High-throughput screening reveals new glutaminase inhibitor molecules

Renna K. E. Costa ^{1,2}⁺, Camila Rodrigues⁺³, Jean C. H. Campos¹⁺, Luciana Paradela ^{1,2}⁺, Marilia M. Dias ¹, Bianca Novaes da Silva¹, Cyro von Zuben de Valega Negrao^{1,2}, Kaliandra de Almeida Gonçalves¹, Carolline F. R. Ascenção ^{1,2}, Douglas Adamoski ^{1,2}, Gustavo Fernando Mercaldi¹, Alliny C. S. Bastos¹, Fernanda A. H. Batista¹, Ana Carolina Figueira¹, Artur T. Cordeiro¹, Andre L. B. Ambrosio¹, Rafael V. C. Guido^{3*}⁺, Sandra M. G. Dias^{1*}⁺

Supplementary Information

Supplementary Figure S2 Supplementary Figure S3 Supplementary Figure S4 Supplementary Figure S5

Supplementary Figure S1

- Supplementary Figure S6
- Supplementary Figure S7
- Supplementary Figure S8
- Supplementary Figure S9
- Supplementary Table S1
- Supplementary Table S2
- Supplementary Table S3
- Supplementary Table S4

Supplementary Figure 1

Supplementary Figure S1. Assay optimization. *A*, Michaelis-Menten of the GAC-GDH-Diaphorase fluorescent coupled assay. Obtained K_m , k_{cat} and k_{cat}/K_m for 2.5 nM of enzyme are very close to the same parameters measured for GAC in a GAC-GDH absorbance assay previously published (41) (see table for comparison). *B*, Above, Michaelis-Menten of the GAC-GDH-Diaphorase fluorescent coupled assay using 1,25 nM and 5 nM; below, the ratio between V0 measured for each glutamine concentration (and Vmax) when using 1,25 nM GAC over 2,5 nM GAC (white bars) or 5 nM GAC over 2,5 nM GAC (gray bars), showing the values are proportional to the GAC concentration. The proportionality proves the reaction is driven by GAC. *C*, comparing the IC₅₀ of BPTES over the GAC-GDH-Diaphorase fluorescent coupled assay and the GAC-GDH absorbance assay. *D*, Measured RFU of the GAC-GDH-Diaphorase fluorescent coupled assay over time showing that 0.01% Triton X-100 does not affect measurement. *E*, Michaelis-Menten of the GAC-GDH-Diaphorase fluorescent coupled assay showing that 2% DMSO does not affect the curve qualitatively. *F*, Measured RFU of the GAC-GDH-Diaphorase fluorescent coupled assay in different conditions over 200 minutes showing

that either GAC removal (-GAC +Gln + 2% DMSO) or BPTES 10 μ M (+GAC + Gln + 10 μ M BPTES) treatment gives equivalent measurements. *G*, Measured RFU of the GAC-GDH-Diaphorase fluorescent coupled assay over time showing that 20 μ M resorufin gives the highest signal and best S/N (values not shown). *H*, RFU obtained for different amounts (0 to 20 μ M) of the fluorescent product, resorufin, showing the dynamic range of the reaction. *I*, Reproducibility of the GAC-GDH-Diaphorase fluorescent coupled assay over two consecutive days. Z' and S/B for each data point of Assay (day 1).

Supplementary Figure S2. *A*, Confirmation assay of 320 hits was performed in triplicate after cherry-picking. Correlation between plate 1 and 2 (on the left), plates 1 and 3 (in between) and plates 2 and 3 (on the right). Pearson correlation r and R² values are shown above each graph. *B*, cLogP, topological polar superficial area (tPSA), Molecular Weight, number of free-of-rotation bonds, number of hydrogen bonds donors and acceptors graphs of the 11 re-supplied compounds.

Supplementary Figure S3. *A*, curves of C1-C10 on the GAC (A) or KGA (B) enzymatic activity. Values within the brackets represents an interval confidence of 95% (CI 95%).

Supplementary Figure 4

Supplementary Figure S4. Glutamine-deprivation and BPTES effect on cell growth. *A*, Growth response assay of MDA-MB-231, a TNBC cell line, SKBR3, a non-TNBC cell line and the non-tumorigenic MCF-10A cell line to different concentrations of glutamine in the media. *B*, Western blot showing the GLS levels in the cell lines. Growth dose-response assay of BPTES over MDA-MB-231, SKBR3, MCF-10A and hTert-immortalized iHMEC (*C*) and MDA-MB-231 shGFP, shGLS and shGLS expressing GLS2 ectopically (*D*). On (*C*, *D*), the data was normalized and 0% was set as the number of seeded cells and 100% as the highest number of cells. Doses below the dashed lines indicate the concentrations that lead to cell death (final number of cells after 48 hours is smaller than the number of seeded cells). IC₅₀ [95% CI] and R² of the adjusted sigmoidal curve are displayed. Graphics in *A*, *C-D*, each bar represents the mean \pm SD of n = 4 replicates.

S8

Supplementary Figure S5. IC_{50} curves of C2-C8 and C10 on the MCF-10A, iHMEC, MDA-MB-231 and SKBR3 cell lines growth. Values within the brackets represents an interval confidence of 95% (CI 95%).

Supplementary Figure S6. IC₅₀ curves of C9 analogues on the GAC enzymatic activity. Values within the brackets represents an interval confidence of 95% (CI 95%).

Supplementary Figure S7. IC₅₀ curves of selected C9 analogues on the GLS2 enzymatic activity. Values within the brackets represents an interval confidence of 95% (CI 95%).

Supplementary Figure S8. IC_{50} curves of selected C9 analogues on the MDA-MB-231 (on the left) and SKBR3 (on the right) cell lines growth. Values within the brackets represents an interval confidence of 95% (CI 95%).

Supplementary Figure 9. IC_{50} curves of C9.22 on the MDA-MB-231 cell line for necrosis (propidium iodide, PI) and mitochondrial mass stainning (Mitotracker Deep Red; cytotoxicity marker). Values within the brackets represents an interval confidence of 95%.

Supplementary Table S1 - Excel file with 6 spreadsheets containing raw and processed HTS data; Provided as a separated file.

Compound ressuplied	Compoud # (100 final hits)	Chembridge number	% inhibition GAC retest average	% inhibition GDH/Diaphorase	% inhibition GAC retest average - % inhibition GDH	Cluster #			
	1	5251606	105.8	17.8	88.0	non-clustered			
	2	5455995	88.7	0.0	88.7	non-clustered			
	3	7983133	88.6	24.7	63.9	non-clustered			
	4	9109040	87.0	3.7	83.3	G4			
	5	5266583	85.8	2.3	83.5	non-clustered			
	6	6985461	79.7	17.1	62.6	non-clustered			
(C1)	7	7992402	73.4	0.0	73.4	non-clustered			
(C2)	8	9155049	72.9	2.4	70.5	G11			
	9	7975549	72.3	13.9	58.4	non-clustered			
	10	5917156	72.2	11.0	61.2	G17			
(C3)	11	7956101	69.2	0.0	69.2	non-clustered			
(C4)	12	9125354	69.2	0.0	69.2	G2			
(C5)	13	7952342	68.5	0.0	68.5	G7			
(C6a)	14	6744277	60.2	0.0	60.2	G12			
(C7)	15	5354303	60.2	0.0	60.2	G5			
(C8)	16	7962214	58.3	0.0	58.3	non-clustered			
(C6b)	17	5603967	57.3	0.0	57.3	G12			
	18	7992232	57.2	0.0	57.2	G15			
	19	9038938	57.0	0.0	57.0	non-clustered			
	20	9001794	56.8	0.2	56.6	non-clustered			
	21	5919129	56.7	8.2	48.4	G17			
	22	5331342	54.6	11.3	43.3	G6			
	23	7832691	53.7	0.0	53.7	G15			
	24	7874229	52.8	5.0	47.7	non-clustered			
	25	5141313	51.7	0.0	51.7	non-clustered			
	26	6573489	51.7	12.4	39.3	non-clustered			
	27	9074873	51.7	13.3	38.4	G8			
	28	7954758	51.2	0.0	51.2	G3			

Supplementary Table S2 – The final 100 compounds hit list.

	29	9007772	51.0	0.0	51.0	non-clustered		
	30	9082772	50.5	0.0	50.5	G13		
(C9)	31	9007737	50.0	0.0	50.0	non-clustered		
	32	5346214	49.3	0.0	49.3	G5		
(C10)	33	7951061	48.3	0.0	48.3	G12		
	34	9064772	47.3	0.0	47.3	G14		
	35	7943337	46.6	0.7	45.9	G16		
	36	5211912	46.4	13.3	33.2	non-clustered		
	37	9123924	46.4	0.0	46.4	non-clustered		
	38	9077494	46.4	1.2	45.1	G13		
	39	6373017	46.3	0.0	46.3	non-clustered		
	40	9125395	46.1	0.0	46.1	G2		
	41	5478253	45.9	0.0	45.9	non-clustered		
	42	9139619	45.6	0.0	45.6	non-clustered		
	43	5621638	45.2	0.0	45.2	G12		
	44	5319283	42.3	14.5	27.8	non-clustered		
	45	7893819	41.9	0.0	41.9	G13		
	46	7797911	41.7	2.7	39.1	non-clustered		
	47	7969373	41.7	12.3	29.4	non-clustered		
	48	7615470	41.6	1.4	40.1	non-clustered		
	49	7946808	40.8	12.2	28.6	G11		
	50	7690736	40.7	11.4	29.2	non-clustered		
	51	5348920	40.5	0.0	40.5	G5		
	52	7987960	40.3	0.0	40.3	non-clustered		
	53	9064882	40.1	0.0	40.1	G15		
	54	9102535	39.4	0.0	39.4	G4		
	55	7970522	38.8	0.0	38.8	G7		
	56	7953673	38.8	6.0	32.8	non-clustered		
	57	7745039	38.8	5.4	33.5	G8		
	58	7950985	38.7	0.0	38.7	non-clustered		
	59	9108360	38.6	2.8	35.8	G13		
	60	9014421	38.1	10.3	27.8	G10		
	61	9153561	37.8	0.2	37.6	non-clustered		
	62	6946489	37.2	7.2	29.9	non-clustered		
	63	5350946	37.1	0.0	37.1	G5		
	64	7257347	36.7	0.0	36.7	non-clustered		

65	9010720	36.7	0.0	36.7	G12
66	5857415	36.7	0.0	36.7	non-clustered
67	9106880	36.5	0.0	36.5	G4
68	9109696	36.4	5.1	31.4	non-clustered
69	9007162	35.8	1.6	34.2	non-clustered
70	7967624	34.9	0.0	34.9	G3
71	9082761	34.8	0.0	34.8	G14
72	7967883	34.6	0.0	34.6	non-clustered
73	9001315	34.5	0.0	34.5	G11
74	7991342	34.0	0.0	34.0	non-clustered
75	9004059	33.8	0.0	33.8	G16
76	9062228	32.8	0.0	32.8	non-clustered
77	9101689	32.5	0.0	32.5	non-clustered
78	7931360	32.1	0.0	32.1	G6
79	7998861	31.9	5.7	26.2	non-clustered
80	9096238	30.1	0.0	30.1	non-clustered
81	9109980	29.6	0.0	29.6	G4
82	7644288	29.4	0.0	29.4	G10
83	7962071	29.2	0.2	29.0	non-clustered
84	9078534	28.9	0.0	28.9	non-clustered
85	9155265	28.7	0.0	28.7	non-clustered
86	7569611	28.6	0.0	28.6	non-clustered
87	7934875	28.5	0.0	28.5	non-clustered
88	9063041	28.1	0.0	28.1	G9
89	5924787	27.7	0.8	26.9	G1
90	5930037	26.5	0.0	26.5	G1
91	7625548	26.2	0.0	26.2	non-clustered
92	7980582	25.5	0.0	25.5	non-clustered
93	9059254	24.6	0.0	24.6	G9
94	7938972	24.1	0.0	24.1	non-clustered
95	7945021	24.0	0.0	24.0	non-clustered
96	7997020	23.6	0.0	23.6	G12
97	9102488	23.1	0.0	23.1	G4
98	5373315	20.3	0.0	20.3	non-clustered
99	5612286	19.8	0.0	19.8	G12
100	9120786	19.4	0.0	19.4	non-clustered

Supplementary Table S3 - Drug-like properties calculated by the OpenBabel.

	Druglikeness	Mutagenic	Tumorigenic	Reproductive Effective	Irritant	
C1	-4.9666	none	none	none	none	
C2	2.5939	none	none	none	none	
C3	2.6252	none	none	none	none	
C4	4.0452	none	none	none	none	
C5	0.7881	none	high	low	high	
Сба	2.4671	none	none	high	low	
C7	-1.182	none	none	none	none	
C8	4.0127	high	high	high	low	
C6b	0.5554	none	none	high	none	
C9	2.0762	none	none	none	none	
C10	4.3483	none	none	none	none	
968	-2.34	none	none	none	none	

BPTES	3.9388	none	none	none	none
CB-839	-9.1868	none	none	none	none

	Drug Safety Profiling									ADME Profiling				PhysChem Profiling								
ID	P-gp Substrates	CYP1A2 Inhibitor	CYP2C9 Inhibitor	CYP2C19 Inhibitor	CYP2D6 Inhibitor	CYP3A4 Inhibitor	Ames	hERG	Caco-2	PPB	CNS	HIA	Metabolic Stability	LogP	MW	H-Donors	H- Acceptors	Rot. Bonds	Rings	Lipinski	Lead-like	Solubility
968	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Highly permeable	Extensively bound	Non- penetrant	Highly absorbed	Undefined	Very lipophilic	Moderate	Good	Good	Good	Bad	Moderate	Bad	Highly insoluble
BPTES	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Highly permeable	Undefined	Non- penetrant	Highly absorbed	Undefined	Optimal	Bad	Good	Good	Bad	Good	Moderate	Moderate	Highly insoluble
CB-839	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Highly permeable	Undefined	Non- penetrant	Highly absorbed	Undefined	Optimal	Bad	Good	Good	Bad	Good	Moderate	Bad	Highly insoluble
Cl	Undefined	Undefined	Undefined	Undefined	Undefined	Non- inhibitor	Undefined	Undefined	Highly permeable	Strongly bound	Penetrant	Highly absorbed	Undefined	Optimal	Good	Good	Good	Good	Good	Good	Good	Insoluble
C2	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Highly permeable	Undefined	Penetrant	Highly absorbed	Undefined	Optimal	Good	Good	Good	Good	Good	Good	Good	Soluble
C3	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Highly permeable	Extensively bound	Penetrant	Highly absorbed	Undefined	Optimal	Good	Good	Good	Good	Good	Good	Good	Highly insoluble
C4	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Highly permeable	Strongly bound	Penetrant	Highly absorbed	Undefined	Optimal	Good	Good	Good	Good	Good	Good	Good	Soluble
C5	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Highly permeable	Moderately bound	Penetrant	Highly absorbed	Undefined	Optimal	Good	Good	Good	Good	Good	Good	Good	Insoluble
C6a	Undefined	Undefined	Undefined	Undefined	Non- inhibitor	Undefined	Undefined	Undefined	Highly permeable	Strongly bound	Penetrant	Highly absorbed	Undefined	Optimal	Good	Good	Good	Good	Good	Good	Good	Highly insoluble
C7	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Moderately permeable	Weakly bound	Weak penetrant	Poorly absorbed	Undefined	Very hydrophilic	Good	Good	Good	Good	Good	Moderate	Moderate	
C8	Undefined	Undefined	Undefined	Undefined	Non- inhibitor	Undefined	Undefined	Undefined	Highly permeable	Extensively bound	Penetrant	Highly absorbed	Undefined	Optimal	Good	Good	Good	Good	Good	Good	Good	Highly insoluble
C6b	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Highly permeable	Moderately bound	Penetrant	Highly absorbed	Undefined	Optimal	Good	Good	Good	Good	Good	Good	Good	Insoluble

Supplementary Table S4- *In silico* safety. ADME and physicochemical profile of the 11 resupplied compounds.

| C9 | Undefined | Highly
permeable | Moderately bound | Penetrant | Highly
absorbed | Undefined | Optimal | Good | Highly insoluble |
|-----|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------------------|-------------------|-----------|--------------------|-----------|---------|------|------|------|------|------|------|------|------------------|
| C10 | Undefined | Highly
permeable | Extensively bound | Penetrant | Highly
absorbed | Undefined | Optimal | Good | Insoluble |