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Supplemental Movie S1

A swarm of frog-cell parents push frog cells into piles that mature into self-moving “children”.
An AI method optimizes the original spheroid shape into semi-toroids capable of more self
replication. AI-designed shapes, when built, replicated more often.

Materials and Methods

FAQ, videos, images, and source code can be found at: krorgs.github.io

1. Summary of previous work using reconfigurable organisms.

The first manuscript to report reconfigurable organisms (10) introduced a pipeline for
automatically designing cardiac-driven organisms to exhibit a desired behavior, such as
locomotion. The overall geometry of each organism, and its internal configuration of ectoderm
and cardiac muscle, were designed ab initio using an evolutionary algorithm and physics-based
simulation. The most promising designs were manufactured by combining cells, according to the
computer-generated blueprint, and shaping the resultant aggregates with a microcautery electrode
and surgical forceps.

Later (9), it was demonstrated that multiciliated epithelial tissue could be used, instead of
cardiac muscle, to generate cilia-driven “swimming” designs. These ciliated designs can be
manufactured more rapidly and have a higher probability of self motile behavior than the
cardiac-driven designs. Ciliated reconfigurable organisms can be produced two different ways.
The excised animal cap tissue, including the outer superficial ectodermal layer, can be left intact
and allowed to heal into mucociliary epidermal spheroids (Fig. S1A,B). Alternatively, if
dissociated stem cells from one or more animal caps are brought into contact, they will adhere,
compact and reassemble into a mucociliary spheroid (Fig. S1C,D). Using either construction
method, the resultant aggregates are structurally and functionally equivalent (8). We here refer to
these motile spheres as wild type reconfigurable organisms.

Xenopus tissue is ideal for this use case because its cell types and organization are known
(43-51) and their development is controllable: cells can be driven to any lineage (52-61) and
specific cell types can be inhibited or overproduced with molecular or chemical intervention
(62-66). However, outside of (9) and (10), these tissues have not been used as self-motile agents,
nor have they been engineered to exhibit specific motile functions such as particle aggregation.
In (9), the useful lifespan, velocities, and movements of cilia-driven behavior was quantified as
these metrics were not previously reported. These data were used to develop the simulations used
in the present work, which builds on both studies to show how ciliated tissues can be shaped to
control their collective behavior and amplify their kinematic self replication.
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2. The simulation.

This section details how self-replication was simulated. The corresponding Table S1 details
how simulation parameters were estimated from biology.

2.1. Biophysics in silico.

Voxel-based physics. Biological tissues were modeled as collections of elastic voxels
(deformable cuboids) (9,10). Two voxels in the same simulation can connect face to face on a 3D
cartesian grid by a single Euler-Bernoulli beam, forming a small body. A beam starts at the
center point mass of one voxel and ends at the center of the other voxel. Beams have rotational
and translational stiffness allowing for local stretching, compressing, bending, and twisting of
one voxel mass relative to another.

Simulated organisms comprise hundreds of voxels. Each voxel within an organism is
connected by beams to at most six other voxels, one on each of its six faces (up, down, left, right,
front, back). Voxels with less than six beams thus have at least one face that is exposed, forming
one part of the external surface of the organism’s body (or part of the surface of an internal
cavity). Self-collisions between two non-neighboring surface voxels are resolved by temporary
beams that are created when two unconnected surface voxels penetrate each other, and are
removed after the voxels are pushed far enough apart so that they no longer intersect.

The hydrodynamics of the aqueous medium in which the organisms operate is modeled by a
resisting viscous force that damps out inertial effects. Neither laminar nor turbulent flows were
simulated. Interactions between voxels and the bottom of the petri dish are modeled as Hookean
springs (translational stiffness only), which add an upward force opposing penetration of a
surface plane, which is located at z=0 and extends infinitely in the horizontal (x,y) plane. For
more details about the underlying physics model, see (40).

GPU acceleration. To simulate the swarms of colliding organisms and dissociated stem
cells reported in the present work, we used voxcraft-sim (67), a GPU-accelerated
re-implementation of Voxelyze (the physical simulator underpinning VoxCAD (40)) with a more
scalable tree-based collision system (68). In Voxelyze, voxels are evaluated sequentially on a
single thread of a CPU. In voxcraft-sim, thousands of voxels can be evaluated concurrently on a
GPU (Fig. S5). Collisions in Voxelyze are detected and resolved in an exhaustive pairwise
comparison of all n surface voxels, with time complexity O(n2). In voxcraft-sim, collisions are
handled using a bounding volume hierarchy (BVH) tree data structure with O(n log n).

Organisms (ciliated, pink voxels). The mature swimming organisms, which are composed of
thousands of living cells, are simulated by hundreds of pink colored voxels (Figs. 1A, 2F-H, S4).
Each pink voxel thus approximates a section of tissue, rather than a one-to-one voxel-to-cell
representation. The aggregate (metachronal wave) force produced by a patch of beating cilia was
modeled on each surface voxel as an impulse force originating at the center of the voxel and
pointing in any direction in the horizontal (x,y) plane. The vertical (z) moments and forces of a
simulated organism’s pink voxels are locked in plane to stabilize their movement and remove the
possibility of persistent tumbling behavior in silico. Tumbling sometimes does briefly occur in
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wild type reconfigurable organisms, but they tend to glide with a constant dorsoventral
orientation.

Dissociated stem cells (adhesive, green voxels). Dissociated stem cells are simulated as
dissociated (beamless) voxel singletons and are colored green. When two green voxels collide
with each other, a new semi-permanent beam is created to bond them together. The beam is
semi-permanent because it is breakable under conditions that are described below. Green voxels
do not have cilia and, unlike pink voxels of the mature organisms, green voxels are free to move
and rotate vertically as well as horizontally when hit. In an earlier draft of the model, we
simulated dissociated stem cells with negative buoyancy so that they would settle to the bottom
of the dish, as observed in vivo. However, simulated adhesion under negative buoyancy almost
always resulted in flat planes of voxels connected along the surface plane at the bottom of the
dish. The model was therefore adjusted so that stem cells were simulated with neutral buoyancy.
That is, without collision forces impinging on the green adhesive voxels, they will remain
suspended in place. This enabled 3D adhesion because floating voxels are free to rotate out of
plane as they bond to other floating voxels and aggregations of voxels.

When dissociated stem cells come together and touch in vivo they naturally compact and
form spheres as their adhesion properties lead to a minimized surface-area-to-volume ratio.
Because our model initially did not capture this spherical bias, green voxels would often connect
distally, forming long chains of voxels, which were not observed in vivo. To simulate in vivo
compaction and spherification, piles of connected green voxels are continually compressed
together by stochastically detaching the semi-permanent beams of surface voxels that have two
or fewer neighbors. When detached from a pile, voxels are immediately pushed toward a
different, randomly selected spot along the pile’s surface to be reattached upon collision with a
new semi-permanent (but breakable) bond. Additional damping was applied to the movement of
green voxels to ensure that detached voxels remained within the local neighborhood of a pile.

Petri dish. The depth of the aqueous solution, and its lateral limits (the walls of the dish),
were modeled by soft boundaries that repel voxels that penetrate predefined bounds (in the main
experiments, a 81 voxel wide , 81 voxel long, 5 voxel high volume) with an opposite force1

proportional to the squared penetration. A hard boundary, such as the surface plane used to
model the bottom of the dish, or an upright plane of immovable voxels, could also be used to
simulate a wall of a petri dish. However, using fixed voxels for walls has two issues. First, any
additional voxels in the simulation require tracking additional collisions which can become
computationally expensive. Additionally, the time step of numerical integration must be lowered
to prevent simulation instabilities caused by laterally swimming organisms pressing themselves,
and piles of simulated stem cells, against a wall of voxels and penetrating it. This can cause the
organism or stem cell pile to become permanently bolted to the wall. Finally, we found that hard
boundaries, even when computationally stable, biased the random movement of the organisms to
remain pressed along the walls of a dish for long intervals of simulation time. While this
prediction of wall following was borne out in vivo, exhausting a fixed computational budget to
collect isolated behavioral data can be wasteful for the purposes of learning to control
interactions between organisms and dissociated cells. To reduce the amount of simulation time

1 Units of distance in the simulation are arbitrary, so the width of a voxel is treated as one unit of distance.
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required to observe piling behavior occurring in silico, elastic boundaries were implemented
which nudge the organisms back toward the dissociated stem cells in the center of the dish.

Hyperparameters. Parameters of the model were estimated from biology according to Table
S1. Both the mature organisms’ tissue (pink voxels) and the dissociated stem cells (green voxels)
were simulated with Young’s modulus of 0.05 MPa, density 1000 kg/m^3, and 0.5 Poisson’s
ratio. These material properties of the voxels were manually adjusted for simulation speed.
(Heavier/softer material can be stably simulated with a larger time step of numerical integration
because their resonance frequency is lower than light/stiff material.) These properties were kept
constant across the two material types to minimize instantaneous changes in dynamics when
piles of stem cells develop into ciliated organisms. The development of adhesive, compacting
stem cells into the mature tissue of a swimming organism is detailed in the following section.

2.2. Self replication in silico.

Filial generations. A swarm of N parent organisms (ciliated pink voxels) were placed amid
a uniform lattice of suspended dissociated stem cells (adhesive green voxels). These initial N
parents are here referred to as filial generation zero (F0). In the main experiments, there are nine
simulated F0 organisms (N=9).

Each filial generation, parents swam for three seconds with random cilia impulse forces,
where the x,y cilia force for each surface voxel, in Newtons, was drawn from a bivariate uniform
distribution from (-0.3,-0.3) to (0.3,0.3). These cilia forces are held constant, relative to the
orientation of the voxel, for one second of simulation time (4676 time steps), yielding ballistic
swimming trajectories. After every second of simulation time, all of the cilia forces were
replaced by new random values, resulting in three independent random trajectories of collective
swimming behavior. As simulated parents swim along the surface of the dish, they collide with
the simulated dissociated stem cells, which adhere into piles of stem cells that slowly compact
together. At the end of their three second evaluation period, parents were removed from the
simulation and the piles were allowed to compact and spherify for an additional 0.5 seconds of2

simulation time.
The size of the largest pile was then compared against a threshold of 108 voxels, two-thirds

the size of the unsculpted, 161-voxel F0 spheres. Piles smaller than the threshold (less than 108
voxels) were removed from simulation, and piles larger than the threshold (if any) develop
instantaneously into child organisms with cilia (green voxels become pink voxels) (Fig. S4). This
first set of organisms assembled by the F0 parents are referred to as the first filial generation
(F1). Empty space in the dish surrounding the F1 organisms (due to the removal of parents and
small piles below the threshold) is repopulated by a fresh grid of dissociated stem cells, and a
new 3.5 second evaluation period begins in which the F1 organisms are the pile-building parents.

The F1 organisms may build piles, the largest of which may develop into F2 organisms,
which in turn may build piles of their own, and so on. The simulation ends when no parents (pink
voxels) remain in the dish, or after a maximum of five filial generations (F5) elapse, for at most
6*3.5 = 21 seconds.

2 The parents could be left in the dish in vivo as they maintain self motility for 10 days without additional food (90
days with food) and it only takes four days for a pile of stem cells to develop into a ciliated spheroid and begin
moving. However, the parents are removed in order to isolate the pile-making capacity of each filial generation.
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Hyperparameters. The behavior of each filial generation was simulated for 16,366 time
steps (just long enough to see pile-making behavior occur), with step size 2.14×10-4 sec (just low
enough to ensure simulation stability; for details see (40)), yielding an evaluation period of 3.5
simulation seconds. Table S1 details how these simulated dynamics correspond to properties of
the physical self-replicating system, in vivo.

3. The AI design tools.

This section describes how parameters of reconfigurable organisms, and their environment,
can be adjusted to generate a desired amount of kinematic self replication in reconfigurable
organisms.

3.1. Controllability of reconfigurable organisms.

Individual behavior. Previous work (10) used an evolutionary algorithm to automatically
design the overall shape, and distributions of epidermal and cardiac tissues, of deciliated
reconfigurable organisms, so that they would exhibit some desired behavior such as
surface-based locomotion in a specified direction. Behavior generated in simulation was
observed in some of the manufactured organisms because cardiac-driven movement was
sufficiently determined by geometry and tissue distribution. The behavior of the cilia-driven
swimming organisms manufactured here, in contrast, are not as obviously determined by their
geometry: very similarly shaped bodies can move very differently. Even a single organism can
exhibit diverse movement patterns driven by spontaneous transitions in cilia beating patterns,
rather than traveling along a single trajectory as when driven by a regular cardiac pulse.

Collective Behavior. Predicting cilia-driven movement of an individual organism is
challenging. But some collective behaviors do appear to be predictable in simulation.
Specifically, it was found that when a swarm of ciliated reconfigurable organisms are placed
together in the same dish amid debris [carmine dye particles (10) or silicone coated iron oxide
beads (9)], they tend to reliably aggregate the initially scattered debris into piles. Previous
modeling studies (9) assessed whether body shape could affect pile size in silico under precisely
tuned movement trajectories (a custom set of static cilia forces was optimized for each swarm to
increase pile size). The data suggested that some body shapes were capable of building
significantly larger piles than others, but this hypothesis was not verified in vivo. And because
the simulated debris were intended to model synthetic material, piles of debris did not develop
into child organisms. In previous implementations of dynamic voxel attachment, piles were only
numerically stable if inertial forces were heavily overdamped post-attachment, resulting in
heavy, irregularly-shaped masses of tangled voxels that could not stably locomote using cilia
impulse forces.

The “debris” in this present work, instead, are dissociated stem cells that, when pushed
together into a sufficiently large pile, compact and develop into a ciliated organism (offspring)
capable of swimming and pushing together loose stem cells into additional piles (which can then
develop into yet additional offspring). The control problem is thus to adjust the amount of self
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replication produced by the swarm without knowing exactly how the individual organisms will
move.

3.2. Increasing the amount of self replication.

There are various adjustable parameters of the self reproducing system that can be manually
tuned or tuned by an evolutionary algorithm (Table S1) to affect the amount of self replication.

Some of these conditions are strict and non-adjustable. Contamination, for instance, must be
avoided or viability will be lost between rounds of replication. Likewise, a suitable temperature
range for frog embryos and ex vivo tissues/cells must be maintained in vitro (4°C to 28°C).
Other conditions are more adjustable. For instance, the size of the petri dish and the number of
organisms could be changed. The size of the manually constructed organisms are all 400-600
microns in diameter (Fig. S3), but can be made larger or smaller (Fig. S1). The adherence
properties of the dissociated stem cells could be altered through the expression of cadherins or
integrins. Reconfigurable organisms live for 10 to 14 days from the energy preloaded in their
cells; but they can survive for at least three months in a nutrient rich medium (9). The speed at
which the organisms can move during their lifetimes can be throttled by increasing or decreasing
the viscosity of their aqueous environment and the friction of the arena substrate. The structure
of the bottom surface or walls of the dish can channel and/or constrain the otherwise
unpredictable movement of cilia-driven reconfigurable organisms (9). Finally, the morphology of
the organisms can affect how they interact with other objects and with each other (9,10). This
inherent sensitivity of kinematic self replication to adjustable external conditions exposes several
potential control parameters that can be set by a human operator or automatic control system.

Here, we focus on two such parameters: the shape of the organisms and the structure of the
terrain on which they operate.

Body shape. The initial swarm of reconfigurable organisms (F0), which are formed by
manually deconstructing one-day old Xenopus embryos, naturally compact into spheroids due to
cell adherence (referred to here as “wild type”), but they can be carved into other shapes by
subtraction (Fig. S1F,H). The wild type F0 spheroids are here modeled as a vertical stack of five
circular layers of 21, 37, 45, 37, and 21 voxels, respectively, yielding a voxelized spheroid
composed of 161 voxels with a 7:5 width:height aspect ratio (Fig. S4). Other body shapes can be
formed by removing one or more of the 161 voxels in a single simulated spheroid. For simplicity,
each of the N organisms within a swarm were constrained to share the same body shape.

Terrain (black voxels). The terrain of a simulated petri dish can be modified by adding fixed
structures along the bottom surface of the dish, in the form of black voxels. Because the
simulated organisms cannot move over or through the fixed structures, the terrain can channel
the random movement of the organisms along more predictable trajectories within predefined
limits. Details of the two experiments modifying body shape and terrain, respectively, are
identical unless stated otherwise.

Encoding shape. A structure made of voxels (whether body shape or terrain) can be
encoded as a network that takes as input a set of regularly-spaced coordinates within a bounding
volume of fixed size, and outputs whether or not a voxel is present at each of those
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three-dimensional locations. Consistent with previous computational models of reconfigurable
organisms (10), a feedforward Compositional Pattern-Producing Network, or CPPN (39), was
used to encode voxel structures. A CPPN consists of vertices connected by weighted edges. Each
edge multiplies its input value by a real valued weight between -1 and 1. Each vertex sums the
values of its input edges and outputs a function applied to that sum. The function encoded in a
node is drawn from the following set: sine, signum, square, absolute value, square root of the
absolute value; and the negations of those five functions. In the last layer of the network, positive
output values correspond to present voxels and negative values correspond to empty space (an
additional signum function is applied). The largest connected component of voxels was taken to
be the structure. Alteration to edge weights and/or changes in node-encoded functions alters the
structure output by the network. For more details, see (69).

When encoding body shape, for the main experiments within a flat petri dish, networks
were restricted to removing vertical columns of voxels along the z axis, at particular positions in
(x,y), from the default spheroid, rather than removing individual voxels. This ensured that, if a
simulated shape were to be instantiated as a physical reconfigurable organism, organisms could
be rapidly shaped using coarse subtraction, instead of sculpting intricate 3D concavities into each
one (10). Similarly, when encoding terrain, only one-voxel tall structures (z=0) were considered
so that all of the immovable black voxels rested on the bottom of the dish. Thus, in both cases,
only the x and y coordinates need to be input to the encoding network.

Measuring the amount of self replication. The amount of self replication achieved by a
specific body shape or terrain can be measured by the number of filial generations (g) they
generate. The fitness, f, of a CPPN is computed as:

f = s/p + g , (Eqn. 1)
where s is the size of the largest pile (the number of voxels it contains) at the end of the
evaluation period; p is the pile size threshold required for a pile to develop into an organism (if s
is greater than p, a new filial generation begins, otherwise the evaluation period ends); and g is
the number of filial generations achieved. A conservative threshold (s = 108 voxels) of
two-thirds the size of the simulated wild type spheres (161 voxels) was selected such that
relatively few randomly generated swarms achieved g > 0. This significantly reduced the
computational effort required to find viable terrains and body shapes that increase the amount of
self replication. It also matched the observation that physical swarms composed of the wild type
spheroids usually only managed one generation of replication.

Optimization algorithm. CPPNs were optimized to output replicator shapes, or terrains, that
cause more self replication than that observed in the wild type spheroids. An evolutionary
algorithm was used because the authors have considerable experience using this particular
algorithm to evolve soft robots and reconfigurable organisms in previous work. Many
optimization methods could be adapted for optimizing CPPNs, but derivative-free optimization
methods such as evolutionary algorithms are a natural choice for this problem because the
relationship between behavior and morphology was modeled using a nondifferentiable physical
simulator. More specifically, low self replicative ability cannot yet be localized to specific
missing parts of specific piles. These missing pile parts in turn cannot yet be propagated back
through the physical simulator to implicate movement patterns of specific swarm members, and
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back further to specific parts of the replicators’ bodies causing those movements. Finally,
implicated body parts cannot be propagated back further into the CPPN, to implicate specific
edges and nodes that should be tuned to rectify the low replicative ability. In addition,
evolutionary rather than learning algorithms are desirable because initial conditions of the system
(body shapes, terrains) are optimized here, rather than optimizing the control of each organism.

The evolutionary algorithm used here is a multiobjective optimization algorithm (38) that
continuously injects new design alternatives into the population, and reduces selection pressure
on newer designs, in order to favor the evolution of new, different ways to achieve self
replication. Each independent evolutionary trial starts with its own unique set of 16 initially
random CPPNs, and a sequence of random (but static) cilia forces (described in Sect. S2.1). Each
CPPN is translated into a swarm, or a terrain for the default swarm of spheroids. The swarm is
simulated and its self replicative ability is measured.  A modified copy is made of all 16 CPPNs
in the population, and each copy inherits the lineage age of its parent CPPN. A mutation adds,
removes, or modifies one of the network’s edges or vertices. Vertex modification involves
replacing the activation function currently encoded there with a function randomly selected from
the following set: sine, signum, square, absolute value, square root of the absolute value. The age
of each of the 32 CPPNs is incremented by one, and one new CPPN with a lineage age of zero is
randomly generated. The 17 new swarms produced by the 17 new CPPNs are evaluated in silico,
as described in Sect. S2.2. Then, the entire population of 16+17=33 CPPNs are then sorted, on
the basis of their age and fitness scores (Eqn. 1), into Pareto fronts. The first Pareto front consists
of the youngest and most fit CPPNs, which are by definition nondominated. The second Pareto
front consists of CPPNs that are dominated by at least one CPPN in the first front, but are not
dominated by any other CPPNs. The N-th front consists of CPPNs that are dominated only by
CPPNs the preceding N-1 fronts. Starting with the first Pareto front, successive fronts are kept in
their entirety until doing so would overfill the population past its original size, 16 CPPNs, at
which point CPPNs are added stochastically with probability proportional to their fitness until
the population contains 16 CPPNs.

When evolving body shape, 49 independent evolutionary trials were conducted. Each
evolutionary trial started with its own unique set of random shape-encoding CPPNs and sets of
random cilia forces, yielding 49 champion swarms: the body shape that achieved the highest
value of Eqn. 1 above, in each trial.

Runtime. Each evolutionary trial was conducted using eight NVIDIA Tesla V100s for a
maximum of 48 hours wall-clock time or 500 updates of the CPPN population (whichever came
first). The runtime varies due to the algorithm’s stochasticity; some swarms produce more filial
generations than others and thus require more time to simulate. Because evaluating swarms in
simulation is the computational bottleneck, the algorithm is readily parallelizable: doubling the
number of GPUs would allow halving the wall-clock time for the same population size, or
doubling the size of the CPPN population that can be evaluated using the same amount of
wall-clock time.

3.3. Inhibiting and recovering self replication.

A simple way to stop kinematic self replication is to stop supplying the system with
additional building materials (here, dissociated stem cells). This is one of the reasons that
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kinematic self replication is inherently more controllable than the other nine known forms of
biological replication. Another way to slow or halt a kinematic self-replicator is to impede its
movement in a cluttered environment.

Cluttered environment. To investigate whether the evolutionary algorithm could impart self
replication to a system otherwise incapable of it, a cluttered environment was created by
attaching a sparse uniform grid of immovable black voxels to the bottom of the dish (Fig. S9).
The simulated wild type reconfigurable organisms could no longer spontaneously self-replicate
in this environment because their movement is contained within a small region surrounding their
starting position (Fig. S9A). However, if sections are removed from the simulated organisms’
ventral surfaces, they can glide over the top of the static debris (Fig. S9B-D). The challenge here
is to not only regain movement, but to recover self replication. This requires carving away voxels
on the ventral surface of a body shape while retaining the ability to capture and aggregate
dissociated cells into piles. Thus, instead of carving away entire columns at a time (which
simplifies manufacture), independent removal of any voxel within the sphere was permitted.

4. Statistical analysis.

4.1. Size of offspring.

In silico. Five hundred simulations were conducted in which two groups— the wild type
spheroids and the evolved semitoroids—built piles. In each simulation, the swarm moved
differently, as each member was driven by different random cilia forces. The simulations were
terminated before any piles could develop into F1 organisms. The null hypothesis is that the
average size of the piles built by the spheroids was no different from the size of those built by the
optimized shape (the semi-torus). Because the same random cilia forces were used for the
spheres and the evolved shape, the two samples are dependent. Thus, a Wilcoxon test was
performed, resulting in p=3.9*10-5 (W=6311.5). Controlling for false discovery rate, the null
hypothesis is rejected at the 0.0001 level of significance.

In vivo. The sizes of the 10 largest physical F1 offspring generated by each of eight different
swarms was recorded. Five of the swarms were composed of wild type spheroids, one was
composed of spheroids double the size, and one was composed of flattened spheroids (gray
points in Fig. 2E). Each swarm behaved within a dish with differing dissociated cell density. The
sizes of the 10 largest physical F1 offspring generated by each of three additional swarms,
composed of the automatically designed semitoroid, were also recorded, again at different
dissociated cell densities (pink points in Fig. 2E). Within each set of 10, the size of the offspring
was divided by the cell density in which they were built. The null hypothesis is that the average
diameter of the offspring (normalized by cell concentration) built by semitoroids progenitors
across three independent trials was no different than the average diameter of the offspring built
across five independent trials by the wild type spheroids or spheroid variants. Comparing
offspring size in this way is a conservative test since the volumetric difference between two
spheres is eight times as large as their corresponding difference in diameter. A Mann Whitney U
test was performed, resulting in p=0.0368 (U=1.0). Controlling for false discovery rate, the null
hypothesis is rejected at the 0.05 level of significance.
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4.2. Number of generations.

In silico. The 49 evolutionary trials resulted in progenitor shapes that self-replicated for two
to three generations in silico, under strict conditions: a pile size threshold of two thirds the
number of voxels contained within the simulated wild type spheres. Two thirds is a strict
threshold because the best estimate is closer to one fourth (see Table S1). All 49 trials were
compared to evaluations of spheres. The wild type spheres did not self replicate for more than a
single generation, in any of the 49 trials. Bootstrapped confidence intervals of the 49 best
swarms from each trial were compared against 49 of the wild type spheroid swarms to determine
the probability of overlap (Fig. S6A). Controlling for false discovery rate the null hypothesis is
rejected at the 0.0001 level of significance.

The same procedure was performed for terrain optimization with wild type spheroid swarms
in silico (Fig. S7). The null hypothesis is that of no difference in the number of filial generations
produced by swarms operating on the best evolved terrains (e.g. Fig. S8) and those operating on
the flat surface plane of a standard petri dish (e.g. Fig. S4). Based on the bootstrapped confidence
intervals, and controlling for false discovery rate, the null hypothesis is rejected at the 0.0001
level of significance.

In vivo. The wild type reconfigurable organisms produced just a single filial generation in
four of the five independent trials. The only trial to produce two generations of offspring
required the highest cell concentration we tested (150 cells/mm2). In the first of three self
replication trials using the optimized body shape (semitoroids) resulted in two generations at 61
cells/mm2 but then degraded into immobility due to a fungal infection. In the second and third
trials using the optimized body shape, additional precautions were taken to avoid fungal
infections. Three successive generations of offspring were produced at 61 cells/mm2; four
successive generations of offspring were produced at 91 cells/mm2. The null hypothesis is that
the number of generations of self replication achieved by the optimized design (2g, 3g, 4g) was
no greater than the number of generations produced by the wild type spheroids (1g, 1g, 1g, 1g,
2g). A Mann Whitney U test was performed: p=0.0188. (U=0.5). Controlling for false discovery
rate, the null hypothesis is rejected at the 0.05 level of significance.

4.3. Correlation between first generation size and total number of generations in vivo.

There was a Spearman rank-order correlation coefficient of 0.9322 (p=0.00074) between
the number of replication generations achieved and the aggregate size of the 10 largest first
generation offspring.

5. Utility forecast.

A computational model was created to predict the amount of utility (useful work) the
self-replicating swarm may be capable of, if it was provided with reachable but unassembled
parts in a semi-structured environment. To that end, a circuit completion task was chosen. This
section details how the parameters were estimated for the self-replicating swarm and the
electronic parts. The model incorporates many biological details from the physical
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reconfigurable organisms reported here, and from emerging microscale electronic components.
But, many of the details estimated in the model will be refined when more is known about how
such organisms can or cannot interact with various microscale environments containing artificial
materials. This will, in future, yield better forecasts of the potential utility of this technology.

5.1. Circuit components.

Three types of modular microelectronic components were simulated: light emitters,
batteries, and wire. Each component contains vertically stacked and insulated conductors, which
maintains connectability under translational and rotational movement in plane (Fig. S11C-E).
That is, the electronic components, if resting on a surface plane, can be pushed together and
connected by a swarm of reconfigurable organisms that move along the same surface. The
simulated wires (blue voxels in Fig. S11A) adhere to each other upon collision like the simulated
dissociated stem cells do (green voxels). Except, once the wires attach, they do not detach (there
is no stochastic spherification as in the stem cells). Current emanates from a power source that
could, if instantiated physically, be supplied by a microbattery or electrodes, and is approximated
in simulation by passing discrete packets of voltage along neighboring voxels in a chain of
connected voxels. If a packet of voltage reaches a light emitter, it is switched on, permanently.

There exist atomically-thin light emitters with light emission visible to the naked eye that
are made of just a few layers of graphene, stretched across a 2D sheet <5 μm in length and width
and powered at ∼0.4 V μm–1 (27). Any organisms gathering and connecting these emitters to a
power supply would have to be removed or sacrificed before powering the circuit. The number
of switched-on light emitters was chosen here as the unit of “useful work” performed by a
self-replicating swarm, but the choice was arbitrary. There are other kinds of microscale
resistors, such as transistors, which could be used instead, or any number of other kinds of
microscale inspection, maintenance or assembly tasks.

5.2. Estimated utility.

Task environment. Sixteen initially disconnected strips of vertically stacked and insulated
conductive voxels (“wires”; blue voxels) are spread out along the edge of the soft boundary of a
simulated dish (Figs. 4 and S11). In each corner, two of the strips are connected at a 90 degree
angle to a small light emitter (white voxels). Two of the remaining eight strips along the edge, on
opposing sides, are attached to power supplies. Nine reconfigurable organisms are placed in the
center of the simulated dish amid a grid of dissociated stem cells. Twelve additional strips of
vertically-insulated conductive voxels are placed among them, randomly oriented north-south or
east-west with equal probability (Fig. 4B,C). Potential current flow is shown in yellow
propagating down blue conductive voxels connected to a power supply. As organisms move in
their dish, they self replicate (by building piles out of dissociated stem cells) and, simultaneously,
snap together the conductive strips of voxels in the dish as a side effect of movement. If one of
the corner strips with a light emitter connects by conductive voxels to one of the two power
supplies, the light emitter switches on (as indicated by a red circled X in Figs. 4 and S11).

The swarm builds piles, which, if sufficiently larger than 40 voxels, develop into offspring,
and the dissociated cells are replenished, every 3.5 seconds, as in the above experiments. Forty
voxels is one fourth the size of the simulated wild type spheroids, which is the best estimate for
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the minimum size of piles that developed into self motile offspring in vivo (Table S1). Because
utility is measured rather than self replication, the parents are left in the dish and continue
building additional filial generations alongside their offspring for 17.5 seconds. As the3

organisms move they randomly push the circuit components into place, occasionally turning on
up to four light emitters. After 17.5 seconds of simulation time, the parents were removed, and
the offspring were extracted. To better approximate the spherification that occurs in vivo,
offspring extracted from a completed simulation are converted to spheroids containing roughly
the same number of voxels. The spherified offspring were then split into two subgroups, each
subgroup was injected into one of two new simulated petri dishes, and each new dish contains a
new partially-completed circuit. Self replication and circuit building begin afresh in these two
dishes, again for 17.5 seconds. This process triggers the growth of a binary simulation tree (Fig.
4) in which each simulation begets at most two simulation branches, each containing one half of
the produced offspring of their root simulation. If only a single offspring is created by a swarm
after 17.5 seconds, then only one new simulation branch is spawned. If no offspring were built,
then that branch of the binary simulation tree dies out.

Growth rate of utility. After 50 simulation bifurcations (875 seconds of simulation time),
5024 light emitters were switched on by the self-replicating swarm.

Symbolic regression (42) was used to find the degree of a polynomial function that best
explains the cumulative number of emitters switched on by the self-replicating swarm. The
regression operators were limited to addition and multiplication. The operands were the number
of simulation bifurcations (a sequence from 1 to 51), and an ephemeral constant drawn from a
gaussian distribution (mu=0, sigma=10). Each candidate solution is evaluated based on its root
mean squared error (RMSE) with the cumulative number of emitters switched on at each
simulation bifurcation.

A population of 1000 candidate equations was optimized for 1000 generations using the
same optimization algorithm (38) used to design body shapes and terrains. The population size
could be set much larger for this experiment because evaluating equations takes milliseconds
whereas evaluating self-replicating swarms takes minutes. Ten independent optimization trials
were conducted, each starting from a different random set of 1000 candidate equations. The
objective is to minimize root mean squared error. After 1000 generations, the least-error
equations found in each trial all converged about the quadratic curve derived by ordinary least
squares: 2.7x2 -43x + 182.4, where x is the number of simulation bifurcations (R2=0.9988). The
prediction of the model is thus, under the simulated conditions, utility increases quadratically
with time.

Self replication (and thus utility) could, in principle, be enhanced in vivo through numerous
bioengineering and molecular interventions, including: altering cell adherence properties
(through the expression of cadherins or integrins), increasing cell lifespan with culture media,
increasing swimming velocity by altering the number and polarity of cilia, changing cilia beat
frequency, generating larger parents, increasing the number of adults during self replication,
provision of more feeder cells, altering the size of the arena, and changing the substrate on which
self replication occurs (increased or decreased friction). For the current settings of these

3 The organisms can survive 10-14 days without food, consuming the energy preloaded in the frog egg (similar to the
yolk of a chicken egg).  If given an external food source, in the form of a sugar rich media, they can survive for a
period of months.
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parameters, and others that could affect the rate of utility produced by future reconfigurable
organisms, see Table S1.

It is clear that, in theory, self-replicative machines that perform useful work as a side effect
will superlinearly increase in utility over time. However, it was not clear that there exists a
domain in which the randomly-acting self-replicative system described here would be so. The
flexible electronics technology simulated here demonstrates that, assuming such technology
comes to fruition, there may soon be a domain in which our technology may be superlinearly
useful over time.
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Fig. S1. Construction of reconfigurable organisms from embryonic Xenopus material. Two methods
are used to construct the initial swarm (generation 0) of reconfigurable organisms. The first requires
excision of animal cap tissue of Nieuwkoop and Faber stage 10 embryos (24h post fertilization at 14°C)
with microsurgery forceps (A). Individual explants are then transferred to a 0.75x saline solution (Marc’s
Modified Ringer’s) which allows the tissue to heal into a spheroid of tissue (B) and develops into a
mucociliary epithelium, becoming motile after 3-4 days of culture at 14°C (B′). The second method
dissociates the animal cap material in calcium free, magnesium free media, and the pigmented superficial
ectoderm is discarded (C). The dissociated cells are then transferred to 0.75x MMR and mechanically
pushed into a pile, which naturally adheres (D). The aggregates forms into a spheroid of tissue (D′) which
becomes motile after 3-4 days of culture at 14°C. Various morphologies can be given to parent organisms
via surgical forceps and a microcautery electrode (E), allowing for the production of semi-toroidal shapes
[shown in F, next to a spheroid (white arrow head in F) and shaped from reaggregated cells in F′ ],
moderately compressed spheroids (G, lateral view G′), and toroids (H). Scale bars indicate 500 microns.
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Fig. S2. Reconfigurable organisms are required for the generation of offspring. Dissociated stem
cell layers are produced from animal cap tissue of Nieuwkoop and Faber stage 9 embryos (A), which
naturally dissociates when placed in calcium-free, magnesium-free media (B). Pooled and washed cells
can then be deposited into dishes at various concentrations (C, C′), providing the necessary material for
self replication. This process required reconfigurable organisms to be present: offspring were never
produced across three trials with dissociated stem cells only (D-D′′). Any small aggregates fall apart over
proceeding days of development, and no motile offspring were observed after 5 days (E). Scale bars
indicate 500 microns.
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Fig. S3. Relative size of the self-replicating organisms. (A) It can be difficult to conceptualize 500
microns, so C- and O shaped designs were placed on top of a US dollar bill for comparison. Wild type
reconfigurable organisms healed from an animal cap (B), and reconfigurable organisms formed by
manually dissociating and reassociating the stem cells contained within a cap (B′), are shown at the same
magnification beside a tadpole (C,C′), also at the same magnification: Scale bars indicate 500 microns.
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Fig. S4. Modeling kinematic self replication. [Clockwise from top left:] A swarm of nine virtual wild type
spheroids (parents; pink) are placed in a virtual petri dish that is lined with virtual dissociated stem cells
(green). As the swarm moves through the dissociated stem cells, piles of stem cells are formed (t=2). The
parents are then removed (t=3), and any piles larger than a preselected threshold, develop from piles to
motile offspring (green to pink) (t=4). More dissociated cells are injected into empty space in the dish, and
pile building restarts. Here, a single filial generation was produced, then replication stopped (t=7). On
average, simulated wild type spheroids did not produce piles larger than the selected threshold of two
thirds the size of a wild type spheroid. This threshold was set higher than the biological data suggested:
piles approximately one fifth the diameter of the initial parents could develop into motile offspring.
However, small children are likely to produce even smaller grandchildren, or none at all. Because each
filial generation is computationally expensive, we increased the threshold to create a more conservative
filter: only the settings that result in the largest offspring and the most replication will pass through the
filter and be allotted computational resources.
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Fig. S5. GPU-accelerated simulations. Deepgreen is a high performance computing cluster at the
University of Vermont which contains ten Nvidia GPU nodes. Each Nvidia node has eight Tesla V100s
that are capable of running the CUDA programming platform, which was a requirement of the employed
simulator, voxcraft-sim. We parallelized evolutionary trials across different nodes: On each node, an
independent trial maintained a population of 16 designs, which were evaluated in batches of eight designs
at a time, in parallel, across the node’s eight GPUs. Each simulation contains a single design, which
consists of N voxels. At each time step of simulation (numerical integration), the dynamics (position,
velocity and acceleration) of each voxel within a simulation (on the order of 104 to 105 voxels) were
evaluated concurrently on separate threads. Note that the number of voxels that can be updated in
parallel will be constrained by the main memory bandwidth well before the number of voxels approaches
the total number of potentially independent threads (80×211=163,840).
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Fig. S6. Amplifying self replication via morphology optimization in silico. Forty nine optimization
trials were conducted (A), each of which starts with the evaluation of a swarm of wild type spheroids, in
silico, under random swimming trajectories as derived from a unique set of random cilia forces. These 49
independent random cilia forces were held constant while body shape was optimized. Starting from 49
different randomly generated populations of 16 body shapes, the optimizer randomly removes voxels from
the sphere, selecting shapes that result in more self replication. At the end of optimization, the highest
amount of self replication produced by each of the 49 trials (B) was compared against the amount of self
replication produced by the wild type spheres. The solid blue and red lines indicate mean fitness (whose
integer part is the number of filial generations produced; Eqn. 1) across optimization time in silico for the
optimized and wild type body shapes, respectively. Ninety-five percent bootstrapped confidence intervals
(95%- and 5%-tiles) are drawn as shaded blue regions around the mean fitness of the optimized design;
the dotted red line denotes the 95%-tile of fitness for the wild type spheres.
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Fig. S7. Controlling self replication via terrain optimization in silico. There are many tunable
parameters that affect the efficacy of kinematic self replication in reconfigurable organisms. In addition to
optimizing organism shape to increase self replication, we optimized the structure of the terrain. Black,
immovable and unpassable voxels were added along the surface of each simulated petri dish. These
barriers act as guide rails, channeling the random swimming of the unsculpted wild type spheres (pink)
along certain trajectories. Instead of determining where to carve away tissue from a spherical body, the
optimization algorithm now determines where to place black voxels on the surface plane. Random
terrains trap the organisms, inhibiting self replication (top row). Optimized terrains reliably increased self
replication compared to both random terrains and flat terrains without black voxels.
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Fig. S8. An optimized terrain that amplifies self replication in wild type reconfigurable organisms.
One of the optimized terrains (black voxels) that amplified self replication in silico, yielded two filial
generations of pile building after the initial swarm. On flat terrain (without black voxels), no replication
occurs on average: the average number of filial generations is below one.
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Fig. S9. Recovering self-replication in a cluttered environment in silico. A static grid of unpassable
black voxels were placed on the bottom of the simulated dish. In this cluttered environment, the wild type
spherical organisms could no longer move enough to build offspring (A). Their ability to spontaneously
self-replicate was lost. However, by optimizing organism shape, self replication can be recovered. The
results of nine independent evolutionary trials are shown here at two different perspectives: from above
(B) and from the side (C). The evolutionary algorithm discovered how to raise the organisms on stilts so
they can glide over the top of the clutter and rescue function: aggregating loose stem cells into piles large
enough to develop into offspring (D).
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Fig. S10. Increasingly larger offspring in silico. Reconfigurable organisms can create offspring that are
larger than parents, and this enlarging process can persist for multiple rounds of replication in silico.
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Fig. S11. The simulated circuit completion task. A swarm of simulated kinematically self-replicating
reconfigurable organisms was placed inside a petri dish alongside simulated modular electronic
components (A) that can freely move and rotate along a surface plane, and connect on contact. For
clarity, the dish is shown in grayscale, without the loose stem cells (B). There are three simulated
electronic modules: light emitter (C), wire (D), and power supplies (E).
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Table S1. The parameters of kinematic self replication in reconfigurable organisms. Properties of the
environment (blue; 1-5), reconfigurable organisms (red; 6-16), and dissociated stem cells (green; 17-26)
are grouped under these three categories, enumerated and color coded.

no. Parameter In vivo In silico

1 Temperature 18-20°C N/A

2 Size of dish 60mm in diameter Soft 81×81×5 boundaries.

3 Arena substrate 1% agarose dissolved in 0.75x
MMR

Coulomb friction: 1.0 and 3.0
static and dynamic
coefficients, respectively.

4 Terrain
characteristics

Solidified gelatin Surface plane

5 Wall forces The substrate forms a gradual
incline at the edge of the dish,
due to the meniscus formed
during agarose cooling.
Reconfigurable organisms were
rarely seen at the very edge.

A soft constraint that gradually
pushes organisms back toward
the center of the dish, if they
move outside predefined
bounds.

6 Initial parents’
starting position

Deposited in center of dissociated
stem cells from above

Evenly spaced in a 3 by 3 grid,
15 voxel lengths apart, in the
center of the dissociated stem
cells.

7 Number of initial
parents

12 9 during optimization: just
enough to observe self
replication occur while
keeping the total number of
voxels below 3000 to reduce
simulation time.

8 Number of cells in
parents

~3,000 161 voxels

9 Volume of initial
parents

0.065-0.130 cubic mm 161 voxel length3

10 Length of initial
parents.

400-600µm 7 voxels wide

11 Shape of initial
parents

spheroids, toroids, semi-toroid,
compressed

see Fig. S6
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12 Width/height of
initial parents

spheres: 1:1, toroids and
semitoriods: 3:1, compressed 4:1

7:5 voxel aspect ratio

13 Cilia force PIV analysis Impulse forces mediated by
global damping.

14 Collisions Cells and tissues deform
elastically.

Voxels are elastic: they deform
against objects and recoil from
them.

15 Replication time
length

20 hours 3.5 seconds (16,366 time steps,
step size 0.000214 sec)

16 Time to
senescence

10 days 3 seconds of simulation time,
which was sufficient for
simulated spheroids to collide
with about as many dissociated
cells as physical spheroid
progenitors, given a density of
50 cell/mm2 (Fig. 2E). This
was done by visual inspection
of the physical and simulated
spheroids. Simulation time
could be more accurately
estimated by computing the
mean time it takes for
simulated spheroid progenitors
to collide with exactly the
number of dissociated cells
encountered by the physical
spheroid progenitors.

17 Type of
dissociated stem
cell

Xenopus laevis species
embryonic cells (stage 10)

Adhesive voxel singletons.

18 number of
dissociated cells

~60,000 1000-2000 voxels

19 Density of
dissociated stem
cells

25-150 cells/mm2 0.15-0.30 voxels /  u2,
where u = length of one
unstretched voxel.

20 Distribution of
dissociated stem
cells

Random distribution without any
aggregate clumps.

Uniform distribution within a
81×81×3 bounding volume,
without any initially touching

31



each other or the organisms.

21 Area covered by
dissociated stem
cells

No data 81×81 voxel lengths

22 Stem cell
stickiness

Contact adherence Collision radius of 0.85 voxel
lengths.

23 Stem cell
spherification

Adhesion properties lead to a
minimized surface area to volume
ratio.

Stochastic detachment of
chains of voxels within a pile
of stem cells; pile force pulling
stochastically detached cells
inward.

24 Size of pile that
develops into
stable offspring
that maintain
adherence ~4d but
are not self motile.

Minimum size = 50 cells, ~1.7%
of default adult size (50/3000)

When optimizing body shape,
a threshold of 108 voxels, 66%
the size of default simulated
spheroids (161 voxels). Higher
threshold set to compensate for
other, unknown simulation
inaccuracies.

When forecasting utility, a
threshold of 40 voxels, 25%
the size of default simulated
spheroids. Forty voxels is the
best estimate for the minimum
size of piles that developed
into self motile offspring in
vivo.

25 Size of pile that
develops into
stable and mobile
offspring that are
able to self
replicate for
10-14d.

One fourth the default adult
diameter.

Two-thirds and one-fourth for
shape optimization and utility
forecasting, respectively.

26 Development time
from pile to adult

4 days 0.5 seconds of simulation time.
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Supplemental Data S1.
The sizes of the largest first generation offspring, and the total number of generations of self
replication produced, is recorded for eight independent trials here:

Shape sphere sphere sphere C shape
2x size
sphere

flattened
sphere C shape C shape noparent noparent noparent

Cell Density
(cells/mm2) 25 75 150 61 52 105 61 91 61 83 150

1 0.150529 0.3148237 0.462979 0.4521711 0.2709368 0.5708763 0.4383921 0.6386021
0.0759052

63
0.0731657

89
0.0782421

05

2 0.150529 0.3090947 0.3746105 0.4222342 0.2563316 0.2848421 0.3548237 0.4772063
0.0718289

47
0.0711026

32
0.0741052

63

3 0.1445211 0.2879395 0.3114158 0.3721605 0.2349632 0.2837237 0.3314105 0.4711292
0.0710526

32
0.0632684

21
0.0722605

26

4 0.1271895 0.2832842 0.3016579 0.3390132 0.2306789 0.2662974 0.3000474 0.4204208
0.0664184

21
0.0591368

42
0.0695263

16

5 0.1227579 0.2292947 0.2966579 0.3316211 0.2193553 0.253071 0.2992605 0.41675
0.0645131

58
0.0578947

37
0.0672473

68

6 0.1159079 0.2160474 0.2848421 0.31915 0.1972816 0.2336026 0.2852816 0.3883958
0.0640842

11
0.0536736

84
0.0669894

74

7 0.1118974 0.2085421 0.2834289 0.3051737 0.1907842 0.2221158 0.2686263 0.3793729
0.0631578

95
0.0526973

68
0.0657894

74

8 0.1106526 0.1935237 0.27555 0.294971 0.1854105 0.2183421 0.26635 0.3611813
0.0614342

11
0.0496526

32
0.0596631

58

9 0.1059184 0.1671842 0.253179 0.2779026 0.1842105 0.2158526 0.2570342 0.3286396
0.0614342

11
0.0474421

05
0.0584315

79

10 0.1005526 0.1652658 0.2522474 0.2717026 0.1824737 0.2106579 0.2542158 0.323275
0.0613789

47
0.0474421

05
0.0584315

79

average 0.12404554 0.2375 0.30965685 0.33861 0.21524263 0.27593815
0.3055442

1 0.4204973
0.0661207

89
0.0575476

32
0.0670686

84

stdev
0.018580811

88
0.05696704

612
0.06404447

675
0.06020963

588
0.03211403

749
0.10730149

19
0.0568754

1276
0.0927921

0633
0.0051061

47
0.0092384

78
0.0067747

04

generations
produced 1 1 2 3 1 1 2 4 0 0 0

contaminati
on
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