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Model calibration 

OpenCOVID was calibrated to the national-level epidemic in Switzerland using publicly 

available epidemiological data from the Swiss Federal Office of Public Health (1). Model 

output was matched to six types of observed temporal metrics: 1) daily confirmed COVID-19 

cases, 2) daily COVID-19-related deaths, 3) daily hospital admissions, 4) number of COVID-

19 patients in hospital, 5) number of COVID-19 patients in ICU, and 6) relative prevalence of 

virus variants (2). Figure S.1 shows the alignment of the model output to the epidemiological 

data, along with several additional model metrics. Age-disaggregated metrics are illustrated in 

Figure S.2. The alignment of the model to data got the prevalence of viral variants is shown in 

Figure S.3. See Table S.1 for a full list of calibrated and fixed model parameters. 

 

 

Figure S.1: OpenCOVID calibrated to national-level data of confirmed cases, 

hospitalisations, ICU occupancy, and deaths in Switzerland up to 5 March 2021. Black 

dots represent the data to which the model has been calibrated. Coloured lines represent 

model output.  



3 

 

 
Figure S.2: Daily confirmed cases, COVID-19 cases in hospital, COVID-19 cases in ICU, 

daily COVID-19 deaths, all currently infected, and total number fully vaccinated by age 

group. Outputs are shown for the calibrated period between 18 February 2020 and 5 March 

2021. 

 

 

Table S.1: Calibrated and fixed model parameters with sources 

Model parameter Description 

Calibrated 

value or fixed 

distribution 

Truncation 

bounds 

Specifications and 

sources 

contacts 

Number of contacts per person per 

day, where a contact has a 

transmission probability of beta 

11.4 5 – 25 

Calibrated 

See Contact 

network section 

beta 

Baseline probability of transmission 

in one contact between a fully 

susceptible individual (i.e., no partial 

or sterile immunity) and a fully 

infectious individual (i.e., when viral 

load is at maximum) 

X = 0.05 
Not 

applicable 

Not calibrated 

See Infectiousness 

per contact section 

seasonality_scaler 

Multiplicative factor for effect of 

temperature on transmission 

probability per contact 

0.27 0.2 – 0.8 

Calibrated 

See Seasonality 

section 

proportion_asymptomatic 
Proportion of all cases that are 

asymptomatic 
X~N�0.3, 0.02� 0.2 – 0.4 

Not calibrated 

(3-8) 
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Model parameter Description 

Calibrated 

value or fixed 

distribution 

Truncation 

bounds 

Specifications and 

sources 

presymptomatic_days 
Number of days infectious before 

showing symptoms 
X~N�3, 0.5� 1 – 5 

Not calibrated 

(9-13) 

latency_days 
Number of days in latency (infected 

but not infectious) state 
X~N�4.6, 1� 3 – 7 

Not calibrated 

(9-13) 

infectious_days_mild 

Number of days for which non-severe 

cases are infectious (excluding 

presymptomatic phase) 
X~N�6, 1� 3 – 10 

Not calibrated  

(9, 14-16) 

infectious_days_severe 

Number of days for which severe 

cases are infectious (excluding 

presymptomatic phase) 
X~N�28, 1� 14 – 30 

Not calibrated  

(13, 17-20) 

seek_hospital 
Proportion of severe cases that will 

seek hospital care 
0.41 0.4 – 0.95 

Calibrated 

Assumed prior 

distribution (1) 

onset_to_hospital_days 
Number of days between symptom 

onset and hospitalisation 
13.4 1 – 14 

Calibrated 

(1, 13, 17, 21-23) 

diagnosis_delay 
Delay between symptom onset and 

test (and diagnosis) 
X~N�3, 0.5� 0 – 5 

Not calibrated 

(24) 

reporting_delay 
General reporting delay for all 

epidemiological and hospital metrics 
X~N�1, 0.1� 0 – 4 

Not calibrated 

Assumed 

isolation_probability 
Proportion of mild and asymptomatic 

cases that isolate after diagnosis 
X = 1 

Not 

applicable 

Not calibrated 

Assumed 

isolation_duration 
Number of days spent in isolation 

after diagnosis 
X = 10 

Not 

applicable 

Not calibrated 

(16) 

hospital_stay_days 

Number of days a severe non-critical 

case spends in hospital before 

discharge 
X~N�9, 1� 7 – 20 

Not calibrated 

(13, 17, 21, 23, 25) 

hospital_to_icu_days 

Number of days between hospital 

admission and ICU admission for 

cases that will become critical 
X~N�2, 1� 1 – 10 

Not calibrated  

(23, 26) 

icu_stay_days 

Number of days a critical case spends 

in ICU before transfer back to non-

ICU ward 
X~N�7, 1� 1 – 14 

Not calibrated 

(13, 17, 21, 23, 25) 

icu_stay_death_days 
Number of days a critical case spends 

in ICU before death 
X~N�6, 1� 3 – 14 

Not calibrated 

(13, 17, 20, 23, 25) 

hospital_transfer_days 

Number of days spent in non-ICU 

ward following discharge/transfer 

from ICU 
X~N�2, 0.1� 1 – 7 

Not calibrated 

(22) 

home_death_days 

Number of days between symptom 

onset and death for those not seeking 

hospital care 
X~N�10, 1� 7 – 14 

Not calibrated 

Assumed 

death_reporting_delay 

Additional delay between a COVID-

19 death and that death being reported 

in the data 
X~N�2, 0.2� 1 – 14 

Not calibrated 

(21, 22) 
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Model parameter Description 

Calibrated 

value or fixed 

distribution 

Truncation 

bounds 

Specifications and 

sources 

critical_death_icu 

Proportion of critical cases that die in 

ICU care (ventilators assumed to be 

available) 

0.63 0.4 – 0.8 
Calibrated 

(1, 21, 22) 

critical_death_non_icu 
Proportion of critical cases that die 

when ICU not available or not sought 
X~N�0.95, 0.1� 0.5 – 0.99 

Not calibrated 

(21) 

improved_care_factor 

Proportionate reduction in probability 

of severe cases becoming critical 

cases (and requiring ICU) due to 

improved care and treatment 

procedures 

0.72 0.40 – 0.99 
Calibrated 

(27) 

import_date 

Number of days delay between first 

case importation and first confirmed 

case 
X = 7 

Not 

applicable 

Not calibrated 

Correlated with 

import_initial 

import_initial 

Number of people (per 100,000) 

initiated with infection import_date 

number of days before first confirmed 

cases 

78 1 – 100 

Calibrated 

Assumed prior 

distribution 

import_constant 
Number of imported cases per 

100,000 people per day 
1.4 0.1 – 5 

Calibrated 

Assumed prior 

distribution 

npi_scaler 

Calibration factor for proportionally 

scaling the Oxford Health and 

Containment Index (OCHI) to derive 

a reduction in effective contacts 

1.3 0.8 – 1.5 

Calibrated 

See Non-

pharmaceutical 

interventions 

section 

acquired_immunity 
Initial level of acquired immunity due 

to infection 
X~N�0.83, 0.1� 0.76 – 0.87 

Not calibrated 

(28, 29) 

vaccine_immunity_days 

Number of days following 

vaccination (first dose) until full 

efficacy is attained 
X = 28 

No bounds 

assumed 

Not calibrated 

(30) 

 

 

Variants of concern 

OpenCOVID tracks transmission chains of viral variants. The model can consider any number 

of variants, providing there is sufficient data to inform the relative prevalence of each variant 

in the population. Three viral variants were modelled in this application of Switzerland: D614G 

(considered the dominant variant at the start of the epidemic (31)), B.1.1.7 (2, 32), and B.1.351 

(S501Y V2) (33). Figure S.3 shows the alignment of the calibrated model to variant prevalence 

over time. We modelled the B.1.1.7 and B.1.351 variants by assigning them a percentage 

increase in the probability of transmission per contact (34, 35), then further calculated the likely 

transmission advantage in a heterogeneous population with pre-existing immunity during an 

ongoing pandemic with existing non-pharmaceutical interventions (captured in our individual-

based model). We estimated the effective reproductive number, ��, of B.1.1.7 for the months 

of January and February, for the specified increase in the transmission probability, assuming a 

serial interval of 6-days and calculated the transmission advantage as the ratio of the effective 
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reproductive number to that of variant D614G. We further conducted a sensitivity analysis 

varying the serial interval (3-9 days). 

 

The transmission advantage is therefore the proportional increase in the expected number of 

cases from one infected individual in the epidemic setting in Switzerland in early 2021 

(including the effects of pre-existing natural immunity and the impact of control measures). It 

is thus important to note that a 60% increase in the probability of transmission per contact does 

not correspond to a 60% increase in the effective reproductive number, ��, but rather closer to 

a 30% increase. Allowing for variation in the serial interval, this can vary between 10% and 

50%. The scenario with a 70% increase in transmissibility corresponded to a transmission 

advantage of 1.4 (1.2-1.6); and that with a 50% increase in transmissibility corresponded to a 

transmission advantage of 1.2 (1.1-1.4). 

 

 

Figure S.3: Calibrated variant dynamics in Switzerland until 5 March 2021. Blue is the 

D614G variant which was dominant in Switzerland from summer 2020 on and is used here 

synonymously with the earlier strains circulating in Switzerland due to their epidemiological 

similarity. Red is the B.1.1.7 variant with a 60% increased infectivity. Green is S501Y V2 

(B.1.351) with a 10% increased infectivity. The solid lines are the model fit; the coloured 

points represent data. 
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Table S.2: Baseline properties of viral variants modelled for this application of 

Switzerland 

Viral variant Model import date Number imported 

(per 100,000 people) 

Infectivity factor Disease severity factor 

D614G See Table S.1 Calibrated 

(See Table S.1) 

1 

Reference variant 

(31) 

1 

Reference variant 

(31, 36) 

B.1.1.7 24 November 2020 12 1.6*  

[1.5-1.7] 

1*  

[1-1.5] 

B.1.351 1 December 2020 8 1.1 1 

* Sensitivity of model outputs to varying infectivity and disease severity factors were quantified within the 

sensitivity analysis. 

 

Likelihood and calibration details 

The calibration process for this application to Switzerland was as follows: 4,000 parameter sets 

were initially sampled across parameter hyperspace. That is, the region defined by the bounds 

of each calibrated parameter in Table S.1 (calibrated parameters highlighted in blue). A Latin 

hypercube algorithm was used for this initial sampling; thus, no focus was placed on regions in 

which parameter priors are located. Each parameter set was then simulated 10 times for 

different stochastic realisations using OpenCOVID, thus capturing a basic understanding of 

stochastic uncertainty. All model simulations were performed simultaneously on a high-

performance computing cluster (37). The value of a log-likelihood objective function was 

calculated for each parameter set, quantifying the likelihood of model parameters given the 

epidemiological data illustrated in and Figure S.1 and Figure S.3. The log-likelihood function 

is given by: 

� =  � ��̅��� � , �̅� 
�

∙ "�  

��̅��� � , �̅� = �# $% 1
��̅� − 1 ! �� �()*+,-+.� */ ∙ 0̅1 

Where: 

 �� � = ���,, ���, … , ��3  represents model output for metric 4, and  

 �̅� = ���,, �� �, … , ��3   represents the observed epidemiological data for metric 4.  
 

The values ��, and ��,
 represent the first date for which we have non-zero data for metric 4, 

starting from 24 February 2020, whilst ��3 and ��3
 represent the final date for which we use 

data in the model calibration process. In this application of Switzerland, # represents 5 March 

2021. The vector 0̅ = �0,, 0�, … , 03  is the time weight vector, where 05 ∈ 70, 18 for all 9. In 

this application 0̅ is defined to linearly increase from 0.5 to 1 between 24 February 2020 and 5 

March 2021. The constant "� is the weighting applied to metric 4. These weightings used for 

this application are shown in Table S.3. 
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Table S.3: Weightings of calibration metrics in likelihood function 

Metric Weighting (:;) Comments 

Daily confirmed cases 1 Default weighting 

Daily COVID-19 deaths 2 Higher weighting to account for higher reporting 

probability  

New daily admissions to hospital 0 No weighting applied due to discrepancies between 

data sources 

COVID-19 cases in hospital 4 Higher weighting to account for higher confidence 

in reporting  

COVID-19 cases in ICU 4 Higher weighting to account for higher confidence 

in reporting 

Variant prevalence 1.6 Weighting of 50 applied to 12 data points implies a 

relative weighting of 1.6 

 

A Gaussian Process model was then trained using all parameter sets and associated likelihood 

values to predict the log-likelihood over all data given a model parameter set. For this analysis, 

we used a heteroscedastic Gaussian Process algorithm as the model emulator (38, 39). Ten 

rounds of adaptive sampling were applied to efficiently resample regions of the parameter 

hyperspace that were good candidates for the global maximum. An expected improvement 

acquisition function was used to identify these candidate regions and sample 100 new 

parameters sets per round, with a filtering function applied to ensure resampled parameters sets 

are not within a predefined distance of each other (with distance measured in Manhattan space). 

Following the ten rounds of adaptive resampling, the simulated parameter set with the highest 

log-likelihood value (considering the mean over all stochastic simulations) was identified as 

the best estimate parameter set, as reported in Table S.1. See Figure S.1 and Figure S.3 for 

alignment of model outcomes to the observed data. 

 

Infectiousness per contact 

In OpenCOVID, we define a pairwise transmissible contact to be a human-to-human contact 

that has a transmission probability of < when the infectious individual is fully infectious, and 

the susceptible individual is fully susceptible. An individual is fully infectious when their viral 

load is at a maximum (see Viral load profile section). An individual is considered to be fully 

susceptible when they have zero immunity (see Immunity section). We note here that in this 

application, both previously infected and vaccinated individuals will possess a non-zero level 

of immunity. Two additional factors can alter the probability of transmission between and 

infectious individual and a susceptible individual. First, a seasonality effect reduces the 

probability of transmission in warmer periods, reflecting a larger proportion of contacts being 

outdoors with warmer temperatures (see Seasonality section). Second, novel viral variants can 

enter the population, being more (or less) infectious than the current dominant variant, and 

therefore increase (or decrease) the probability of transmission. For this study, we assume the 

SARS-CoV-2 epidemic in Switzerland began with variant D614G being the dominant variant 

Figure S.3. For this study, we defined < to be 5% (see Table S.1). That is, we define a contact 

to have a 5% probability of transmission when the infectious person has a peak in viral load, 

the susceptible person has no partial immunity, the contact is during the coldest day of the year, 

and the variant being transmitted in D614G. With the value of < fixed, the population average 

number of contacts can then be calibrated such that observed epidemiological data is matched 

(see sections Contact network, Model calibration, and Table S.1). 
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In equation form, the probability of transmission between an infection individual, =, and a 

susceptible individual, >, is given by: 

 

?�transmission = < ∙ @A�0 ∙ BA ∙ C�D ∙  �1 − EF 

 

Where: 

 @A�0 ∈ 70, 18 denotes the viral load of the infectious individual, 0 days following 

infection (see Viral load profile section). 

 BA denotes the infectivity factor of the viral variant with which the infectious 

individual is infected (see Table S.2 in Variants of concern section). 

 C�D denotes the seasonality scaler at date D (see Seasonality section). 

 EF denotes the immunity of the susceptible individual (see Immunity and Vaccine 

properties sections). 

 

Contact network 

The contact network in OpenCOVID is based on the POLYMOD contact survey (40) which 

reports age-structured contact frequencies. The POLYMOD survey is implemented in 

OpenCOVID via the R package socialmixr (41) which provides symmetric matrices in which 

the rows and columns are the age class of the ego (the person reporting the contact) and the 

alter (the person receiving the contact), and the cell content is the average number of contacts 

between those age classes. This data can be accessed by country. As POLYMOD does not 

provide Swiss survey data, we use artificial contact frequencies based on survey data from 

France, Germany, and Italy. We then use Swiss age-structured demographic data to sample this 

contact frequency space and create an age-structured random network by sampling with 

replacement, weighted by the average number of contacts per cell. We sample such that the 

resulting network has a mean number of contacts (as defined by the ‘contacts’ parameters, see 

Table S.1). In such a network, not all age classes have the same number of contacts. Younger 

age classes have more contacts and especially have more contacts with other young age classes 

while older age classes have fewer contacts Figure S.4. This captures the qualitative aspect of 

an age structured network based on European survey data, and then transforms to Swiss specific 

demography. This network does not distinguish between work, school or home networks but is 

rather integrated across all these separate networks. Individual ages are tracked for 0-90 years 

in one-year age bins, with an additional group for 90+. Gender is not considered in the model 

(42). 

 

With < (the infectiousness per contact, see Infectiousness per contact section) set at a fixed 

value (see Table S.1), the population average number of contacts can then be calibrated such 

that observed epidemiological data is matched. The primary signal for the contacts parameter 

is the exponential increase in all observed metrics during the first wave prior to the observed 

impact of NPIs. 
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Figure S.4: Age-related contact properties in OpenCOVID for this application to 

Switzerland. Top: Number of people in age group vs. number of contacts per person. Shows 

both the groups’ sizes and the distribution of contacts. Note that younger people have more 

contacts. Top right: Normalized number of contacts per person vs. age group. Again, shows 

the distribution of the average number of contacts per person in an age group. The age group 

of 10 to 20 year olds has the highest number of contacts. Bottom left: Total number of people 

vs. number of contacts per person. Bottom right: Number of people vs. age group. Shows the 

distribution of age group sizes. 

 

Viral load profile 

During the latent period that follows infection, we assume viral load is zero (and therefore that 

the infected person is not yet infectious). We then use a gamma probability density function 

with shape parameter G = 3 and rate parameter < = 0.5 to represent individual-level viral load 

over the course of the infectious period. We assume infectiousness is proportional to this viral 

load (43), and therefore standardise viral load values to between zero and one to convert viral 

load into an infectiousness scaler that scales the probability that the individual can infect other 

contacts. The parameters of the gamma function were selected to best represent the current 

understanding of viral load profiles from time since infection (9, 44). Figure S.5 illustrates this 

infectiousness scaler (multiplier) profile from the time since infection.  
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In equation form, the infectiousness scaler for an individual H infected 0 days after infection is 

given by: 

 

@�0 = I 0, 0 < �@′�0, L ≥ � 
 

Where � is the sampled latent period for individual H (see Infection, disease, and 

hospitalisation durations for duration distributions) and 

 

@′�0 = <N�0 − �N+,-+O�P+Q
�G − 1!  

 

 

 

Figure S.5: Viral load profile from time since infection. Curve is standardised to between 

zero and one to yield an infectiousness multiplier used to calculate the probability of 

transmission. Peak infectivity is reached between day 6 and day-14 following infection. 

 

Seasonality 

We take daily temperature data from the federal office of meteorology and climatology 

MeteoSwiss (45), which is made available via the opendata.swiss service (46). We use the daily 

maximum temperature values that are available from the NBCN measurement station network 

(47). These stations provide different daily weather data across Switzerland. Nevertheless, not 
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all cantons have stations, and some cantons have several stations. For national level analyses 

we use averaged data across all available weather stations. For cantons with multiple weather 

stations, we take the mean value across all stations. We then use a population-weighted mean 

to derive national level values. In Figure S.6, the grey lines represent temperature data from 1 

January and 5 March 2021 (date of calibration). Over this time period, the yellow line represents 

the population-weighted national average. From 6th March onwards, the line represents the 

future projection of temperature. This future projection uses monthly data from years 1981-

2010, and is generated by a spline fitting algorithm form the R package RMAWGEN (48). The 

seasonality effect used in the model (see Infectiousness per contact section) is then derived 

from the normalized inverse of the temperature curve.  

 

 

Figure S.6: Temperature and associated seasonality effect in OpenCOVID. Grey lines 

represent past cantonal temperatures, and the yellow line represents the population-weighted 

national average. The green line represents the associated best estimate seasonality effect. 

That is, with a seasonality scaler of 0.27 (as reported in Table S.1). The green shading 

represents the range of possible seasonality effects, considering the bounds of the seasonality 

scaler.  
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Non-pharmaceutical interventions 

In OpenCOVID non-pharmaceutical interventions (NPIs) can curb the spread of SARS-CoV-2 

by reducing the number of potentially transmissible pairwise contacts. In Switzerland, such 

measures have included the closing of non-essential shops, restrictions on mass gatherings, and 

facemask mandates in publicly accessible spaces. The Oxford Containment and Health Index 

(OCHI) is a measure that is proportional to the amount (or stringency) of such measures that 

are in place at a moment in time (14). The OCHI ranges from 0 to 100, with 0 being no measures 

in place and 100 being the most restrictive full lockdown possible. The level of the OCHI, 

together with a calibrated multiplicative scaling parameter is used in OpenCOVID to capture 

the effect of NPI in reducing the effective daily number of contacts. In effect, the edge list 

associated with the contact network – that is, the list of all daily pairwise contacts in the network 

– is reduced by a proportion given by the product of the OCHI on a given day and the calibrated 

NPI scaling constant (see Table S.1). In this manner, we do not explicitly simulate the effect of 

individual measures, but instead model the total effect of all NPIs in place. 

 

The Swiss level of the OCHI is collected at the cantonal- and federal-level based on publicly-

available information from various sources, and is available from the Swiss TPH GitHub (49). 

This publicly available information is translated into 16 Swiss specific variables, and from there 

into the 12 variables that together make up the Oxford Containment and Health Index. The 

Swiss TPH GitHub on the Swiss measures provides a codebook for the Swiss specific variables. 

For an overview of the variables that make up the Oxford Containment and Health Index, their 

coding schemes and how to calculate the OCHI from the constituent variables, the reader is 

referred to the codebook, the coding interpretation guide, and the instruction on how to calculate 

indexes provided by the Blavatnik School of Government at the University of Oxford (14). 

 

Figure S.7 shows the value of the Oxford Containment and Health index, that is representative 

of the strength of measures as applied in Switzerland, for past data (left of the vertical black 

dashed line) as well as an example scenario of future NPI relaxation (right of the vertical black 

dashed line) which corresponds to the red scenario from manuscript Figure 2. This scenario 

considers three different five point NPI relaxation steps, from 58.5 to 53.5 on 22 March 2021, 

to 48.5 on 12 April, and to 43.5 on 5 May. The five percentage point relaxation steps were 

chosen to approximately represent a potential NPI relaxation package published by the Federal 

Council on 17 February 2021 (50). This potential package included increasing the limit on 

indoor private events from 5 to 10, opening professional sporting and cultural events at one-

third capacity, and reopening restaurants for outside service. It is important to note that not all 

openings have a quantitative effect on the OCHI. We stress here that the specific openings are 

not modelled explicitly, but rather the abstraction of an equivalent amount of NPI relaxation 

that is reflected in the OCHI. Moreover, the same amount of opening in terms of OCHI can also 

be reached with different combinations of openings, so that the OCHI stays agnostic to a 

specific type of opening, and only reflects a certain amount of opening. We provide all gathered 

detailed information on the measures that were in place at all dates, both at the cantonal and 

national level on the Swiss TPH GitHub (49). 
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Figure S.7: Non-pharmaceutical interventions (NPIs) as Oxford Containment and Health 

Index over time in Switzerland as implemented at the national level. The depicted NPI 

relaxation scenario corresponds to the red NPI relaxation scenario from manuscript Figure 2. 

The red scenario represents five NPI relaxation steps, from 58.5 to 53.5 on 22 March, to 48.5 

on 12 April and to 43.5 on 5 May 2021. The vertical dashed black line represents 22 March 

2021, the date of the first potential NPI release that was simulated. The colours of the future 

scenario and the coloured vertical lines highlight the dates when previous NPIs were at a similar 

level to the future opening steps. Higher values depict stricter measures. 

 

Prognosis probabilities 

Once infected with SARS-CoV-2 and following a latent period, an infected individual develops 

either asymptomatic, mild, or severe disease. Individuals that develop severe disease may, after 

some time, either seek hospital care or remain outside of the hospital setting (e.g., within care 

homes). We model three distinct prognosis tracks for those that will seek hospital care: 1) the 

patient will eventually recover without intensive care, 2) the patient will require intensive care 

but will eventually recover, and 3) the patient will require intensive care and will ultimately die 

from COVID-19-related complications. See manuscript Figure 1 for an illustration of modelled 

natural history and prognosis pathways. We quantified age-group stratified probabilities for 

each prognosis (Table S.4) using age-disaggregated morbidity and mortality data from  

international sources (51, 52), Swiss-specific sources (1, 53), and a Swiss COVID-19 

hospitalisation database (not publicly available). Once infected, a prognosis is derived for all 

individuals by stochastically sampling from a uniform distribution. 

 

The prognosis probabilities given in Table S.4 assume an equal probability of infection across 

all age groups. Whilst the probability of infection in any given contact is not assumed to be age-
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dependent (see Infectiousness per contact section), the number of contacts for any given person 

is age-dependent (see Figure S.4 in Contact network section). Therefore, each age-dependent 

prognosis probability needs to be scaled by an age-correction factor to convert to per-infection 

probabilities. Three additional factors can affect these age-related prognosis probabilities: 

1. Improved care procedures (see improved_care_factor, Table S.1) 

2. Increased mortality of viral variant infected with (Table S.2) 

3. Symptom reducing effect of vaccination 

 

The improved care factor represents the reduction in hospitalized COVID-19 cases requiring 

intensive care due to improved triage, use of treatments such as dexamethasone, and other 

factors. This improved care factor is calibrated, and assumed to take an effect on 1st June 2020 

following the ‘first wave’ experienced in Switzerland. For individuals infected following 

vaccination, an age-dependent prognosis is initially derived as described above. A further 

probability of being asymptomatic instead of symptomatic is then calculated by multiplying the 

symptom reducing effect of the vaccine with the normalized level of vaccine efficacy at that 

point in time (see Vaccine properties section). 

 

Table S.4: Age-group dependent probabilities of a given prognosis (52) 

Age 

group 

Asymptomatic Mild disease Severe disease Critical disease Death 

0-10 30% 69.93% 0.07% 0.00% <0.0001% 

10-20 30% 69.79% 0.20% 0.01% <0.0001% 

20-30 30% 69.16% 0.80% 0.04% <0.0001% 

30-40 30% 67.76% 2.13% 0.11% 0.0002% 

40-50 30% 66.57% 3.21% 0.21% 0.0014% 

50-60 30% 62.86% 6.27% 0.85% 0.0193% 

60-70 30% 58.38% 8.44% 2.95% 0.23% 

70-80 30% 52.99% 9.66% 5.56% 1.79% 

80-90+ 30% 50.89% 5.56% 1.63% 11.92% 

 

Infection, disease, and hospitalisation durations 

Upon infection, the duration for which an individual will remain in each disease or care state is 

sampled from a distribution, as illustrated in Figure S.8, and described in Table S.1 (including 

sources for the best estimated values for each duration). 
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Figure S.8: Distributions of disease- and care-related durations used in this OpenCOVID 

application for Switzerland 

 

Testing, diagnosis, and isolation 

Upon infection, an individual is assigned a date at which they may potentially seek a test and 

be diagnosed as a confirmed COVID-19 case. The delay between symptom onset and a potential 

diagnosis for each individual is sampled from a truncated Gaussian distribution (Figure S.8). 

We derive the number of diagnoses over time directly from observed data of confirmed 

COVID-19 cases (Figure S.1) and apply the relevant number of diagnoses per day across the 

modelled population. By definition, all COVID-19 cases that seek hospital care receive a 

diagnosis. After taking hospitalised diagnoses into account, other individuals with severe 

disease outside of the hospital setting and individuals with mild disease are randomly selected 

as those who seek testing and are assigned a diagnosis in the model. To represent future test-

seeking behaviour, the model-calculated proportion of cases diagnosed per infected case over 

the past 14-days is fixed into the future (Figure S.9). We note here that this assumption is not 

robust to major changes in testing policies or behaviours, including, but not limited to, mass 

testing. We assume no change in behaviour for individuals who test negative, and further 

assume that all non-severe cases isolate for a 10-day period immediately following diagnosis. 
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Figure S.9: Proportion of projected new COVID-19 diagnoses per infected case over time 

in Switzerland. Blue points (connected into a line) represent the assumed testing and diagnosis 

during the simulation period (from the end of March). 

 

Immunity 

For individuals that recover from SARS-CoV-2, we assume a partial acquired immunity of 83% 

to future infection upon recovery regardless of disease severity, risk group, or age (54-56). For 

the relatively short-term projections presented in this application to Switzerland, we assumed 

no waning of acquired immunity (Figure S.10). We note here that this optimistic assumption 

may not be appropriate for longer-term projections. In future work, the assumptions regarding 

level of immunity by disease state and waning acquired immunity will likely be reassessed as 

new evidence becomes available. 
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Figure S.10: Development of population susceptibility levels of scenarios 1A-1D over time. 

Population susceptibility is the complement of population immunity. The colours are the 

scenarios from manuscript Figure 2. 

 

Vaccine properties 

Vaccine efficacy following two doses was assumed to depend on vaccine type. For the mRNA 

vaccines (Pfizer and Moderna), an efficacy of 95% was assumed for all priority groups P1–P5. 

We implemented the vaccination of an individual as the smooth increase in immunity over time 

using a sigmoidal function that has a lower asymptote of 0, an upper asymptote of overall 

'vaccine efficacy' (95% for Pfizer and Moderna, 62% for AstraZeneca) and an inflection point 

14-days after vaccination. The growth rate of this curve is such that vaccine efficacy is close to 

zero on the day of vaccination, and is closer to full 'vaccine efficacy' after 28-days (Figure S.11). 
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Figure S.11: Development of vaccine efficacy from day of receiving a first dose. Shown in 

blue is the development of immunity for a two-dose course with an mRNA vaccine, and in 

yellow for a two-dose course of the AstraZeneca viral vector vaccine. The vaccine efficacy is 

the combined effect of immunity and the reduction of severe disease. It is assumed that the 

second dose is given according to schedule within 28 days depending on vaccine, but not 

modelled explicitly. 

 

Most vaccine trials claim to reduce COVID-19 symptom development as well as disease 

severity, however it remains unclear to what extent they prevent transmission. As a baseline, 

we assume mRNA vaccines are 80% effective in preventing infection (and future transmission) 

when at full efficacy. We then calculate the additional effectiveness of the vaccine to reduce 

symptoms such that the total reduction in symptoms among those vaccinated when the vaccine 

is at full efficacy (that is, 95% from 28 days after receiving the first dose). 

By definition we have that: 

R = 1 − �1 − G ∙ �1 − S 

 

Where R is the overall efficacy of the vaccine in symptomatic COVID-19, α is the 

transmission blocking effect, and S is the additional symptom reducing effect. Solving for S, 

we have: 

S = 1 − �1 − R
�1 − G 
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In this application, we assess the sensitivity of model outputs to different assumptions of the 

vaccine fully protecting from infection (sterile immunity and preventing onward transmission). 

Namely, values of 60% and 95% for sterile immunity. The corresponding additional symptom 

reducing effect in each case is reported in Table S.5. 

 

Table S.5: Vaccine properties under different assumptions of vaccine transmission 

blocking effect 

Vaccine type Overall efficacy (U) Sterile immunity effect 

(V) 

Symptom reducing 

effect (W) 

mRNA 95% 80% 75% 

mRNA 95% 60% 87.5% 

mRNA 95% 95% 0% 

 

Vaccine rollout 

Vaccination strategies were modelled according to FOPH priority groups and updated (10 

February 2021) after input from FOPH and other experts to reflect current rollout realisation 

(Table S.6). We assumed a baseline coverage of 75% across all priority groups for most 

scenarios. For scenarios 4A) and 4B) we modelled 60% and 90% coverage for priority groups 

P2 – P5 as a sensitivity analysis. We assumed either 50,000 or 100,000 vaccine doses used per 

day from 1 April 2021, which is within the bounds of the maximum vaccine availability as 

expected by the FOPH. Until 5 March we use data for number of doses used as provided by 

FOPH and scale linearly from there up to the target daily doses by 1 April. With 100,000 doses 

per day the target coverage of 75% across all groups will be reached before July 2021, with 

50,000 doses per day it will not be reached before the end of the simulation in September 2021. 

OpenCOVID vaccinates people strictly according to priority groups, with the highest priority 

group receiving all doses until the target coverage is reached. Vaccines from CureVac, 

Novavax, and AstraZeneca were not incorporated in our projections. 

 

Table S.6: Vaccine priority groups based on FOPH priority groups and modified after 

discussion with FOPH 

Priority group Description Number of model-eligible 

people 

P1 Aged over 75 years 756,400 

P2 Aged between 65 and 75 years, under 65 with 

comorbidities, and healthcare workers 

2,031,600 

(850,000, 621,600, and 

560,000, respectively) 

P3 Household members of high-risk people 1,243,000 

P4 Adults (18-64 years) in communal facilities and their 

caregivers 

100,000 

P5 All other adults (18-65 years) 4,414,600 
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Simulation details 

Model simulations were initiated on 18th February 2020, 7-days before the first cases were 

confirmed for three consecutive days in Switzerland (25 to 28 February 2020). All model 

processes were computed at time intervals representing one day. One million individuals were 

modelled for simulations reported here, with a population scaling factor subsequently applied 

to all relevant model outputs to represent a one-to-one scale for the Swiss population. Where 

appropriate, metrics were disaggregated by age, variant of infection, and vaccine priority group. 

All model simulations were performed at sciCORE (37) maintained by the Scientific 

Computing Center at University of Basel. 

 

Retrospective validation 

A retrospective analysis was conducted at the end of October 2021 to examine how the actual 

observed data compared with our scenario design and model outcomes. We first compared our 

scenario design to the actual number of COVID-19 vaccine doses administered per day and the 

Oxford Containment and Heath Index (OCHI) associated with the actual NPI implementation. 

We then compared outcomes from the most comparable model scenario with observed 

confirmed cases, cases that were in hospital, cases that were in ICU, and COVID-19-related 

deaths reported between 6 March and 1 September 2021 in Switzerland (57). 

 

Switzerland had planned for a rapid scale-up of vaccinations of up to 100,000 doses 

administered per day from early March 2021 (1). This level was eventually achieved, however 

scale-up ended up being somewhat slower than originally planned (Figure S.12b). Since we 

designed our vaccine scenarios on anticipated rollout and uptake, neither the ambitious 

(100,000 doses per day) nor conservative (50,000 doses per day) scenario truly reflect the actual 

vaccination campaign due to this delay in scale-up. Moreover, whilst none of our modelled 

scenarios exactly reflect the NPI and vaccine rollout strategies as they actually occurred in 

Switzerland from March to September 2021, we believe the scenario that most closely 

represents the actual implementation is Scenario 1C; relax 22 March with fast vaccine rollout 

(yellow curves, manuscript Figure 2 and Figure S.12). In general, the magnitude of the peaks 

in this scenario are approximately represented by the data for each metric, however, the timing 

is not well captured – as peaks were observed quicker than the model had predicted ((c), (d), 

and (e) of Figure S.12). Numerous factors could be contributing to this, including 1) the vaccine 

scale-up being slower than anticipated, 2) changing attitudes around NPI adherence following 

the second wave and as vaccines where being rolled out in Switzerland, 3) the OCHI not 

accurately capturing future changes of NPI intensity, and 4) infectiousness of VOCs. At the 

time of analysis, less was known about the infectiousness of the B.1.1.7 variant, which was 

potentially higher than what was modelled (refer to the sensitivity analysis as shown in Figure 

6 with details described in Table 2 from the manuscript). 
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Figure S.12: Retrospective comparison of actual data with Scenarios 1C. (a) Oxford 

Containment and Health Index (OCHI) values, (b) COVID-19 vaccine doses administered per 

day with a seven-day rolling average, (c) daily COVID-19 confirmed cases, (d) new daily 

COVID-19 hospital admissions, (e) new daily ICU admissions, and (f) daily COVID-19 deaths. 

Modelled scenario 1C (relax 22 March 2021, fast vaccine rollout) is represented by the yellow 

curves, data available at the time of analysis are in grey, and data available retrospectively are 

in blue. 

 

In general, the model was too optimistic in terms of ICU occupancy, and too pessimistic in 

terms of deaths (Figure S.12 (e) and (f)). Historically, the model accurately captured the 

relationship between ICU occupancy and mortality; however, as vaccines were being rolled 

out, the model was not able to reflect some of the observed de-coupling for several reasons 

related to vaccine coverage and care seeking patterns. Foremost, Switzerland achieved a 

higher vaccine coverage among those most at risk of COVID-19-related death (70-79 and 80 

years and older) than the assumed 75% coverage (Figure S.13). This has likely contributed to 

the overestimate of deaths. Furthermore, vaccine coverage below the 75% coverage level 

assumed among age groups 30-39, 40-49, and 50-59 was actually observed. Individuals in 

these age groups are more likely to require hospital and ICU care relative to their risk of 

death, which may be contributing to the underestimate of ICU occupancy. Figure S.13 shows 

a comparison of vaccine coverage by age group assumed for the faster vaccine rollout 

scenario (100,000 doses per day) in the model with the actual rollout. It was assumed that 

priority groups (P1-P5, as described in Table 2 from the manuscript) would sequentially reach 

75% vaccine coverage, considering acceptance rate. 

a b c 

d e f 
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Figure S.13: Data versus model assumptions for the faster vaccine rollout (100,000 doses 

per day) by age group in Switzerland. Dashed curves represent vaccine coverage for each 

age group assumed during the simulation from 6 March to 1 September 2021 with vaccination 

modelled in those 18 years and older. Solid curves represent actually observed vaccine coverage 

in Switzerland from the start of rollout until the end of the simulation. At the time of this 

analysis, COVID-19 vaccines were not authorized for administration to children 17 years and 

younger. 

 

Model development and maintenance 

OpenCOVID is written primarily in the R programming language (58) and is stable with R 

version 3.6.0. The code for OpenCOVID is open source, and available from the Swiss TPH 

GitHub (59). Due to the level of computational power required to calibrate the model and 

simulate scenarios, the model pipeline makes use of a SLURM based cluster sciCORE (37) 

maintained by the Scientific Computing Center at the University of Basel. Interactions to the 

cluster are written in bash script. The authors of the manuscript maintain the model source code. 
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