA was labeled by Hoechst stains (blue). Cells were treated with nocodazole (NOCO) to release aggregation of the compartments. (Scale bar, $10 \mu m$)

Figure S3. COS-7 cells coexpressing mCherry-SdhA and GFP-PLCδ-PH demonstrate rearrangement and internalization of PI(4,5)P2. Linked to Fig. 4.

Scale bar represents 20 µm.

Confocal images of vacuoles isolated from infected U937 cells (MOI =10, 3h) with Δ sdhA mutant harboring pSdhA or pJB vector. The presence of OCRL and SdhA on LCVs was assessed by immunofluorescence using antibodies against OCRL, SdhA and L. pneumophila (Scale bar, 4 µm).