Supplemental Materials and Methods

TCGA Analysis/ PECAN expression analysis

Analysis of *SNAI2* expression across the TCGA database confirmed sarcoma tumors highly express *SNAI2* compared to other cancer types. Analysis of *SNAI2* expression in a different cohort of approximately 2000 pediatric cancers from the St. Jude-PeCan portal confirmed that *SNAI2* is highly expressed in RMS tumors and especially the ERMS sub-type compared to other pediatric cancers with osteosarcoma tumors expressing higher *SNAI2* (Supplemental Figure 1D).

SNAI1 CRISPR KO Cell Generation

Cloning sgRNAs is previously described by Addgene lentiCRISPR v2 (https://www.addgene.org/52961/). After plating ~1.5x106 293T cells in 100mm plate, 9 µg sgRNA SNAI1 lenti-CRISPR (see Supplemental Table 5)(54), 5 µg, lentiviral 2nd Gen packaging plasmid (psPAX2) and 1 µg envelope plasmid (pMD2G), DMEM basic media without serum to 1 ml total, and 40-45 µl TansIt-LT1 transfection reagent (~3:1 ratio Transit-LT1/DNA) was added in a 1.5 mL tube, mixed, and incubated for 15-20 minutes at room temperature. Fresh DMEM 10% FBS media with no antibiotic was given 24h after initial plating, and 1 mL of prepared DNA complexes was added to different regions of the plate. After 48h, media was collected and filtered using a 0.45 µm filter. Media was aspirated from target cells, and 3 mL of fresh media without antibiotics with 16-20 µg/mL of protamine and 2-3 mL infecting media was added. Target cells were left to incubate for 48h at 37 °C. After 48h, virus-containing media was replaced with fresh media containing puromycin (12 µg /mL) and was incubated for an additional 72h. Cells were then characterized by PCR and western blot to confirm SNAI1 knockout.

Senescence Cell Histochemical Staining

RMS cells were seeded into 6 well plates $(0.1 - 0.5 \times 10^6 \text{ cells/well})$ and radiated after 24h. Cells were fixed after 120h with 4% paraformaldehyde. Cells were then stained using the Senescence Cells Histochemical Staining Kit (Sigma Aldrich) according to the provided protocol. Cells were allowed to incubate with the stain at 37°C without

 CO_2 until cells were stained blue (2 hours to overnight). Percentage of cells positive for β -galactosidase was assessed using ImageJ. Significance was determined using Student's t test.

Immunofluorescence Staining

Immunofluorescence staining was performed similar to in Ignatius et. al., 2017 (27). Cells were plated at 4,000 cells/well (no IR) and 10,000 cells/well (receiving IR), grown in 10% FBS DMEM or RPMI growth media, fixed at 72 hpIR (0 or 15 Gy) in 4% paraformaldehyde/PBS, permeabilized in 0.5% Triton X-100/PBS, and incubated with rabbit anti-MEF2C (CST; Catalog No. 5030) and anti-myosin heavy chain (DSHB) in 1% BSA/PBS. Secondary antibody detection was performed with Alexa Flour 488 goat anti-mouse and Alexa Fluor 594 goat anti-rabbit (Invitrogen). Cells were counterstained with DAPI (1:10,000) and imaged. Images were processed in ImageJ and Adobe Photoshop.

Supplemental References

50. Shukla N, Ameur N, Yilmaz I, et al. Oncogene mutation profiling of pediatric solid tumors reveals significant subsets of embryonal rhabdomyosarcoma and neuroblastoma with mutated genes in growth signaling pathways. *Clin Cancer Res.* 2012;18(3):748-757. doi:10.1158/1078-0432.CCR-11-2056

51. McPake CR, Tillman DM, Poquette CA, George EO, Houghton JA, Harris LC. Bax is an important determinant of chemosensitivity in pediatric tumor cell lines independent of Bcl-2 expression and p53 status. *Oncol Res.* 1998;10(5):235-44.

52. Taylor AC, Shu L, Danks MK, et al. P53 mutation and MDM2 amplification frequency in pediatric rhabdomyosarcoma tumors and cell lines. *Med Pediatr Oncol*. Aug 2000;35(2):96-103. doi:10.1002/1096-911x(200008)35:2<96::aid-mpo2>3.0.co;2-z

53. Rokita JL, Rathi KS, Cardenas MF, et al. Genomic Profiling of Childhood Tumor Patient-Derived Xenograft Models to Enable Rational Clinical Trial Design. *Cell Rep.* Nov 5 2019;29(6):1675-1689 e9. doi:10.1016/j.celrep.2019.09.071

54. Haraguchi M, Sato M, Ozawa M. CRISPR/Cas9n-Mediated Deletion of the Snail 1Gene (SNAI1) Reveals
Its Role in Regulating Cell Morphology, Cell-Cell Interactions, and Gene Expression in Ovarian Cancer (RMG-1) Cells. *PLoS One*. 2015;10(7):e0132260. doi:10.1371/journal.pone.0132260