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Supplementary Materials and Methods.  344 

Patient Recruitment: 345 
In an effort to identify patients isolating in similar residential settings, the patient population 346 
focused on University California San Diego (UCSD) students isolating in the established, on-347 
campus UCSD isolation dorm housing. Cases were identified through the UCSD Health system 348 
as COVID-19 positive outpatients with a positive anterior nares clinical RT-qPCR assay from the 349 
UCSD EXCITE (EXpedited COVID-19 IdenTification Environment) laboratory. Patients were 350 
recruited to the study via phone call, enrolled into an IRB-approved study (UCSD protocol 351 
200477), and confirmed to be active UCSD students isolating in the isolation dorms. Three 352 
students were enrolled in the study: two of the students isolated in the on-campus isolation 353 
dorms, and the third isolated in their on-campus residence (graduate housing with similar 354 
architecture and design as the on-campus isolation dorms).  355 
 356 
Surface Swabbing: 357 
For each paired sample, two 1 mL sample collection tubes (ThermoFisher Scientific, 3740TS) 358 
were prepared. One tube contained 800 µL of 0.5% w/v sodium dodecyl sulfate (SDS) (Acros 359 
Organics, 230420025) in water and was used for detecting SARS-CoV-2, and the second tube 360 
contained 95% spectrophotometric-grade ethanol solution (Sigma-Aldrich #493511) which was 361 
designated for 16S sequencing. To recover genetic material from the surfaces, a prewashed 362 
cotton swab (Puritan, 806-WC) was pre-moistened with the ethanol solution and then used to 363 
vigorously swab the surface. The cotton end of the swab was then placed back into the sample 364 
collection tube and broken at the designated break point. The process was then immediately 365 
repeated on an adjacent site of the same surface with a flocculated tip swab (Affordable IHC 366 
Solutions) pre-moistened with the SDS solution, minimizing overlap between swabbed areas.  367 
 368 
Viral Nucleic Acid Extraction and RT-qPCR: 369 
Swabs stored in SDS were subjected to SARS-CoV-2 RT-qPCR detection following methods 370 
previously described (1). Briefly, 150µL of the SDS solution were extracted with Omega 371 
MagBind Viral DNA/RNA kit (Omega Bio-Tek, M6246) on Kingfisher Flex (ThermoFisher 372 
Scientific) instruments. Viral gene detection was performed using a miniaturized TaqPath™ 373 
COVID-19 Combo Kit (ThermoFisher Scientific, A47814) assay on a QuantStudio 7 Pro with a 374 
384-well sample block (ThermoFisher Scientific).  375 
 376 
Microbial Nucleic Acid Extraction: 377 
Sample plating and extractions of all surface swabs were carried out in a biosafety cabinet 378 
Class II in a BSL2+ facility. Cotton tipped swabs suspended in 95% ethanol were plated into 379 
bead plates from 96 MagMAX™ Microbiome Ultra Nucleic Acid Isolation Kits (A42357 Thermo 380 
Fisher Scientific, USA). Following the KatharoSeq low biomass protocol (2), each sample 381 
processing plate included eight positive controls consisting of 10-fold serial dilutions of a 382 
microbial standard consisting of a gram negative Paracoccus spp. and gram positive Bacillus 383 
subtilis ranging from 5 to 50 million cells per extraction, and 3 negative controls (Blanks, 384 
sample-free lysis buffer). Nucleic acid extraction and purification was performed following 385 
methods previously described (3). Briefly, samples were extracted in plates using the 386 
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MagMAXTM Microbiome Ultra Nucleic Acid Isolation Kit (Applied BiosystemsTM), following 387 
manufacturer specifications, in KingFisher FlexTM robots (Thermo Fisher Scientific, USA), 388 
including a bead beating step in a TissueLyser II (Qiagen, Germany) at 30 Hz for 2 min. 389 
 390 
16S Sequencing: 391 
16S rRNA gene amplification was performed according to the Earth Microbiome Project protocol 392 
(4). Briefly, the V4 region of the 16S rRNA gene was targeted for amplification in a miniaturized 393 
reaction (5) using the 515f-806r primers with Golay error-correcting barcodes. Amplicons were 394 
pooled at equal volumes and the pool was purified with a QIAquick PCR purification kit 395 
(QIAGEN). The pooled libraries were sequenced on a MiSeq (Illumina) instrument with a MiSeq 396 
Reagent 300 cycle v2 Kit, with the appropriate sequencing primers.  397 
 398 
Estimating genomic equivalents and microbial biomass: 399 
To estimate viral genomic equivalents for each sample, we used published standard curves 400 
relating average Cqs from RT-qPCR to known SARS-CoV-2 viral particle concentrations (in 401 
GE’s from digital droplet PCR) used to inoculate a variety of indoor surfaces (1). The equation 402 
used depended on which qualitative category the surface materials belonged to: rough (carpet, 403 
fabric) or smooth (e.g., acrylic, steel, glass, ceramic tile). The relationship between Cqs and 404 
GEs for rough materials is [GEs = -0.52 x (Avg Cq) + 39.90] while for smooth materials the 405 
equation used was [GEs = -0.77 x (Avg Cq) + 40.41].  406 
 407 
We used an equivolumetric sequencing library pooling approach which allowed us to correlate 408 
biomass to 16S amplicon counts (6). 409 
 410 
Data processing: 411 
 16S sequences were demultiplexed, quality filtered, and denoised with Deblur (7) in Qiita (8) 412 
using default parameters. Resulting feature tables were processed using QIIME2 (9). 413 
Sequencing data available in Qiita study ID: 13957. 414 
 415 
Katharoseq:  416 
In addition to the 381 samples that underwent 16S sequencing, three negative controls (blanks) 417 
and eight positive controls (a serially diluted bacterial stock, see Microbial Nucleic Acid 418 
Extraction) were included in each 96-well extraction plate. The positive controls were used to 419 
determine the threshold read count for which at least 80% of sequencing reads align to the 420 
positive controls (10).  421 
 422 
Alpha Diversity:  423 
To explore the relationship between microbial biomass and SARS-CoV-2 status, we compared 424 
the estimated SARS-CoV-2 viral load in GEs and the number of raw 16S reads for all samples. 425 
The Pearson correlation coefficient was calculated to determine if the two measurements had a 426 
linear relationship [log(16S Read Counts), log(GE’s)]. The relationship between biomass (16S 427 
read count)  and SARS-CoV-2 detection status (Detected/Not Detected) for samples in the 428 
same room type was tested with a Kruskal-Wallis H test. For the stringently filtered feature 429 
tables, differences in Faith’s Phylogenetic Diversity (Faith’s PD) between SARS-CoV-2 430 
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detection status within each room were also tested using a Kruskal-Wallis H test. 2D Figures 431 
were made using matplotlib (11). 432 
 433 
Beta Diversity: 434 
We used the unweighted Unifrac phylogenetic distance (12-13) to explore how the microbial 435 
samples compare to each other. To quantify the effect size of different categorical variables on 436 
our data, redundancy analysis (RDA) was applied to the unweighted Unifrac principal 437 
coordinates. RDA estimates the contributions of individual and combined effects of multiple 438 
covariates using the varpart function in R to perform linear constrained ordination (14). 2D 439 
Figures were made using matplotlib (11) and EMPeror (15).  440 

 441 
Differential Abundance: 442 
To prepare the data for differential abundance we filtered the unrarefied feature table to exclude 443 
features present in fewer than 10 samples and samples with depth less than 1000. This resulted 444 
in a table of 258 samples and 1047 sOTUs. We performed multinomial regression using 445 
Songbird (16) accounting for viral detection status, apartment, surface type, and indoor space 446 
classifier as covariates. We used 5000 epochs and a learning rate of 0.0001 as 447 
hyperparameters. Additionally, we specified a 3:1 split of training:testing samples for cross 448 
validation. To ensure that our model was not overfitting we fit a null regression model with no 449 
covariates using the same hyperparameters. Comparing the two models we found a positive 450 
pseudo-Q2 value of 0.059, indicating that our regression model outperformed the null model. 451 
 452 
Random Forest Classifier: 453 
We performed machine learning analysis on the bacterial portion of the built environment 454 
surface microbiome from 16S sequencing to predict the samples’ SARS-CoV-2 status from 455 
paired RT-qPCR detection results. Random forest classifiers were trained and tested following a 456 
leave-one-site-out-cross-validation (LOSOCV) approach: the classifier was trained with samples 457 
from N-1 sites and its performance was tested in the remaining site using a precision-recall 458 
curve (Area Under the Precision Recall Curve (AUPRC), and Relative AUPRC). Classifiers were 459 
trained on sOTU-level features with tuned hyperparameters as 20-time repeated, LOSOCV, with 460 
sites resolved at the apartment_id (Fig. 2A) and room_type (Fig. 2B)  levels using the R caret 461 
package(17). The classifiers’ performance was evaluated with AUPRC based on the samples’ 462 
SARS-CoV-2 status predictions of the holdout test site using the R PRROC package (18). The 463 
importance of each sOTU for the prediction performance of the classifiers was estimated by the 464 
built-in random forest scores in a 100-fold cross validation. We ranked the top 32 important 465 
features by their average ranking of importance scores across the 100 classification models. 466 
Relevant codebase for machine learning analysis is available at 467 
https://github.com/shihuang047/crossRanger and is based on random forest implementation 468 
from R ranger package (19). 469 
 470 
Phylogenetic Tree visualization: 471 
To identify phylogenetic clades important for the prediction of SARS-CoV-2 status from 472 
environmental surface samples we visualized the top 32 important features identified by the 473 
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random forest classifier and the ranked differentially abundant features between SARS-CoV-2 474 
status groups  from multinomial regression using EMPress (20). 475 
 476 
3D Mapping: 477 
3D models were provided by UC San Diego’s Housing, Dining, and Hospitality department. A 478 
circular target was placed on all swabbed locations in each apartment. 3D coordinates were 479 
picked following published methods (ref) (https://github.com/MolecularCartography/ili), and 480 
merged with viral load (in GEs) data for visualization. 3D models and merged data (coordinates 481 
and viral load) were visualized in ili (21).  482 
  483 
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