Supporting information for:

Structure-activity studies with bis-amidines that potentiate Gram-positive specific antibiotics against Gram-negative pathogens

Charlotte M.J. Wesseling,^a Cornelis J. Slingerland,^a Shanice Veraar,^a Samantha Lok,^a and Nathaniel I. Martin^{a,*}

^aBiological Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands.

*n.i.martin@biology.leidenuniv.nl

Table of co	ontents
-------------	---------

Abbreviations	S3
General notes	S4
Synthesis	S5
Synergy data of compounds and PMBN against E.coli BW25113	
with erythromycin	S9
with rifampicin	S13
Synergy data of 1 , 3 , 21 , 22 , 23b , 37 , 38 , 43 , 44 , and PMBN against <i>E.coli</i> BW25113	
with novobiocin	S17
with vancomycin	S19
Synergy data of 1, 3, 21, 22, 23b, 37, 38, 43, 44, and PMBN with rifampicin	
E.coli ATCC25922	S21
E.coli W3110	S23
E.coli 552060.1	S25
<i>E.coli</i> BW25113 mcr-1	S27
E.coli mcr-1	S29
E.coli EQASmcr-1 (=EQAS 2016 412016126)	S31
E.coli EQASmcr-2 (=EQAS 2016 KP37)	S33
E.coli EQASmcr-3 (=EQAS 2017 2013-SQ352)	S35
E.coli RC00089	S37
A. baumannii ATCC17978	S39
K. pneumoniae ATCC13883	S41
P. aeruginosa ATCC27853	S43
Hemolysis assay of compounds	S45
Outer membrane permeability assay using NPN	S48
Compound characterization and analysis	
HRMS data	S49
NMR data	S51
HPLC traces of the final compounds	S108
Sources of bacterial strains	S133
References	S134

Abbreviations

ACS	American Chemical Society
CBr ₄	Carbon tetrabromide
CDCl ₃	Deuterated chloroform
EtOAc	Ethyl acetate
EtOH	Ethanol
H_2SO_4	Sulfuric acid
HCl	Hydrogen chloride
MeOH	Methanol
MIC	Minimal inhibitory concentration
MSC	Minimal synergistic concentration
Na ₂ SO ₄	Sodium sulfate
PPh ₃	Triphenylphosphine

General notes

General procedures. All reagents employed were of American Chemical Society (ACS) grade or finer and were used without further purification unless otherwise stated. For compound characterization, 1H NMR spectra were recorded at 400 MHz with chemical shifts reported in parts per million (ppm) downfield relative to CHCl₃ (7.26) or DMSO (δ 2.50). ¹H NMR data are reported in the following order: multiplicity (s, singlet; d, doublet; t, triplet; q, quartet and m, multiplet), coupling constant (J) in hertz (Hz) and the number of protons. Where appropriate, the multiplicity is preceded by br, indicating that the signal was broad. ¹³C NMR spectra were recorded at 101 MHz with chemical shifts reported relative to CDCl3 (8 77.16) or DMSO (δ 39.52). HRMS analysis was performed on a Shimadzu Nexera X2 UHPLC system with a Waters Acquity HSS C18 column (2.1 × 100 mm, 1.8 µm) at 30 °C and equipped with a diode array detector. The following solvent system, at a flow rate of 0.5 mL/min, was used: solvent A, 0.1 % formic acid in water; solvent B, 0.1 % formic acid in acetonitrile. Gradient elution was as follows: 95:5 (A/B) for 1 min, 95:5 to 15:85 (A/B) over 6 min, 15:85 to 0:100 (A/B) over 1 min, 0:100 (A/B) for 3 min, then reversion back to 95:5 (A/B) for 3 min. This system was connected to a Shimadzu 9030 QTOF mass spectrometer (ESI ionisation) calibrated internally with Agilent's API-TOF reference mass solution kit (5.0 mM 100.0 mM ammonium trifluoroacetate and 2.5 mM hexakis(1H,1H,3Hpurine, tetrafluoropropoxy)phosphazine) diluted to achieve a mass count of 10000. Compounds 1, 45, 47, and 48 had NMR spectra and mass spectra consistent with the assigned structures in literature.¹⁻⁴ Purity of the final compounds 1, 2, 3, 9, 10, 11, 12, 15, 16, 21, 22, 23, 24, 1b, 21b, 22b, 23b, 1c, 21c, 22c, 23c, 37, 38, 43, and 44 was confirmed to be \geq 95% by analytical RP-HPLC using a Shimadzu Prominence-i LC-2030 system with a Dr. Maisch ReproSil Gold 120 C18 column (4.6 × 250 mm, 5 µm) at 30 °C and equipped with a UV detector monitoring at 214 nm. The following solvent system, at a flow rate of 1 mL/min, was used: solvent A, 0.1 % TFA in water/acetonitrile, 95/5; solvent B, 0.1 % TFA in water/acetonitrile, 5/95. Gradient elution was as follows: 95:5 (A/B) for 2 min, 95:5 to 0:100 (A/B) over 30 min, 0:100 (A/B) for 1 min, then reversion back to 95:5 (A/B) over 1 min, 95:5 (A/B) for 3 min. The compounds were purified via preparative HPLC using a BESTA-Technik system with a Dr. Maisch Reprosil Gold 120 C18 column (25 × 250 mm, 10 µm) and equipped with a ECOM Flash UV detector monitoring at 214 nm. The following solvent system, at a flow rate of 12 mL/min, was used: solvent A, 0.1 % TFA in water/acetonitrile 95/5; solvent B, 0.1 % TFA in water/acetonitrile 5/95. Unless stated otherwise in the protocol, the gradient elution was as follows: 100:0 (A/B) to 0:100 (A/B) over 25 min, 0:100 (A/B) for 3 min, then reversion back to 100:0 (A/B) over 1 min, 100:0 (A/B) for 1 min.

Synthesis

Scheme S1 Synthesis of pentamidine (1). Reagents and conditions: (a) 4-Cyanophenol, NaH, DMF, 80°C, 1h (78%); (b) i) LHMDS, THF, 48h, rt, ii) 4M HCl (dioxane), 0°C to rt, overnight (quant.).

4,4'-(pentane-1,5-diylbis(oxy))dibenzonitrile (45)

4-cyanophenol (1.14 g, 9.6 mmol, 2.4 eq.) was suspended in dry DMF (12 mL) under argon atmosphere. The suspension was cooled to 0 °C using an ice bath and NaH (384 mg, 60% dispersion in

mineral oil, 2.4 eq.) was slowly added. The reaction was stirred until a clear solution appeared, the ice bath was removed and 1,5-dibromopentane (0.92 g, 4.0 mmol) was added. The reaction mixture was heated to 80 °C for 1 hour and then cooled to room temperature. Water (35 mL) was added to the mixture to obtain precipitation. The precipitate was filtered, washed with water and recrystallized from EtOH to give compound **45** as white crystals (0.95 g, 78%). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 8.9 Hz, 4H), 6.93 (d, *J* = 8.9 Hz, 4H), 4.03 (t, *J* = 6.3 Hz, 4H), 1.93 – 1.84 (m, 4H), 1.72 – 1.61 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 162.37, 134.09, 119.36, 115.24, 103.91, 68.14, 28.81, 22.73.

4,4'-(pentane-1,5-diylbis(oxy))dibenzimidamide (1)

Compound **45** (94 mg, 0.3 mmol) was dissolved in dry THF (2 mL) under argon atmosphere and LHMDS (1.2 mL, 1 M THF solution, 4.0 eq.) was added. The reaction was stirred at room temperature for 48 hours or longer until complete

conversion to the bis-amidine (monitored by LCMS). The solution was cooled to 0 °C and quenched with HCl (4.5 mL, 4 M dioxane solution, 60 eq.). The mixture was stirred at room temperature overnight, then diluted with diethyl ether and filtered. The precipitate was purified by preparative HPLC with the gradient 0-100% in 30 minutes. The samples were analyzed and the combined pure fractions were dried to give pentamidine (1) (120 mg, quant.). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.14 (s, 3H), 9.06 (s, 3H), 7.81 (d, J = 8.9 Hz, 4H), 7.15 (d, J = 8.9 Hz, 4H), 4.12 (t, J = 6.4 Hz, 4H), 1.88 – 1.75 (m, 4H), 1.65 – 1.52 (m, 2H). ¹³C NMR (101 MHz, DMSO) δ 164.70, 163.06, 130.19, 119.50, 114.79, 68.05, 28.21, 22.09. HRMS (ESI): calculated for C₁₉H₂₄N₄O₂ [M+H]⁺ 341.1977, found 341.1977.

Scheme S2 Exploration of the optimal acidic quench. Reagents and conditions: (a) i) LHMDS, THF, 48h, ii) 2M HCl (aq), 0°C to rt, overnight (68%) or (b) i) LHMDS, THF, 48h, ii) sat. ethanolic HCl, 0°C to rt, overnight (9%).

4,4'-(pentane-1,5-diylbis(oxy))dibenzimidamide (1) using 2M HCl (aq)

Following the procedure as described for compound **1** except for using 2 M HCl (aq) (20 mL) as acidic quench afforded pentamidine (**1**) (71 mg, 68%). ¹H NMR (400 MHz, DMSO- d_{δ}) δ 9.14 (s, 4H), 9.06 (s, 4H), 7.81 (d, J = 8.9 Hz, 4H), 7.15 (d, J

= 8.9 Hz, 4H), 4.12 (t, J = 6.4 Hz, 4H), 1.88 – 1.75 (m, 4H), 1.65 – 1.52 (m, 2H). ¹³C NMR (101 MHz, DMSO) δ 164.70, 163.06, 130.19, 119.50, 114.79, 68.05, 28.21, 22.09. HRMS (ESI): calculated for C₁₉H₂₄N₄O₂ [M+H]⁺ 341.1977, found 341.1977.

4,4'-(pentane-1,5-diylbis(oxy))dibenzimidamide (1) using sat. ethanolic HCl

Following the procedure as described for compound **1** except for using freshly prepared sat. ethanolic HCl (20 mL) as acidic quench afforded pentamidine (**1**) (9 mg, 9%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.14 (s, 4H), 9.06 (s, 4H), 7.81 (d, J =

8.9 Hz, 4H), 7.15 (d, J = 8.9 Hz, 4H), 4.12 (t, J = 6.4 Hz, 4H), 1.88 – 1.75 (m, 4H), 1.65 – 1.52 (m, 2H). 13 C NMR (101 MHz, DMSO) δ 164.70, 163.06, 130.19, 119.50, 114.79, 68.05, 28.21, 22.09. HRMS (ESI): calculated for C₁₉H₂₄N₄O₂ [M+H]⁺ 341.1977, found 341.1977.

Scheme S3 Synthesis of 4,4'-((3-phenylpentane-1,5-diyl)bis(oxy))dibenzimidamide (**3**). Reagents and conditions: (a) H₂SO₄, MeOH, 70°C, overnight (91%); (b) DIBAL-H, DCM, 0°C, 1 hour (quant.); (c)

NBS, PPh₃, DCM, 0°C to rt, 2 hours (62%) (d) 4-Cyanophenol, NaH, DMF, 80°C, 1h (89%); (e) i) LHMDS, THF, 48h, ii) 4M HCl (dioxane), 0°C to rt, overnight (23%).

Dimethyl 3-phenylpentanedioate (46)

3-phenylpentanedioic acid (1.04 g, 5 mmol) was dissolved in MeOH (20 mL) and a few drops of H₂SO₄ were added to the solution. The reaction mixture was refluxed at 70 °C overnight, concentrated in vacuo and redissolved in DCM (50 mL). The organic layer was washed with water (4 mL) five times. The organic layer was then washed with brine, dried over Na₂SO₄ and

concentrated in vacuo. The crude product was purified using column chromatography (petroleum ether/EtOAc = 17:3) to give dimethyl ester **46** (1.08 g, 92%). ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.26 (m, 2H), 7.25 – 7.18 (m, 3H), 3.70 – 3.61 (m, 1H), 3.59 (s, 6H), 2.73 (dd, *J* = 15.6, 7.2 Hz, 2H), 2.65 (dd, *J* = 15.6, 7.9 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 172.19, 142.67, 128.74, 127.28, 127.10, 51.75, 40.53, 38.36.

3-phenylpentane-1,5-diol (47)

Dimethyl ester **46** (1.07 mg, 4.5 mmol) was dissolved in dry DCM (12.5 mL) under argon atmosphere. The mixture was cooled to 0 °C using an ice bath. DIBAL-H (21.7 mL, 1M dioxane solution, 4.8 eq.) was added dropwise to the cooled solution and stirred for 1 hour. The reaction was quenched with Rochelle salt (30 mL, sat. aq.) and the biphasic mixture was stirred at room

temperature overnight. The layers were separated and the aqueous layer was extracted two times with diethyl ether. The organic layers were combined, washed with water and brine, dried over Na₂SO₄ and concentrated in vacuo. The diol **47** (863 mg, quant.) was used in the next step without further purification. ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.27 (m, 2H), 7.24 – 7.15 (m, 3H), 3.62 – 3.52 (m, 2H), 3.52 – 3.43 (m, 2H), 2.98 – 2.84 (m, 1H), 2.01 – 1.79 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 144.48, 128.80, 127.73, 126.63, 61.04, 39.55, 38.94.

(1,5-dibromopentan-3-yl)benzene (48)

Compound **47** (400 mg, 2.2 mmol) was dissolved in dry DCM (10 mL), PPh₃ (1.46 g, 5.5 mmol, 2.5 eq.) was added, and the mixture under argon was cooled to 0 °C using an ice bath. N-bromosuccinimide (0.65 g, 5.5 mmol, 2.5 eq.) was added portion wise. After the addition, the ice bath was removed and the reaction was stirred at room temperature for 2 hours. The reaction mixture was

concentrated under reduced pressure and the crude product was purified by column chromatography (petroleum ether/EtOAc = 99:1) to give compound **48** (415 mg, 62%). ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.33 (m, 3H), 7.22 – 7.16 (m, 2H), 3.28 (ddd, J = 10.0, 6.6, 5.5 Hz, 2H), 3.21 – 2.94 (m, 3H), 2.20 – 2.13 (m, 4H).. ¹³C NMR (101 MHz, CDCl₃) (including PPh3=O peaks) δ 134.00, 133.81, 132.37, 132.27, 129.09, 129.05, 128.78, 128.74, 128.67, 127.88, 127.23, 42.79, 39.34, 31.54.

4,4'-((3-phenylpentane-1,5-diyl)bis(oxy))dibenzonitrile (49)

Following the procedure as described above for compound **45**, using compound **48** (500 mg, 1.6 mmol), afforded crude compound **49** (546 mg, 89%). The crude product was used in the next step without further purification. ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.40

(m, 5H), 7.24 – 7.24 (m, 2H), 7.12 – 7.08 (m, 2H), 6.82 – 6.67 (m, 4H), 3.81 (ddd, J = 9.4, 6.6, 4.9 Hz, 2H), 3.72 (ddd, J = 9.4, 8.1, 6.0 Hz, 2H), 3.11 – 2.96 (m, 1H), 2.24 – 2.12 (m, 2H), 2.09 – 1.98 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 162.23, 142.69, 137.35, 137.24, 134.08, 133.96, 133.77, 128.84, 128.66, 128.59, 127.69, 127.13, 119.34, 115.25, 104.02, 66.21, 39.00, 36.00, 29.84.

4,4'-((3-phenylpentane-1,5-diyl)bis(oxy))dibenzimidamide (3)

Compound **49** (109 mg, 0.28 mmol) was dissolved in the LHMDS solution (1.1 mL, 1 M THF solution, 4.0 eq.) under argon atmosphere. The reaction was stirred at room temperature for 48 hours or longer until complete conversion to the

bis-amidine (monitored by LCMS). The solution was cooled to 0 °C and quenched with HCl (4.5 mL, 4 M dioxane solution, 60 eq.). The mixture was stirred at room temperature overnight, then diluted with diethyl ether and filtered. The precipitate was purified by preparative HPLC with the gradient 20-100% in 30 minutes. The samples were analyzed and the combined pure fractions were dried to give compound **3** (27.4 mg, 23%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.11 (d, J = 12.6 Hz, 8H), 7.77 (d, J = 8.9 Hz, 4H), 7.34 – 7.16 (m, 5H), 7.05 (d, J = 9.0 Hz, 4H), 4.00 – 3.90 (m, 2H), 3.83 (dd, J = 15.0, 8.9 Hz, 2H), 3.14 – 3.04 (m, 1H), 2.29 – 2.16 (m, 2H), 2.13 – 2.00 (m, 2H). ¹³C NMR (101 MHz, DMSO) δ 164.81, 162.92, 143.38, 130.21, 128.62, 127.69, 126.58, 119.64, 66.21, 38.31, 35.10. HRMS (ESI): calculated for C₂₅H₂₈N₄O₂ [M+H]⁺417.2291, found 417.2287.

Figure S1 Checkerboard assays of the compounds and PMBN in combination with erythromycin versus *E.coli* BW25113. OD600 values were measured using a plate reader and transformed to a gradient: purple represents growth, white represents no growth. In each case, the bounded box in the checkerboard assays indicates the minimal synergistic concentration (MSC) of compound and antibiotic resulting in the lowest FICI.

	Structures	MIC	MSC	MIC ery	MSC ery	FICI
1		200	50	100	25	0.500
2	HN H2 NH2 NH2	>25	3.13	>100	6.25	≤0.094
3	HN H2 NH2 NH2	>200	12.5	>100	6.25	≤0.063
9	HN H2 O HH2	200	50	100	25	0.500
10	HN H2 NH2 NH2	>100	12.5	100	6.25	≤0.125
11		>25	6.25	>100	6.25	≤0.156
12	HN NH2 NH2 NH2 NH2	>25	6.25	>100	1.56	≤0.133
15	HN H2 NH2 NH2	>200	50	100	25	≤0.375
16	HN H2 O'S O'NH NH2	>200	3.13	50	50	>0.5ª
21		>200	25	100	6.25	≤0.125
22	HN COLOR NH NH2 NH2	>200	25	>100	6.25	≤0.094
23	$\underset{H_2N}{\overset{HN}{\longrightarrow}} - \underset{Q}{\overset{Q}{\longrightarrow}} - \underset{NH_2}{\overset{Q}{\longrightarrow}} $	>200	100	>100	12.5	≤0.313
24	HN UN	>200	25	>100	6.25	≤0.094
1b	H ₂ N ^{NH} H ₂ N ^{NH} NH ₂ N ^{NH}	>200	100	>100	25	≤0.375
21b	HN H ₂ N	>200	100	>100	12.5	≤0.313

Table S1 Synergistic data of compounds and PMBN of the checkerboard assays with erythromycin as shown in Figure S1. All minimal inhibitory concentrations (MICs) and minimal synergistic concentrations (MSCs) are in μ g/mL.

22b	H ₂ N H NH H ₂ N NH	>200	50	>100	25	≤0.250
23b		>200	50	>100	25	≤0.250
1c	H ₂ N , NH HN , NH ₂	>200	nd.	>100	nd.	>0.5ª
21c		>200	nd.	>100	nd.	>0.5ª
22c	H ₂ N + NH + NH ₂ HN + NH ₂	>200	nd.	>100	nd.	>0.5ª
23c		>200	nd.	>100	nd.	>0.5ª
37	H ₂ N H H ₂ N H Br	>100	6.25	>100	6.25	≤0.063
38	H ₂ N H H ₂ N H H ₂ N H ₂ N H ₂	>100	6.25	>100	3.13	≤0.047
43	H ₂ N-NH H ₂ N-NH H ₂ N-NH ₂ NH NH ₂ NH NH ₂	200	12.5	>100	6.25	≤0.094
44	H ₂ N- H ₂ N-	200	3.13	>100	12.5	≤0.078
PMBN		>200	25	200	12.5	≤0.125

^a Synergy is defined as FICI $\leq 0.5.^{5}$

Checkerboard assays and FICI data against *E.coli* BW25113 with rifampicin

Figure S2 Checkerboard assays of the compounds and PMBN in combination with rifampicin versus *E.coli* BW25113. OD600 values were measured using a plate reader and transformed to a gradient: purple represents growth, white represents no growth. In each case, the bounded box in the checkerboard assays indicates the minimal synergistic concentration (MSC) of compound and antibiotic resulting in the lowest FICI.

	Structures	MIC	MSC	MIC rif	MSC rif	FICI
1		200	50	12	1.5	0.375
2	HN H2 NH2 NH2	>25	3.13	6	0.19	≤0.094
3	HN H2 NH2 NH2	>200	12.5	6	0.19	≤0.063
9	HN H2 NH2 NH2	>200	100	12	3	≤0.500
10	HN H2 NH2 NH2	200	12.5	12	0.19	0.078
11	HN H2	>25	3.13	12	0.75	≤0.125
12	HN H2 NH2 NH2	>25	3.13	12	0.19	≤0.078
15	HN H2 NH2 NH	>200	100	6	1.5	≤0.500
16	HN H2 O'S O H HH2	>200	3.13	6	6	>0.5ª
21		>200	25	12	0.38	≤0.094
22	HN V C C C C C NH NH2 NH2	>200	50	12	0.75	≤0.188
23	$\underset{H_2N}{\overset{HN}{\longrightarrow}} \circ \circ \underset{H_2}{\overset{O}{\longrightarrow}} \circ \overset{NH}{\overset{NH_2}}$	200	25	6	1.5	0.375
24	HN H2 NH2 NH2	200	3.13	12	0.19	0.031
1b		>200	100	12	1.5	≤0.375
21b		>200	100	6	0.38	≤0.313

Table S2 Synergistic data of compounds and PMBN of the checkerboard assays with rifampicin as shown in Figure S2. All minimal inhibitory concentrations (MICs) and minimal synergistic concentrations (MSCs) are in μ g/mL.

22b	H ₂ N H NH	>200	50	6	0.75	≤0.250
23b		>200	50	>12	0.75	≤0.156
1c	H ₂ N NH HN NH ₂	>200	nd.	12	nd.	>0.5ª
21c		>200	nd.	12	nd.	>0.5ª
22c	H ₂ N + NH + NH ₂ + O - O - O - O - O - O - O - O - O - O	>200	nd.	12	nd.	>0.5ª
23c		>200	nd.	12	nd.	>0.5ª
37	H ₂ N H H ₂ N NH Br	200	12.5	>12	1.5	≤0.125
38	H ₂ N ^H H ₂ N ⁺ O ⁺ U ⁺ NH ₂ N ⁺ NH ₂	100	3.13	>12	0.19	≤0.039
43	H ₂ N-NH H ₂ N-NH H ₂ N-NH ₂ NH NH ₂	100	6.25	12	0.38	0.094
44	H ₂ N-VH V V V V V V V V V V V V V V V V V V	>200	6.25	12	0.38	≤0.047
PMBN		>200	3.125	3	0.09	≤0.039

^a Synergy is defined as FICI $\leq 0.5.^{5}$

Checkerboard assays and FICI data against E.coli BW25113 with novobiocin

Figure S3 Checkerboard assays of compounds **1**, **3**, **21**, **22**, **23b**, **37**, **38**, **43**, **44**, and PMBN in combination with novobiocin versus *E.coli* BW25113. OD₆₀₀ values were measured using a plate reader and transformed to a gradient: purple represents growth, white represents no growth. In each case, the bounded box in the checkerboard assays indicates the minimal synergistic concentration (MSC) of compound and antibiotic resulting in the lowest FICI.

	Structures	MIC	MSC	MIC nov	MSC nov	FICI
1	HN H2 NH2 NH2	200	50	>200	12.5	≤0.281
3		>200	25	>200	12.5	≤0.094
21		>200	25	>200	25	≤0.125
22	HN H2 NH2 NH2	>200	25	>200	6.25	≤0.078
23b		>200	50	>200	25	≤0.188
37	H ₂ N H H ₂ N NH Br	200	12.5	>200	6.25	≤0.078
38	H ₂ N NH NH NH ₂ N NH ₂	100	3.13	>200	3.13	≤0.039
43	H ₂ N-KH NH NH ₂ NH NH ₂ NH ₂ NH ₂	>200	12.5	>200	3.13	≤0.039
44	H ₂ N-NH NH NH ₂ NH ₂ NH ₂ NH ₂	>200	6.25	>200	6.25	≤0.031
PMBN		>200	12.5	>200	6.25	≤0.047

Table S3 Synergistic data of compounds **1**, **3**, **21**, **22**, **23b**, **37**, **38**, **43**, **44**, and PMBN of the checkerboard results for *E.coli* BW25113 with novobiocin as shown in Figure S3. All minimal inhibitory concentrations (MICs) and minimal synergistic concentrations (MSCs) are in μ g/mL.

Checkerboard assays and FICI data against E.coli BW25113 with vancomycin

Figure S4 Checkerboard assays of compounds **1**, **3**, **21**, **22**, **23b**, **37**, **38**, **43**, **44**, and PMBN in combination with vancomycin versus *E.coli* BW25113. OD₆₀₀ values were measured using a plate reader and transformed to a gradient: purple represents growth, white represents no growth. In each case, the bounded box in the checkerboard assays indicates the minimal synergistic concentration (MSC) of compound and antibiotic resulting in the lowest FICI.

	Structures	MIC	MSC	MIC van	MSC van	FICI
1	HN H2 NH2 NH2	200	200	>200	-	>0.5ª
3	HN H2 NH2 NH2	>200	200	>200	200	>0.5ª
21		>200	>200	>200	>200	>0.5ª
22	HN H2 NH2	>200	50	>200	200	>0.5ª
23b		>200	200	>200	200	>0.5ª
37	H ₂ N H H ₂ N H H ₂ N H H ₂ N H ₂ Br	100	25	>200	200	>0.5ª
38	H ₂ N H ₂ N NH ₂ NH ₂	100	25	>200	200	>0.5ª
43	$H_2N \rightarrow H_1 \rightarrow H_1 \rightarrow H_2$	200	100	>200	100	>0.5ª
44	H ₂ N- H ₂ N- H ₂ N- H ₂ N- NH ₂ NH ₂ NH ₂	>200	100	>200	100	≤0.500
PMBN		>200	12.5	>200	50	≤0.156

Table S4 Synergistic data of compounds **1**, **3**, **21**, **22**, **23b**, **37**, **38**, **43**, **44**, and PMBN of the checkerboard results for *E.coli* BW25113 with vancomycin as shown in Figure S4. All minimal inhibitory concentrations (MICs) and minimal synergistic concentrations (MSCs) are in μ g/mL.

^aSynergy is defined as FICI $\leq 0.5.^{5}$

Synergy data of compounds 1, 3, 21, 22, 23b, 37, 38, 43, 44, and PMBN with rifampicin

E. coli ATCC25922

Figure S5 Checkerboard assays of compounds **1**, **3**, **21**, **22**, **23b**, **37**, **38**, **43**, **44**, and PMBN in combination with rifampicin versus *E.coli* ATCC25922. OD₆₀₀ values were measured using a plate reader and transformed to a gradient: purple represents growth, white represents no growth. In each case, the bounded box in the checkerboard assays indicates the minimal synergistic concentration (MSC) of compound and antibiotic resulting in the lowest FICI.

	Structures	MIC	MSC	MIC rif	MSC rif	FICI
1	HN H2 NH2 NH2	200	50	6	0.38	0.313
3	HN H2 NH2 NH2	>200	6.25	6	0.19	≤0.047
21		>200	25	6	0.38	≤0.125
22	HN H2 NH2 NH	200	6.25	6	0.38	0.094
23b		200	25	6	0.19	0.156
37	H ₂ N H H ₂ N H Br	100	6.25	6	0.09	0.078
38	H ₂ N NH H ₂ N NH NH ₂ N NH ₂	100	3.13	6	0.09	0.047
43	H ₂ N-NH NH Br	>200	6.25	6	0.09	≤0.031
44	H ₂ N-NH NH NH ₂ N-NH ₂	200	3.13	6	0.09	0.031
PMBN		>200	6.25	6	0.19	≤0.047

Table S5 Synergistic data of compounds **1**, **3**, **21**, **22**, **23b**, **37**, **38**, **43**, **44**, and PMBN of the checkerboard results for *E.coli* ATCC25922 with rifampicin as shown in Figure S5. All minimal inhibitory concentrations (MICs) and minimal synergistic concentrations (MSCs) are in μg/mL.

E. coli W3110

Figure S6 Checkerboard assays of compounds **1**, **3**, **21**, **22**, **23b**, **37**, **38**, **43**, **44**, and PMBN in combination with rifampicin versus *E.coli* W3110. OD₆₀₀ values were measured using a plate reader and transformed to a gradient: purple represents growth, white represents no growth. In each case, the bounded box in the checkerboard assays indicates the minimal synergistic concentration (MSC) of compound and antibiotic resulting in the lowest FICI.

	Structures	MIC	MSC	MIC rif	MSC rif	FICI
1	HN H2 NH2 NH2	>200	50	>6	0.75	≤0.188
3	HN + C + C + C + NH NH ₂ + NH ₂	200	6.25	6	0.19	0.063
21		>200	50	6	0.38	≤0.188
22	HN H2 NH2	100	25	6	0.38	0.313
23b		>200	25	6	0.75	≤0.188
37	H ₂ N H H ₂ N H H ₂ N H H ₂ N H ₂ Br	100	3.13	>6	0.38	≤0.063
38	H ₂ N NH H ₂ N NH NH ₂ N NH ₂	100	6.25	>6	0.09	≤0.070
43	H ₂ N-KH NH Br	200	6.25	>6	0.19	≤0.047
44	H ₂ N-NH O O O O O O O O O O O O O O O O O O O	>200	25	6	0.09	≤0.078
PMBN		>200	6.25	6	0.09	≤0.031

Table S6 Synergistic data of compounds **1**, **3**, **21**, **22**, **23b**, **37**, **38**, **43**, **44**, and PMBN of the checkerboard results for *E.coli* W3110 with rifampicin as shown in Figure S6. All minimal inhibitory concentrations (MICs) and minimal synergistic concentrations (MSCs) are in µg/mL.

E. coli 552060.1

Figure S7 Checkerboard assays of compounds **1**, **3**, **21**, **22**, **23b**, **37**, **38**, **43**, **44**, and PMBN in combination with rifampicin versus *E.coli* 552060.1. OD₆₀₀ values were measured using a plate reader and transformed to a gradient: purple represents growth, white represents no growth. In each case, the bounded box in the checkerboard assays indicates the minimal synergistic concentration (MSC) of compound and antibiotic resulting in the lowest FICI.

	Structures	MIC	MSC	MIC rif	MSC rif	FICI
1	HN H2 NH2 NH2	200	50	6	0.75	0.375
3	HN YH2 NH2 NH2	>200	12.5	6	0.19	≤0.063
21		>200	25	6	0.19	≤0.094
22	HN COLOR ONH NH2 NH2	100	12.5	6	0.75	0.250
23b		>200	50	6	0.38	≤0.188
37	H ₂ N H H ₂ N NH Br	100	6.25	6	0.09	0.078
38	H ₂ N H H ₂ N H	200	12.5	6	0.09	0.078
43	H ₂ N- H ₂ N- HN- NH ₂ HN- NH ₂ HN- NH ₂	>200	6.25	6	0.09	≤0.031
44	H ₂ N+ H ₂ N+ H ₂ N+ H ₂ NH ₂ H ₂ NH ₂	200	6.25	6	0.09	0.047
PMBN		>200	12.5	6	0.09	≤0.047

Table S7 Synergistic data of compounds **1**, **3**, **21**, **22**, **23b**, **37**, **38**, **43**, **44**, and PMBN of the checkerboard results for *E.coli* 5552060.1 with rifampicin as shown in Figure S7. All minimal inhibitory concentrations (MICs) and minimal synergistic concentrations (MSCs) are in µg/mL.

E. coli BW25113 mcr-1

Figure S8 Checkerboard assays of compounds **1**, **3**, **21**, **22**, **23b**, **37**, **38**, **43**, **44**, and PMBN in combination with rifampicin versus *E.coli* BW25113 mcr-1. OD₆₀₀ values were measured using a plate reader and transformed to a gradient: purple represents growth, white represents no growth. In each case, the bounded box in the checkerboard assays indicates the minimal synergistic concentration (MSC) of compound and antibiotic resulting in the lowest FICI.

	Structures	MIC	MSC	MIC rif	MSC rif	FICI
1	HN C NH	>200	50	6	0.75	≤0.250
3	HN H2 NH2 NH2	>200	12.5	6	0.19	≤0.063
21		>200	25	>6	0.38	≤0.094
22	HN H2 NH2	>100	25	>6	0.38	≤0.156
23b		>200	50	>6	0.75	≤0.188
37	H ₂ N H H ₂ N NH NH ₂ N NH ₂ Br	>50	6.25	>6	0.19	≤0.078
38	H ₂ N H H ₂ N NH ₂ NH ₂	100	3.13	>6	0.09	≤0.039
43	H ₂ N H HN NH ₂	200	6.25	>6	0.09	≤0.039
44	H ₂ N-NH NH NH ₂	>100	3.13	>6	0.19	≤0.031
PMBN		>200	12.5	6	0.75	≤0.156

Table S8 Synergistic data of compounds **1**, **3**, **21**, **22**, **23b**, **37**, **38**, **43**, **44**, and PMBN of the checkerboard results for *E.coli* BW25113 mcr-1 with rifampicin as shown in Figure S8. All minimal inhibitory concentrations (MICs) and minimal synergistic concentrations (MSCs) are in μg/mL.

E. coli mcr-1

Figure S9 Checkerboard assays of compounds **1**, **3**, **21**, **22**, **23b**, **37**, **38**, **43**, **44**, and PMBN in combination with rifampicin versus *E.coli* mcr-1. OD₆₀₀ values were measured using a plate reader and transformed to a gradient: purple represents growth, white represents no growth. In each case, the bounded box in the checkerboard assays indicates the minimal synergistic concentration (MSC) of compound and antibiotic resulting in the lowest FICI.

	Structures	MIC	MSC	MIC rif	MSC rif	FICI
1	HN H2 NH2 NH2	>200	50	12	0.75	≤0.188
3	HN H2 NH2 NH2	>200	12.5	12	0.38	≤0.063
21		>200	25	12	1.5	≤0.188
22	HN H2 NH2 NH2	>200	25	12	1.5	≤0.188
23b		>200	50	12	0.75	≤0.188
37	H ₂ N H H ₂ N NH Br	100	6.25	12	0.19	0.078
38	H ₂ N NH H ₂ N NH NH ₂ N NH ₂	100	3.13	12	0.19	0.047
43	H ₂ N-NH O Br	>100	6.25	12	0.19	≤0.047
44	H ₂ N-NH NH NH ₂ N-NH ₂	100	3.13	12	0.19	0.047
PMBN		>200	12.5	12	0.75	≤0.094

Table S9 Synergistic data of compounds **1**, **3**, **21**, **22**, **23b**, **37**, **38**, **43**, **44**, and PMBN of the checkerboard results for *E.coli* mcr-1 with rifampicin as shown in Figure S9. All minimal inhibitory concentrations (MICs) and minimal synergistic concentrations (MSCs) are in µg/mL.

E. coli EQASmcr-1/EQAS 2016 412016126

Figure S10 Checkerboard assays of compounds **1**, **3**, **21**, **22**, **23b**, **37**, **38**, **43**, **44**, and PMBN in combination with rifampicin versus *E.coli* EQASmcr-1/EQAS 2016 412016126. OD₆₀₀ values were measured using a plate reader and transformed to a gradient: purple represents growth, white represents no growth. In each case, the bounded box in the checkerboard assays indicates the minimal synergistic concentration (MSC) of compound and antibiotic resulting in the lowest FICI.

	Structures	MIC	MSC	MIC rif	MSC rif	FICI
1	HN H2 NH2 NH2	>200	50	12	1.5	≤0.250
3	HN H2 NH2 NH2	>200	12.5	12	0.38	≤0.063
21		>200	25	12	0.75	≤0.125
22	HN H2 NH2	200	25	12	0.75	0.188
23b		>200	50	12	0.75	≤0.188
37	H ₂ N H H ₂ N NH Br	100	6.25	12	0.75	0.125
38	H ₂ N H H ₂ N NH ₂ NH ₂	100	3.13	12	0.19	0.047
43	H ₂ N H H ₂ N H H ₂ N H H ₂ N H ₂ H	100	3.13	12	0.38	0.063
44	H ₂ N-NH NH NH ₂	200	12.5	12	0.19	0.078
PMBN		>200	25	12	0.75	≤0.125

Table S10 Synergistic data of compounds **1**, **3**, **21**, **22**, **23b**, **37**, **38**, **43**, **44**, and PMBN of the checkerboard results for *E.coli* EQASmcr-1/EQAS 2016 412016126 with rifampicin as shown in Figure S10. All minimal inhibitory concentrations (MICs) and minimal synergistic concentrations (MSCs) are in μg/mL.

E. coli EQASmcr-2/EQAS 2016 KP37

Figure S11 Checkerboard assays of compounds **1**, **3**, **21**, **22**, **23b**, **37**, **38**, **43**, **44**, and PMBN in combination with rifampicin versus *E.coli* EQASmcr-2/EQAS 2016 KP37. OD₆₀₀ values were measured using a plate reader and transformed to a gradient: purple represents growth, white represents no growth. In each case, the bounded box in the checkerboard assays indicates the minimal synergistic concentration (MSC) of compound and antibiotic resulting in the lowest FICI.

	Structures	MIC	MSC	MIC rif	MSC rif	FICI
1	HN H2 NH2 NH2	200	50	6	0.75	0.375
3	HN H2 NH2 NH2	>200	12.5	12	0.38	≤0.063
21		>200	25	12	0.75	≤0.125
22	HN H2 NH2	100	6.25	12	3	0.313
23b		>200	25	12	0.75	≤0.125
37	H ₂ N H H ₂ N NH Br	25	3.13	12	1.5	0.250
38	H ₂ N H H ₂ N NH ₂ NH ₂	100	3.13	12	0.19	0.047
43	H ₂ N-NH H ₂ N-NH H ₂ N-NH ₂ H ₂ N-NH ₂	200	6.25	12	0.38	0.063
44	H ₂ N-NH NH NH ₂ NH NH ₂	25	1.56	12	0.38	0.094
PMBN		>200	12.5	6	0.75	≤0.156

Table S11 Synergistic data compounds **1**, **3**, **21**, **22**, **23b**, **37**, **38**, **43**, **44**, and PMBN of the checkerboard results for *E.coli* EQASmcr-2/EQAS 2016 KP37 with rifampicin as shown in Figure S11. All minimal inhibitory concentrations (MICs) and minimal synergistic concentrations (MSCs) are in μg/mL.

E. coli EQASmcr-3/EQAS 2017 2013-SQ352

Figure S12 Checkerboard assays of compounds **1**, **3**, **21**, **22**, **23b**, **37**, **38**, **43**, **44**, and PMBN in combination with rifampicin versus *E.coli* EQASmcr-3/EQAS 2017 2013-SQ352. OD₆₀₀ values were measured using a plate reader and transformed to a gradient: purple represents growth, white represents no growth. In each case, the bounded box in the checkerboard assays indicates the minimal synergistic concentration (MSC) of compound and antibiotic resulting in the lowest FICI.

	Structures	MIC	MSC	MIC rif	MSC rif	FICI
1	HN H2 NH2 NH2	>200	50	12	0.75	≤0.188
3	HN NH ₂ NH ₂ NH ₂ NH ₂	>200	12.5	12	0.38	≤0.063
21		>200	25	12	0.75	≤0.125
22	HN H2 NH2	>200	50	12	0.75	≤0.188
23b		>200	50	12	0.75	≤0.188
37	H ₂ N H H ₂ N NH NH ₂ N NH ₂ Br	100	6.25	12	0.19	0.078
38	H ₂ N ^H H ₂ N ^H NH ₂ N ^H NH ₂	200	3.13	12	0.19	0.031
43	H ₂ N-WH H ₂ N-WH Br	>200	12.5	12	0.19	≤0.047
44	H ₂ N-NH NH NH ₂	>100	3.13	12	0.19	≤0.031
PMBN		>200	12.5	12	0.75	≤0.094

Table S12 Synergistic data of compounds **1**, **3**, **21**, **22**, **23b**, **37**, **38**, **43**, **44**, and PMBN of the checkerboard results for *E.coli* EQASmcr-3/EQAS 2017 2013-SQ352 with rifampicin as shown in Figure S12. All minimal inhibitory concentrations (MICs) and minimal synergistic concentrations (MSCs) are in μg/mL.
E. coli RC00089

Figure S13 Checkerboard assays of compounds **1**, **3**, **21**, **22**, **23b**, **37**, **38**, **43**, **44**, and PMBN in combination with rifampicin versus *E.coli* RC00089. OD₆₀₀ values were measured using a plate reader and transformed to a gradient: purple represents growth, white represents no growth. In each case, the bounded box in the checkerboard assays indicates the minimal synergistic concentration (MSC) of compound and antibiotic resulting in the lowest FICI.

	Structures	MIC	MSC	MIC rif	MSC rif	FICI
1	HN H2 NH2 NH2	>200	100	>192	48	≤0.375
3	HN H2 NH2 NH2	>200	25	>192	6	≤0.078
21		>200	50	>192	48	≤0.250
22	HN H2 NH2	>200	50	>192	12	≤0.156
23b		>200	100	>192	48	≤0.375
37	H ₂ N H H ₂ N NH Br	>200	12.5	>192	6	≤0.047
38	H ₂ N ^H H ₂ N ^H NH ₂ N ^H NH ₂	>200	6.25	>192	3	≤0.023
43	$H_2N \rightarrow NH$ $H_2N \rightarrow NH_2$ $H_2N \rightarrow NH_2$ $H_2N \rightarrow NH_2$	>200	25	>192	3	≤0.070
44	H ₂ N-NH NH NH ₂ NH NH ₂	>200	12.5	>192	6	≤0.047
PMBN		>200	50	>192	24	≤0.188

Table S13 Synergistic data of compounds **1**, **3**, **21**, **22**, **23b**, **37**, **38**, **43**, **44**, and PMBN of the checkerboard results for *E.coli* RC00089 with rifampicin as shown in Figure S13. All minimal inhibitory concentrations (MICs) and minimal synergistic concentrations (MSCs) are in μg/mL.

A. baumannii ATCC17978

Figure S14 Checkerboard assays of compounds **1**, **3**, **21**, **22**, **23b**, **37**, **38**, **43**, **44**, and PMBN in combination with rifampicin versus *A. baumannii* ATCC17978. OD₆₀₀ values were measured using a plate reader and transformed to a gradient: purple represents growth, white represents no growth. In each case, the bounded box in the checkerboard assays indicates the minimal synergistic concentration (MSC) of compound and antibiotic resulting in the lowest FICI.

	Structures	MIC	MSC	MIC rif	MSC rif	FICI
1	HN + C + O + C + NH NH ₂ NH ₂ NH	>200	25	3	0.19	≤0.125
3	HN + C + NH NH ₂ NH ₂ NH	>200	12.5	3	0.05	≤0.047
21		>200	25	3	0.09	≤0.094
22	HN UNH2	>200	25	3	0.09	≤0.094
23b		>200	25	3	0.09	≤0.094
37	H ₂ N H H ₂ N H ₂ N H ₂ Br	>200	6.25	3	0.09	≤0.047
38	H ₂ N ^H H ₂ N ^H H ₂ N ^H H ₂ N ^H NH ₂	>200	3.13	3	0.05	≤0.023
43	H ₂ N+ H ₂ N+ HN+ HN+ HN+ HN+ H2 HN+ H2	>200	6.25	1.5	0.05	≤0.047
44	H ₂ N- H ₂ N- H ₂ N- H ₂ N- NH ₂ H ₂ N- NH ₂	>200	3.13	3	0.05	≤0.023
PMBN		>200	3.13	3	0.05	≤0.023

Table S14 Synergistic data of compounds **1**, **3**, **21**, **22**, **23b**, **37**, **38**, **43**, **44**, and PMBN of the checkerboard results for *A. baumannii* ATCC17978 with rifampicin as shown in Figure S14. All minimal inhibitory concentrations (MICs) and minimal synergistic concentrations (MSCs) are in µg/mL.

K. pneumoniae ATCC13883

Figure S15 Checkerboard assays of compounds **1**, **3**, **21**, **22**, **23b**, **37**, **38**, **43**, **44**, and PMBN in combination with rifampicin versus *K. pneumoniae* ATCC13883. OD₆₀₀ values were measured using a plate reader and transformed to a gradient: purple represents growth, white represents no growth. In each case, the bounded box in the checkerboard assays indicates the minimal synergistic concentration (MSC) of compound and antibiotic resulting in the lowest FICI.

	Structures	MIC	MSC	MIC rif	MSC rif	FICI
1	HN H2 NH2 NH2	>200	25	>12	1.5	≤0.125
3	HN H2 NH2 NH2	>200	12.5	>12	0.38	≤0.047
21		>200	12.5	>12	1.5	≤0.094
22	HN COLOR NH NH2 NH2	>200	25	>12	0.38	≤0.078
23b		>200	25	>12	1.5	≤0.125
37	H ₂ N H H ₂ N H H ₂ N H ₂ N H ₂	>200	6.25	>12	0.19	≤0.023
38	H ₂ N H H ₂ N NH NH ₂ N NH ₂	>200	3.13	>12	0.19	≤0.016
43	$H_2N \rightarrow H_1 \rightarrow H_1 \rightarrow H_2$	>200	6.25	>12	0.38	≤0.031
44	H ₂ N- H ₂ N- H ₂ N- NH ₂ NH ₂ NH ₂	>200	6.25	>12	0.19	≤0.023
PMBN		>200	3.13	>12	1.5	≤0.070

Table S15 Synergistic data of compounds **1**, **3**, **21**, **22**, **23b**, **37**, **38**, **43**, **44**, and PMBN of the checkerboard results for *K. pneumoniae* ATCC13883 with rifampicin as shown in Figure S15. All minimal inhibitory concentrations (MICs) and minimal synergistic concentrations (MSCs) are in µg/mL.

P. aeruginosa ATCC27853

Figure S16 Checkerboard assays of compounds **1**, **3**, **21**, **22**, **23b**, **37**, **38**, **43**, **44**, and PMBN in combination with rifampicin versus *P. aeruginosa* ATCC27853. OD₆₀₀ values were measured using a plate reader and transformed to a gradient: purple represents growth, white represents no growth. In each case, the bounded box in the checkerboard assays indicates the minimal synergistic concentration (MSC) of compound and antibiotic resulting in the lowest FICI.

	Structures	MIC	MSC	MIC rif	MSC rif	FICI
1	HN H2 NH2 NH2	>200	100	24	6	≤0.500
3	HN H2 NH2 NH2	>200	25	24	1.5	≤0.125
21		>200	100	24	1.5	≤0.313
22	HN COLOR NH NH2 NH2	>200	50	>24	6	≤0.250
23b		>200	100	24	3	≤0.375
37	H ₂ N H H ₂ N H ₂ N H ₂ Br	>200	25	24	0.38	≤0.078
38	H ₂ N ^H H ₂ N ^H H ₂ N ^H NH ₂ N ^H NH ₂	100	25	24	6	0.500
43	H ₂ N-NH H ₂ N-NH H ₂ N-NH ₂ HN HN H ₂ N-NH ₂	200	6.25	24	1.5	0.094
44	H ₂ N- H ₂ N- H ₂ N- H ₂ N- NH ₂ H ₂ N- NH ₂	100	6.25	24	0.75	0.094
PMBN		50	0.78	24	0.38	0.031

Table S16 Synergistic data of compounds **1**, **3**, **21**, **22**, **23b**, **37**, **38**, **43**, **44**, and PMBN of the checkerboard results for *P. aeruginosa* ATCC27853 with rifampicin as shown in Figure S16. All minimal inhibitory concentrations (MICs) and minimal synergistic concentrations (MSCs) are in µg/mL.

Hemolysis assay

Figure S17 Hemolytic activity of al compounds (200 µg/mL) after 1 hour of incubation. The hemolysis assay was performed as described in materials and methods. Values below 10% were defined as non-hemolytic.⁶ Error bars represent the standard deviation based on n=3 technical replicates.

Figure S18 Hemolytic activity of all compounds (200 μ g/mL) after 20 hours of incubation. The hemolysis assay was performed as described in materials and methods. Values below 10% were defined as non-hemolytic.⁶ Error bars represent the standard deviation based on n=3 technical replicates.

	Structures	Hemolysis 1 hour (%)	Hemolysis 20 hours (%)
1		4.0	0.4
2		9.7	82
3	HN H2 NH2 NH2	0.5	13
9	HN H2 NH2 NH	0.4	0.6
10	HN H2 NH2 NH2	0.3	9.2
11	HN H2	0.0	16
12	HN NH ₂ NH ₂ NH ₂ NH ₂	8.5	87
15	HN H2 NH2 NH	0.2	0.0
16	HN H2 O O O O H HNH2	0.2	0.1
21		1.7	0.5
22	HN CONTRACTOR NH NH2 NH2	0.9	1.1
23	$\underset{H_2N}{\overset{HN}{\longrightarrow}} \circ \underset{NH_2}{\overset{O}{\longrightarrow}} \circ \underset{NH_2}{\overset{NH}{\longrightarrow}} \circ \underset{NH_2}{\overset{NH_2}{\overset{NH_2}{\longrightarrow}}} \circ \underset{NH_2}{\overset{NH_2}{\overset{NH_2}{\longleftrightarrow}}} \circ \underset{NH_2}{\overset{NH_2}{\overset{NH_2}{\longleftrightarrow}}} \circ \underset{NH_2}{\overset{NH_2}{\overset{NH_2}{\longleftrightarrow}}} \circ \underset{NH_2}{\overset{NH_2}{\overset{NH_2}{\longleftrightarrow}}} \circ \underset{NH_2}{\overset{NH_2}{\overset{NH_2}{\overset}}} \circ \underset{NH_2}{\overset{NH_2}{\overset}} \circ $	0.2	0.4
24	HN H2 NH2 NH2	2.6	75
1b		0.1	0.1
21b		0.1	0.4

Table S17 Hemolytic activity of all compounds (200 μ g/mL). The hemolysis assay was performed as described in
materials and methods. Values below 10% were defined as non-hemolytic. ⁶

22b	H ₂ N H ₁ O NH ₁ NH ₂	0.2	1.6
23b		0.0	3.7
1c	H ₂ N + NH HN NH ₂	0.0	0.7
21c		0.0	0.4
22c	H ₂ N, NH, HN, NH ₂	0.0	0.0
23c		0.0	0.0
37	H ₂ N H H ₂ N H Br	0.6	57
38	H ₂ N H H ₂ N H H ₂ N H ₂ N H ₂	32	58
43	H ₂ N-NH O Br	12	57
44	H ₂ N, NH O O O O O O O O O O O O O O O O	30	82

Outer membrane permeability assay

Figure S19 Outer membrane permeabilization assay of compounds **1**, **21**, **22**, and PMBN with *E.coli* BW25113 using *N*-phenyl-napthalen-1-amine (NPN) (at 0.01 mM) as fluorescent probe. The read-out was performed using a plate reader with λ_{ex} 355 nm and λ_{em} 420 nm. The NPN uptake values shown are relative to the uptake signal obtained upon treating the cells with 100 µg/mL colistin as previously reported.⁷ Error bars represent the standard deviation based on n=3 technical replicates. Of note is the maximum NPN fluorescence measured for pentamidine and bis-amidines **21** and **22** at 3.1 µg/mL (0.01 mM). At higher bis-amidines concentrations, NPN fluorescence decreases, an effect not observed for PMBN.

Compound characterization and analysis

HRMS characterization

Table S18 Overview of the HRMS results obtained using a Shimadzu Nexera X2 UHPLC system with a Waters Acquity HSS C18 column (2.1 × 100 mm, 1.8 μm) at 30 °C and equipped with a diode array detector. This system was connected to a Shimadzu 9030 QTOF mass spectrometer (ESI ionisation) calibrated internally with Agilent's API-TOF reference mass solution kit (5.0 mM purine, 100.0 mM ammonium trifluoroacetate and 2.5 mM hexakis(1H,1H,3H-tetrafluoropropoxy)phosphazine) diluted to achieve a mass count of 10000.

	Structures		[M+H] ⁺ calculated	[M+H] ⁺ found
1	HN U O O O O O O O O O O O O O O O O O O	C19H24N4O2	341.1977	341.1977
2	HN H2 NH2 NH2	C23H32N4O2	397.2604	397.2597
3	HN H2 NH2 NH2	C25H28N4O2	417.2291	417.2287
9	HN H2 NH2 NH2	C17H20N4O2	313.1664	313.1662
10	HN NH ₂ NH ₂ NH ₂ NH ₂	C21H28N4O	369.2290	369.2290
11		C22H30N4O2	383.2447	383.2446
12	HN NH2	C25H36N4O2	425.2916	425.2919
15	HN + C + C + C + NH NH2 + NH2	C18H22N4O2S	359.1541	359.1541
16	HN H2 O O O O HH2	C18H22N4O4S	391.1441	391.1434
21		C22H22N4O2	375.1821	375.1821
22	HN H2 NH2	C22H22N4O2	375.1821	375.1821
23	$\underset{H_2N}{\overset{HN}{\longrightarrow}} \overset{O}{\overset{O}{\longrightarrow}} \overset{O}{\overset{O}{\longrightarrow}} \overset{NH}{\overset{NH}{\longrightarrow}} \overset{NH}{\overset{NH}{\to}} \overset{NH}{\overset{NH}{\overset$	C22H22N4O2	375.1821	375.1820
24	HN H2 NH2 NH2	C26H24N4O2	425.1977	425.1977

1b		C19H24N4O2	341.1977	341.1977
21b		C22H22N4O2	375.1821	375.1821
22b	H ₂ N ^H O NH NH ₂ N ^H NH ₂	C22H22N4O2	375.1821	375.1821
23b		C22H22N4O2	375.1821	375.1818
1c	H ₂ N NH HN NH ₂	C19H24N4O2	341.1977	341.1972
21c		C22H22N4O2	375.1821	375.1815
22c	H ₂ N, NH HN NH ₂	C22H22N4O2	375.1821	375.1816
23c		C22H22N4O2	375.1821	375.1816
37	H ₂ N H H ₂ N H H ₂ N H H ₂ N H ₂	C22H21BrN4O2	453.0926	453.0924
38	H ₂ N H H ₂ N NH NH ₂ N NH	C28H26N4O2	451.2135	451.2130
43		C22H21BrN4O2	453.0926	453.0923
44	H ₂ N-NH O O O O O O O O O O O O O O O O O O O	C28H26N4O2	451.2135	451.2129

NMR data Compound 1 ¹H NMR (DMSO)

¹³C NMR (DMSO)

Compound 3 ¹H NMR (DMSO)

Compound 4¹H NMR (CDCl₃) States 280 258 15153 18000 17000 NC 16000 CN 15000 14000 13000 12000 11000 10000 9000 8008 7000 6000 -5000 4000 3000 2006 1000 -0 A.05-g 1787 中島日 9-10.9 -1000 0.0 7.5 7.0 5.0 f1 (ppm) 4.5 4.0 3.5 3.0 25 9.5 9.0 8.5 8.0 6.5 6.0 5.5 2.0 1.5 1.0 0.5 0.0

¹³C NMR (CDCl₃)

¹³C NMR (DMSO)

Compound 10 ¹H NMR (DMSO)

¹³C NMR (DMSO)

Compound 12 ¹H NMR (DMSO)

¹³C NMR (CDCl₃)

¹³C NMR (CDCl₃)

¹³C NMR (DMSO)

¹³C NMR (DMSO)

¹³C NMR (CDCl₃)

¹³C NMR (CDCl₃)

¹³C NMR (CDCl₃)

Compound 21 ¹H NMR (DMSO)

¹³C NMR (DMSO)

¹³C NMR (CDCl₃)

Compound 27 ¹H NMR (CDCl₃)

Compound 28 ¹H NMR (CDCl₃)

Compound 21b ¹H NMR (DMSO)

Compound 23b ¹H NMR (DMSO)

Compound 29 ¹H NMR (CDCl₃)

¹³C NMR (CDCl₃)

Compound 30 ¹H NMR (CDCl₃)

Compound 31 ¹H NMR (CDCl₃)

Compound 32 ¹H NMR (CDCl₃)

Compound 1c ¹H NMR (DMSO)

Compound 21c ¹H NMR (DMSO)

Compound 22c ¹H NMR (DMSO)

Compound 23c ¹H NMR (DMSO)

¹³C NMR (DMSO)

Compound 33 ¹H NMR (MeOD)

¹³C NMR (MeOD)

¹³C NMR (CDCl₃)

Compound 38 ¹H NMR (DMSO)

Compound 39 ¹H NMR (CDCl₃)

Compound 40 ¹H NMR (CDCl₃)

Compound 43 ¹H NMR (DMSO)

¹³C NMR (DMSO)

Compound 45 ¹H NMR (CDCl₃)

¹³C NMR (CDCl₃)

Compound 47 ¹H NMR (CDCl₃)

¹³C NMR (CDCl₃)

Compound 48 ¹H NMR (CDCl₃)

HPLC traces of the final compounds

Compound 1b

Compound 21b

Compound 22b

Compound 23b

Compound 1c

Compound 21c

Compound 22c

Compound 23c

Sources of bacterial strains

Leiden University Medical Center (LUMC), Department of Medical Microbiology, Albinusdreef 2, 2333 ZA Leiden, The Netherlands

A. baumannii ATCC 17978 E.coli ATCC 25922 K. pneumoniae ATCC 13883 P. aeruginosa ATCC 27853

Utrecht University Medical Center (UMC), Microbiology department, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands

E.coli BW25113 *E.coli* 552060.1

Utrecht University Medical Center (UMC), Clinical Microbiology group, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands

E.coli RC00089

Wageningen Bioveterinary Research, Bacteriology and Epidemiology, Houtribweg 39, 8221 RA Lelystad, The Netherlands

E. coli EQASmcr-1 (EQAS 2016 412016126)

E. coli EQASmcr-2 (EQAS 2016 KP37)

E. coli EQASmcr-3 (EQAS 2017 2013-SQ352)

References

- Gromyko, A. V., Popov, K. V., Mosoleva, A. P., Streltsov, S. A., Grokhovsky, S. L., Oleinikov, V. A., Zhuze, A. L. (2005) DNA sequence-specific ligands: XII. Synthesis and cytological studies of dimeric hoechst 33258 molecules. *Russ. J. Bioorganic Chem.*, 31 (4), 344–351. DOI: 10.1007/s11171-005-0047-z.
- Akhtar, W. M., Armstrong, R. J., Frost, J. R., Stevenson, N. G., Donohoe, T. J. (2018)
 Stereoselective Synthesis of Cyclohexanes via an Iridium Catalyzed (5 + 1) Annulation
 Strategy. J. Am. Chem. Soc., 140 (38), 11916–11920. DOI: 10.1021/jacs.8b07776.
- (3) López-Cortina, S., Medina-Arreguin, A., Hernández-Fernández, E., Berns, S., Guerrero-Alvarez, J., Ordoñez, M., Fernández-Zertuche, M. (2010) Stereochemistry of base-induced cleavage of methoxide ion on cis- and trans-1,4diphenylphosphorinanium salts. A different behavior with a phenyl substituent. *Tetrahedron*, 66 (32), 6188–6194. DOI: 10.1016/J.TET.2010.05.095.
- (4) Berglund, A. J., Bodner, M. J. Aryl diamidines and prodrugs thereof for treating myotonic dystrophy. U.S. patent US 2013/0281462 A1, 2013.
- (5) Odds, F. C. (2003) Synergy, antagonism, and what the chequerboard puts between them. *J. Antimicrob. Chemother.*, 52 (1), 1–1. DOI: 10.1093/jac/dkg301.
- (6) Amin, K., Dannenfelser, R.-M. (2006) In vitro hemolysis: Guidance for the pharmaceutical scientist. *J. Pharm. Sci.*, 95 (6), 1173–1176. DOI: 10.1002/JPS.20627.
- (7) MacNair, C. R., Stokes, J. M., Carfrae, L. A., Fiebig-Comyn, A. A., Coombes, B. K., Mulvey, M. R., Brown, E. D. (2018) Overcoming mcr-1 mediated colistin resistance with colistin in combination with other antibiotics. *Nat. Commun.*, 9 (2018), 458. DOI: 10.1038/s41467-018-02875-z.