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Supp. Figure 1. TRANSACT: Generating non-linear manifold representations to

transfer predictors of response from pre-clinical models to human tumors. (A)

Samples are compared using a similarity function yielding similarity matrices
between pre-clinical models (source, K), between tumors samples (target, K,)
and between pre-clinical models and tumors (K;). (B) Using non-linear PCA, the
pre-clinical and tumor similarity matrices are independently decomposed into
non-linear principal components (NLPCs) geometrically represented by “sample
importance scores” (Supp. Figure 2A) that represent the importance of each
sample in each NLPC (a® and a!, for source and target space, respectively). (C)
Geometrical comparison of pre-clinical and tumor NLPCs results in a non-linear
cosine similarity matrix M¥X. (D) Alignment of NLPCs using the notion of principal
vectors (Supp. Figure 2B). (E) Interpolation within each pair of vectors to select
one vector per PV-pair that balances the effect of pre-clinical and tumor signals:
the consensus features (Supp. Figure 2C). (F) Projection of each tumor and pre-
clinical sample on the consensus features to obtain consensus scores: scores

that correspond to the activity of processes conserved between tumors and pre-
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clinical models. (G) Finally, these scores can be used as input to any predictive

model, for instance to predict drug response based on these consensus scores.
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Supp. Figure 2. Visual explanation of geometric alignment. (A) Difference

between importance scores (a®,a') and projected scores. Since the space
induced by the similarity function K is intractable, we use a dual representation of
the NLPC in terms of samples: the importance scores. To project samples on
NLPCs, one needs to compute the similarity between this sample and all of the
samples used to gauge the NLPC. The projected score is obtained by taking the
vector-product between this similarity vector and the importance scores. The
same rational yields principal vectors that are represented by y*and y*. (B) Visual
example of principal vectors (PV). We here consider 3 genes (features) and 2
NLPCs. The pre-clinical (source) and tumor (target) NLPCs intersect in one
direction, which form the pair of closest vectors: the first PV forms the pair of the
two red vectors - although these are identical. The second pair of PVs is defined
orthogonally to the red pair. This defines the green vectors (with a swap in
direction for visual purposes). These pairs reconstruct the original NLPC spaces
and are ordered by similarity. (C) Interpolation between PVs. For one pair of PVs
- e.g. the green one in B - source and target vectors are different. In order to
generate one robust vector out of these two and avoid redundancy, we draw an
arc between these two vectors. We then project source and target datasets onto

these interpolated vectors and select one intermediate representation where



source and target projected signals are maximally matched. This optimal

intermediate vector is called the consensus feature.
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Supp. Figure 3. Composition of the GDSC dataset (cell lines). We make use of

the GDSC1000 cell line panel™. (A) Number of cell lines per tissue type. (B)

Number of cell lines screened for each drug that we used in our experiments.
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Supp. Figure 4. Composition of the NIBR PDXE dataset (patient derived

xenografts). We make use of the NIBR PDXE patient derived xenograft panel’. (A)

Number of PDXs per tissue type. (B) Number of unique PDXs screened for each

drug that we used in our experiments.
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Supp. Figure 5. Structure of the TCGA dataset (primary tumors). We make use of

the TCGA dataset for primary tumors. (A) Number of samples per cancer type. (B)

For each drug, number of samples with known response.
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Supp. Figure 6. Structure of the HMF dataset (metastatic lesions). We make use

of the Hartwig Medical Foundation (HMF) dataset for metastatic lesions. (A)
Number of samples per cancer type (primary tumor location). (B) For each patient,
number of response measurements made. For further analysis, we considered the
first response measure - i.e. first measure after treatment start. (C) Histogram of

number of weeks between treatment start and response measurement. (D) For
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each protein coding gene, we measure the Spearman correlation between read
counts obtained using Salmon and STAR alignment tools using all samples in the
HMF dataset. We then ranked genes based on the obtained Spearman correlation
(x-axis) and plotted it against the mean-expression of these genes obtained using
Salmon (y-axis). Since lowly concordant genes tend to have low expression, we
put a threshold at corr = 0.5 and discarded genes below this threshold. (E) After
the previous selection, we computed the sample-level Pearson and Spearman
correlations between read counts obtained with STAR and Salmon. All samples
but five show a correlation above 0.8 — these were discarded. We finally further

restricted to genes from the mini-cancer genome.
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Supp. Figure 7. Analysis of consensus features between cell lines (GDSC) and

PDXs with y = 0.0005. We use a Gaussian similarity matrix with hyper-parameter
¥ = 0.0005 and run TRANSACT. (A) Cosine similarity between the 20 top source

and target NLPCs. (B) Similarity between principal vectors (blue line) alongside
the similarity obtained after gene-level permutation on GDSC (boxplots). (C) For
each consensus feature, proportion of offset, linear and interaction term. (D)
UMAP of data projected on the consensus features, colored by tissue of origin.
(E) For each tissue type in PDXs, we compare the distances between
corresponding PDXs with cell lines from the same tissue of origin (blue), or from
another tissue (orange). (F) For the first consensus feature, sorted contribution of
each linear features (i.e. gene, left) and interaction terms (right). (G) For the second
consensus feature, sorted contribution of each linear features (i.e. gene, left) and

interaction terms (right).
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Supp. Figure 8. Tissue clustering without domain adaptation and with PRECISE
alignment between GDSC and PDXE. (A) UMAP plot of cell lines and PDXs

colored by tissue type without any domain-adaptation. Data was normalized prior

to performing UMAP: cell lines and PDXs were independently mean-centered and
scaled to unit variance. (B) UMAP plot of cell lines and PDXs colored by tissue
type after projection on consensus features obtained with linear PRECISE. (C)
Comparison of distances between PDXs and cell lines from the same tissue type
(blue) or from a different tissue type (orange) without domain adaptation. (D)

Comparison of distances when using linear PRECISE. We zoom in on lung
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(NSCLC) without domain adaptation (E), with linear PRECISE (F) or with
TRANSACT (G) using same setting as in

14



A GDSC B TCGA

5000

600 —‘—————_—_—————————-
% 500 g 4000
S 400 T
é é 3000

300
& 82000
i 200 w ¢

100 1000 f

0 100 200 300 400 500 0 100 200 300 400 500
Eigenvector rank Eigenvector rank
c Comparison between observed PV similarity

and feature-level permuted similarities

Similarity

£2g
g@gg*
*28s88e
8882 °
6§88 099°°."9‘°°G€eeo. ol
- 9.09039009900 !
Te8-888800,.,

1234567 8 910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970
PV rank

Supp. Figure 9. Choice of the number of NLPCs and consensus features between
GDSC and TCGA. (A) Cumulative sum of eigenvalues of K, (GDSC) with y* =

5 x 10~%. The cumulative sum increases steeply, reaches an inflection point and

then follows an almost-linear behavior. We select all the NLPCs before this
almost-linear zone, corresponding to 75 NLPCs. (B) Cumulative sum of
eigenvalues of K, (TCGA) with y* = 5 x 10~%. Following similar reasoning as in
(A), we restrict the study to the first 150 NLPCs. (C) Similarity between PVs when
75 NLPCs are considered for GDSC and 150 for TCGA. We observe that the 33
first PVs have a similarity above 0.5 (our cut-off) and round the selection to 30
PVs.
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Supp. Figure 10. Choice of the number of NLPCs and consensus features

between GDSC and HMF. (A) Cumulative sum of eigenvalues of K, (GDSC) with

y* = 5 x 10~*. The cumulative sum increases steeply, reaches an inflection point
and then follows an almost-linear behavior. We select all the NLPCs before this
almost-linear zone, corresponding to 75 NLPCs. (B) Cumulative sum of
eigenvalues of K, (HMF) with y* = 5 x 10~*. Following similar reasoning as in (A),
we restrict the study to the first 75 NLPCs. (C) Similarity between PVs when 75
NLPCs are considered for both GDSC and HMF. We observe that the 21 first PVs

have a similarity above 0.5 (our cut-off) and round the selection to 20 PVs.
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Supp. Figure 11. Pan-cancer consensus features between cell lines and tumors

conserve tissue type information (Supplement of Figure 3) (A) UMAP plot of
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metastatic lesions (HMF) and cell lines, colored by primary tissue for both HMF
and GDSC. For both UMAP plots in this figure, the full legend can be found in
Panel B. (B) Legend of UMAP plots for Figure 3D-E and Panel A in this figure. (C)
UMAP plot of HMF metastatic lesions (same as Figure 3E) colored by metastatic
site. (D) In TCGA, for each tumor type, distance between tumors and cell lines
from similar (blue) and non-similar (orange) tissue. (E) In HMF, for each primary
tumor type, distance between metastatic sample and cell line from similar and
non-similar tissue of origin. (F) In HMF, for each metastatic site, distance between
metastatic sample and cell line from tissue of origin similar (blue) or dissimilar from

the metastatic site.
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Supp. Figure 12. Impact of initialization on results for the Deep Learning (DL)
approach. For each drug on TCGA and HMF, we considered the architecture and
the set of hyper-parameters with the lowest Mean Squared Error on GDSC given
an initialization. We then randomly generated 50 independent initializations of the
resulting networks and trained them using the GDSC data. Each of these trained
networks was then employed to predict the TCGA or HMF response. The resulting
prediction accuracies (area under the ROC) are plotted for the different drugs on
the TCGA and HMF data. (A) Pearson correlation of the Mean Square Error of the
predictor on GDSC to the Area under the ROC of the same predictor on TCGA.
(B) Pearson correlation on HMF between MSE (GDSC) and Area under the ROC
(HMF).
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Supp. Figure 13. Impact of initialization on results for the ComBat+DL approach.

For each drug on TCGA and HMF, we considered the architecture and the set of
hyper-parameters with the lowest Mean Squared Error on GDSC given an
initialization. We then randomly generated 50 independent initializations of the
resulting networks and trained them using the GDSC data. Each of these trained
networks was then employed to predict the TCGA or HMF response. The resulting
predictions accuracies (area under the ROC) are plotted for the different drugs on
the TCGA and HMF data. (A) Pearson correlation of the Mean Square Error of the
predictor on GDSC to the Area under the ROC of the same predictor on TCGA. B
(D) Pearson correlation on HMF between MSE (GDSC) and Area under the ROC

(HMF).
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Supp. Figure 14. Comparison of clinical status and AUC predicted by TRANSACT
for HMF patients. Using TRANSACT and a predictive model trained solely on

GDSC response data, we predicted the response of HMF patients to six different
drugs (y-axis). These predicted values are then compared to clinical response
which fall into three possible categories: PR (Partial Response), SD (Stable

Disease) or PD (Progressive Disease). Patients treated with six drugs were
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considered: Trastuzumab (A), Carboplatin (B), Gemcitabine (C), Irinotecan (D),

Paclitaxel (E) and 5-Fluorouracil (F).
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Supp Figure 15 Pathway enriched for resistant linear coefficients in GDSC-to-

TCGA Gemcitabine drug response predictor. Additional pathways significantly
enriched in the linear part of the GDSC-to-TCGA predictor.
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Supplementary Information Text - Algorithm Derivation

In this supplementary note, we present the algorithmic derivation of TRANSACT. Our approach
works as follows:

1. We transform the original data (cell-view) and map it into a new space using a function
. This mapping aims at representing the data in a more amenable way to standard linear
analysis.

2. Once the whole dataset has been mapped, we find directions of importance in source
and target datasets. Specifically, we reduce dimensionality, we align the low-rank direc-
tions, and interpolate between the two views to obtain single directions important in both
datasets.

3. Finally, we project the mapped data in these directions. The obtained scores can then be
used in any statistical model.

In the rest of this note, we prove the different steps leading to this extended algorithm. Al-
though the note might seem technical, this all boils down to this overarching paradigm. To the
reader who wishes to get directly to the main results, we highlighted the end products of our
demonstration as Theorems (Theorems [Supp 5.3} [Supp 6.6| and [Supp 8.5)).
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Supp 1 Notations and settings

In our scenario, we have two datasets living in the same space — i.e. represented by the same p
features (genes, SNPs, methylation probes, ...):

e A source dataset X; = {x{,xg, 7;10751} C RP, with labels YV, = {yf, yfl}
e A target dataset X; = {z, 2}, .., 2l } C RP usually unlabelled.

We represent the source (resp. target) data as a matrix X, € R™*P (resp. X; € R"**P) with
samples in the rows and features in the columns.

We consider a similarity function, or kernel, K : R? x RP +— R that we will assume for the sequel
to be positive semi-definite. Using the theory of Reproducible Kernel Hilbert Space [I], K is
represented by the following dual formulation.

Proposition Supp 1.1 (Reproducing Hilbert Space). There exists a unique functional Hilbert
space (H,{-,Yn), with H C F (RP,R) (functions from RP to R), and a mapping function ¢ :
RP +— H such that:

Ve,y eRP, K (z,y) = (p(2), 0 W) (Supp 1)
The mapping ¢ furthermore satisfies the Reproducing property:
VieH, [f:axeR = (o), )n (Supp 2)

We refer to ds (resp. dy¢) the number of low-rank components we reduced the source data (resp.
target data) to. We set d as the maximum number of principal vectors, d = min (ds, dy).
Superscript s is used for source items and superscript ¢ for target items. K (z,-) , for z € RP, is
the function y € R? — K (x,y). We use the superscript -7 as the transposition operation.
Finally, we define the following kernel matrices:

Definition Supp 1.2 (Kernel matrices). We define the following four matrices:

e Source kernel matriz K, : K, = [K (xé xf € RMsX"s

i J)]lgi,jgns

o Target kernel matriz K, : K, = [K (z!, 2!

N XNt
0] <y, € RIS

e Source-target kernel matric Ky : Ky = [K (af x! € Rm=xne,

v’ J)} 1<i<ng,1<j<ny

e Target-source kernel matrix : K;s as Kis = Kg; € Rt xns,

Supp 2 Kernel-mean centering

We set out to work in the Hilbert space H after embedding the data with the mapping ¢. Prior
to any statistical processing, we first need to mean-center the data in the kernel feature space
‘H. For that purpose, we define two means, the mean source embedding p® and the mean target
embedding ut, as follows:

ns
, z;l , z;l (Supp 3)
W= Y o) = S 3K )

Using the means computed in Equation (Supp 3)), we define two sets of corrected embeddings as
follows:
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Definition Supp 2.1 (Mean-centered embedding and kernel function). The source centered
kernel embedding ¢, is defined as:

Ve eRP, &s(z) = () —ps = K(z,7) — ps. (Supp 4)

We then defined the source-centered kernel function [N(s as:

Vz,y e RP, K, (xvy) = (Ps (l‘) @5 (¥) > (Supp 5)

We define equivalently the target centered kernel embedding ¢ and corresponding target-centered
kernel function K.

We use the mean-centered kernel functions defined in Definition to correct the kernel
matrices from Definition and define the following four matrices.

Definition Supp 2.2 (Centered Kernel matrices). We define the following four matrices:

e Source-centered kernel matrix I?s : IN{S = [IN{S (xf,xj)} € RMs*7s
1<i,j<n,

e Target-centered kernel matriz INQ : I~(t = [INQ (:cf,:cz)] € Rmtxne,
1<i,j<n,

e Source-target-centered kernel matric Ky, : Ky = [(Ps (25), @1 (1’;)>]

R7s XNt

1<i<ng, 1<j<ny <

e Target-source kernel matrix : I~(t5 as I?ts = I?g; € Rt xns,

To get a relation between matrices given in Definition and Definition we

define the centering matrix of size n, denoted as C,,:

Definition Supp 2.3 (Centering matrix). Let n € N,. We define the centering matriz of size

n, denoted C,, as:

1
C, = I, — Elnlg, (Supp 6)

where I, is the identity matrix of size n and 1,, is the n-sized vector constituted solely of 1.
Proposition Supp 2.4 (Computation of centered kernel matrices). We have the following

equalities:

Ks = CnSKanSa
Ky = Cp K(Cy,, (Supp 7)

I?st C’nq Kstonfg

Supp 3 Kernel PCA on source and target

We use Kernel PCA to compute directions of maximum variance in the embedded space [7],
yielding kernel Principal Components, also called non-linear principal components (NLPCs) in
the main text. These NLPCs for source and target are respectively defined as linear combinations
of source and target samples’ embeddings (after mean-centering) in the kernel feature space.

Definition Supp 3.1 (Non-linear source and target principal components [7]). Non-linear prin-
cipal components for source (ff, . f(j) and target (ff7 - fflt) are defined as linear combinations
of source and target embedded samples respectively. Denoting as o the dg top eigenvectors of
K, and o the d; top eigenvectors of K, we have the following equality:

£2= 3008 (a) forqe{l,..d},
o (Supp 8)
foo=Y ol @ () forqe{l,..di},
=1
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These non-linear principal directions satisfy some orthogonality constraints on the kernel space

H:

Vr € {Svt}’ Vkvl € {17 "ad}’ <flf7flx>7'l = 6k,la (Supp 9)

where § is the equality indicator function. These constraints are equivalent to:

Ko’ =1, and o' Kat" = 1g, (Supp 10)

The two matrices o® € R%*" and a! € R%*™ correspond to factors by samples matrices,

but do not represent the projected score. Instead, they are equivalent to the feature loadings
in linear PCA and correspond to a dual representation of the features in H that can not be
explicitly computed due to the high-dimensions of H. We refer to them as sample importance
loadings to explicit the difference these have with projected scores.

Supp 4 Variational definition of principal vectors

We define the first pair of principal vectors between source and target NLPCs as the two unitary
vectors s1 and t1, with s; in source NLPCs span and ¢; in target NLPCs span, such that their
similarity is maximized. This extends in H the principal vectors defined by Golub and Van Loan
in [3] and are mathematically formalized using the following variational definition:

s1,t1 = argmax (s, 1)y
sespan(ff,...f5, )
tespan(fi,...f4, ) . et

st (s, )y =({tu=1
We further define the principal vector by adding an orthogonality constraint, as in [3].

Definition Supp 4.1 (Kernel Principal Vectors). We define the d pairs of principal vectors
(s1,t1), (s2,t2), ., (Sa,tq) as, for all k € {1,..,d} :

Sp,ty = argmax  (s,1)y
sespan(f7,...f3.),
tespan( £l 13, ) . (Supp 12)

st (s, 8)n = (tthu =1,
and vVl < k,s; L st Lt

Supp 5 Computation of Principal Vectors

The first step towards computing principal vectors is to compare the principal components
defined in Definition We define for that purpose the cosine similarity matrix between
source and target NLPCs and present a closed-form solution for computing it based on centered

kernel matrices (Definition [Supp 2.2)) and NLPCs’ coefficients (Definition [Supp 3.1J).

The cosine similarity matrix is a standard way to compare orthonormal basis of vectors and has
already been used to compare linear principal components in subspace-based domain adaptation
[2, [, [5]. We here extend it to kernel-based non-linear dimensionality reduction.

Definition Supp 5.1 (Cosine similarity matrix). We define the cosine similarity matriz M
between source and target kernel principal components as:

MK = [<f’§7flt>H]1§k§ds,1§l§dt € RdSth' (Supp 13)
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Proposition Supp 5.2 (Computation of cosine similarity matrix). MX can be computed using
the matrices o, at and Kgr as:

ME = ozsf(stoth
T (Supp 14)
= OéSCnsKstCntOé .
Proof. Let 1 < k,l < d, then using Equation
Ns Nt .
(i fl) = D0 kot (s (25) .8 (25)) = o} Kaal, (Supp 15)
i=1 j=1
which put together as a matrix gives the wanted result. |

Similarly to the linear setting, we use this cosine similarity matrix to NLPC by means of SVD
of M¥X.

Theorem Supp 5.3 (SVD computation of Principal Vectors). Let 35 € R%*? (resp. [t €
R%“*4) be the first d left (resp. right) singular vectors of M¥ | i.e. MK ~ BSEBtT. Then, for
all1 < g<d:

ds ns di  ng
8¢ = Z Zﬁzvqazﬂas (z7) and tq= Z Zﬁlt,qaf,j(ﬁt (4) (Supp 16)
k=1 i=1 I=1 j=1

Proof. Let s1,..,sq € span ([, ,fj) and tq,..,tq € span (ff,..,fflt) with norm 1, there exists
3%, € R¥%*d and Bt € R%*4 such that, for all ¢ € {1,..,d},

ds ng dg dy ng  dg
Sg = > Bigfi = DD 00iBh,Bs(x) and ty = > B ff = D> al 8,5 (2h).
k=1 =1

i=1 k=1 Jj=11=1
(Supp 17)
The orthogonality constraint (sg,s;)n = (tk,t1)n = 0k, for 1 < k,I < d coupled with the

orthogonality constrains from Equation (Supp 9) is then equivalent to 3573 = gt* gt = I,,.
Computing inner product between source and target PV therefore yields

S S I T T S
[<Sk7tl>]1§k,l§d = BT’ Kyal' gt = gTMEBE. (Supp 18)
Therefore, the maximization problem from Equation (Supp 11)) is equivalent to the following:

max ,BSTMKﬂt
,BS G]Rds xXd ,
Bt cRdexd ’ (Supp 19)
st. gl =78 =1
which unique solutions are the left and right orthogonal vectors of M¥ | obtained by SVD. W

In order to work at the sample-level for each principal vector, we define the PV sample-
importance loadings as follows.

Definition Supp 5.4 (Principal Vector sample importance loadings). We define the source
(resp. target) sample importance loadings p* € RY™s (resp. pt € R4*™ ) qs:

p°=BTa® and pt = BtTat. (Supp 20)
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These PV importance loadings are related to the source and target PVs as follow:

Proposition Supp 5.5. Source and target principal vectors have the equivalent following defi-
nition:

sg = Y PPs (),
Vg € {1,..d}, =1 (Supp 21)

nt
ty = 3 i (al).
i=1

We finally defined the similarity between the principal vectors as cosines of angles referred to as
principal angles.

Definition Supp 5.6 (Principal Angles). Let 1 < g < d. We define the q-th principal angle as
the unique 0, € [0, g] that satisfies:

cosbly = (sq,tq)n- (Supp 22)

Proposition Supp 5.7 (SVD computation of Principal Angles). Let ¥ be the diagonal matriz
obtained by SVD of M¥ (as in Proposition |Supp 5.9), then:

Vge{l,..,d}, cosb, = 3g,. (Supp 23)

Proof.
cosl, = (sq,tgn = ﬁquMKB:t)q = Xip (Supp 24)
by definition of the SVD. |

We showed how to compute the PVs as functions in H and gave a closed-form solution for the
evaluation in RP. We finally show that the evaluation of PVs correspond to a projection of the
embedded vector, keeping the same intuition than in linear setting.

Proposition Supp 5.8 (Evaluation of principal vectors). Let € RP. For q € {1,..d}, the
evaluation of source and target principal vectors s, and t, is equivalent to the projection of the
embedding of x on these vectors:

sq(2) = (s, (@)n and tg(x) = (tg, 0 (2))n (Supp 25)

Proof. Combining Equations (Supp 3|), (Supp 4)) and (Supp 21)), source PV are sum of elements
of H:

N

Sg = > _pe.Ps(xf) with, Vie{l,.,n}, @ (2) €H. (Supp 26)
i=1

Therefore s, € H since H is an Hilbert space. Using the reproducing property of the RKHS and
the definition of ¢ (Equation (Supp 1)), we obtain

Ve €RP, sq(z) = (59 (x»q{ : (Supp 27)

Following the same idea, we obtain the equivalent equality for target PVs. |
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Supp 6 Interpolation scheme

The Principal Vectors are pairs of vectors (one form source, one from target) that are geometri-
cally similar. We select only the pairs above a certain threshold of similarity in order to restrict
to directions shared by the two signals. Therefore, within each pair, source and target vectors
show an important correlation and using the two into a predictive model would not be optimal.
We therefore set out to construct a single vector out of each pair by interpolating between the
two vectors. This interpolation is the geodesic flow between PVs and is defined as follows.

Definition Supp 6.1 (Angular interpolation function). Let ¢ € {1,..,d}, we define the angular
interpolation functions I'y and &; between the g pair of principal vector as:

sin((1—17)6 sin 76
Vrel0,1], Ty4(r)= —((sin0 ) %) and &, (1) = 4
q

. 2
sin 4, (Supp 28)

Definition Supp 6.2 (Geodesic flow between principal vectors). Let ¢ € {1,..,d}, we define
the interpolation ¢, between the ¢ pair of principal vector as:

Vre[0,1], ¢q(r) = Tg(1)sq + & () g (Supp 29)
Since H is a Hilbert space, ¢q € H.

Proposition Supp 6.3 (Estimation using PV sample importance loadings). Let ¢ € {1,..,d}
and ¢4 be the geodesic between the q"" pair of principal vectors. The geodesic defined in Equation

Supp 29) has the following equivalent formulation:

Vre(0,1], ¢q(r) = Do) ph.0s(x5) + & (T)Zpﬁ,,j(ﬁt (). (Supp 30)
i=1 j=1

Proof. Combining the definition of the geodesic from Definition with the equivalent
principal vector formulation of Proposition yields the result. [ |

The formulation of the geodesic from Proposition[Supp 6.3|can easily be written down as a matrix
product (for computation purposes) for each sample. We define the matrix angular interpolation
function as follow.

Definition Supp 6.4 (Matrix angular interpolation function). We define the matriz angular
interpolation functions T' and 2

vre[0,1]?, T(r)=diag[Ty(rg)],cpey and E(r) =diag[¢(ry)],cocy-  (Supp 31)

Proposition Supp 6.5 (Matrix estimation of principal vectors). Let’s denote by s (resp. t) the
vectors of d source (resp. target) principal vectors ordered by similarity. We define S* and S*
as the matrices that contain the source principal vectors values evaluated on source and target
data respectively:

T
S° = [s )", .s (:Efl)T] € R4, (Supp 32)

T
St = s ()" s (ah,)"] e R (Supp 33)
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We define similarly T° € R™*? as the matriz that contains the target principal vectors evaluated
on the source data — and Tt € R™*4 as the matriz that contains the target principal vectors
evaluated on the target data. These matrices can be computed as follows:

§* = K°Cyp", Tt = K¥Co 0t
{ P and { P (Supp 34)

St = K0, p°7, Tt = K'Cp pt”.

Proof. Using the definition of principal vectors with p coefficients from Equation (Supp 21)), we
get, for I € {1,..,ns} and q € {1, ..,d}:

Ns

=t =t (Supp 35)

1
= 20, [K o @K,

i=1
Using the centering matrix defined in Definition we get:

sp(x]) = [p°Cn, K1 s (Supp 36)

and therefore §° = (p°C,, K S)T. The other equalities follow from the same proof.
|

Let’s finally define the geodesic matrix between source and target at interpolation time 7 € [0, 1]
as the estimation of both source and target on the geodesic in the kernel feature space.

Theorem Supp 6.6. We define as Ft (1) for as the matriz of geodesic values evaluated at

interpolation time T € |0, 1]d, e
¢ (7) (1)
Fs' (1) = ¢(r) (x%) € R(nstne)xd, Supp 37
@ = Tomeh (Supp 37)
¢ (7) (27,)
. Then Fst (1) can be computed as follow:
S* T |T'(7)
st _
P = 5 7 2] (Supp 38)
This formulation is equivalent to:
Ks K[ C 0 T On.xd] [T (7)
Fst _ Ns s XMyt s _ . S 39
(T) |:Kt5 Kt:| |:O”t><"s Cnt :| |:On,,><d ptT '=‘(T) ( PP )
Proof. Direct by combining Definition and Proposition [ |

In order to get zero-centered projected source and target samples, we can use two solutions. On
one hand, we can perform a consensus-feature-level mean-centering independently on source and
target after projection. Equivalently, we can also left-multiply by centering matrix the projected
matrix F* (7).

We finally show that the evaluation of the consensus features functions is equivalent to the
projection of embedding in the feature space H.
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Proposition Supp 6.7. Let z € R?, g € {1,..d} and 7, € [0,1], then:
$q (1q) () = (g (14) 0 (7))y - (Supp 40)
Proof. Using Proposition

bq (1q) () = Tq(7q) 8¢ () + &g (79) 4 ()
= <Fq (Tq) sq+ &g (Tq) 1271’ (x)>7.[ (Supp 41)
(Dq (1q) s ()5 -

Supp 7 Gene set enrichment analysis of consensus features

In order to gain insight into the making of consensus features, we use a Taylor expansion of the
Gaussian kernel [§]. The Gaussian kernel can be expressed as outer-product of the following
basis functions.

Definition Supp 7.1. Let i < 0 be an integer. We define as e; : R — R the basis function
defined as:

[2yi .
Ve eR, e;(x)= Z z'exp (—ya?). (Supp 42)

Proposition Supp 7.2 (Countable orthonormal basis of H [8]). Let’s define for (i1, ..,3,) € NP
the following function

€(ir,iy) = TERP = e (21) X €, (22) X -+ Xy, (Tp) - (Supp 43)
Then, (e(il,“’ip))(il iy)eNp is an orthonormal basis of H, and for x,y € RP,
exp(—lz=yll®) = D ey (@) e,y (1)
01,050 ENP (Supp 44)
= 3@ 2,

with @ : T (e(ilwip) (x))(il,..,i,,)eNP'
Let’s consider this approximation map @. We extract three different features of interest for our
analysis: the offset (sum of indices is 0), the linear terms (sum of indices is 1) and the interaction
terms (sum of indices is 2). We define them as follows:

Definition Supp 7.3 (Offset, linear and interaction terms).

We define the offset feature eo as eo,, i.e. when all indices are 0.

For each gene (feature k € {1,..,p}), we define the k" linear feature e, as es, where 6}, is the
vector of zeros with a single 1 on k' position.

For each combination of genes (feature k,1 € {1,..,p}), we define the (k,1)!" interaction fea-
ture ey, as es, , where 0y is the vector of zero with one 1 on k" and I position only if k # 1,
and 2 on k' position if k = 1.

Definition Supp 7.4 (Offset, linear and interaction terms for consensus features).

We define the offset contribution to consensus feature ¢ as Of = (€0, ¢q (T;)>

For k € {1,..,p}, we define the k'" linear contribution to consensus feature q as Lyr =
(e, ®q (T;)>

For k,l € {1,..,p}), we define the (k,1)!" interaction contribution to consensus feature q as
Toka = (ert, g (15))-
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We now compute the contribution of each of these features to the consensus features. We first
rewrite the different contributions to the consensus features for readability.

Definition Supp 7.5. For q € {1,..,d}, we define o5 =Ty (17) p and o, = &, () pt.

We finally define the source and target mean centered features.

Definition Supp 7.6. We define the source (resp. target) mean-centered offset feature for the

q'" consensus feature €, (resp. €,) as:

. IS
€p =eo — n—Zeo (%) and €, =eo— —Zeo (Supp 45)

i=1

For k € {1,..,p}, we define the source (resp. target) mean-centered linear feature for the g**
consensus feature €; (resp. €}) as:

Mg Tt

1
k—ek—— E ek ( and ek—ek—— er ( (Supp 46)
Ng 4
i=1 i=1

For k,1 € {1,..,p}, we define the source (resp. target) mean-centered linear feature for the ¢t
consensus feature €}, (resp. €}, ;) as:

- IS ,
€hi = €hi— - Zek’l () and €, =epi —— Z en ( (Supp 47)
S = i=1

Proposition Supp 7.7. The differents contribution Oy Lq; and Ly ;; for the g consensus
feature can be computed as follow:

= Zcr;i'evso (z3) + Zafl’ié'to (xf) , (Supp 48)
i=1 i=1
Z O—; 1~2 k g]‘? + Z Jq i q7 (Supp 49)

Nt
Qakl Z Uq,l q, zs) + Z U;,igtt],k,l (.13:) . (Supp 50)
i=1

Proof. Combining the expression of consensus features as mean-centered source and target em-

bedding from Definition and Definitions [Supp 7.4] and [Supp 7.6| gives the

wanted results. n

Definition Supp 7.8. For the ¢'" consensus feature, we define the offset proportion as
Oy = O3, the linear contribution as L, = Y }_, L2, and the interaction contribution as

I, = Zl<k¢<l<p Iq,k 1

anally, we define the higher-order contribution as Ry =1—- 0, — L, — 1.

We now restrict to one gene set to measure the effect of this gene set on interactions and linear
effects.

We here restricted to the Gaussian kernel. However, our results would easily be extended to any
kernel, provided the feature space H has a known orthonormal basis.
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Supp 8 Equivalence with Geodesic Flow Kernel

In this section we showed the equivalence with the previously published linear version of the
algorithm, the so-called PRECISE model [6]. We recall the main steps of the algorithm.

Definition Supp 8.1 (Linear Principal Vectors). Let P, € R%*P and P; € R%*P be two families
of orthonormal vectors, i.e. PsPL = I, and PPl = I;,. We define the cosine similarity matriz
M as:

M = P,P!. (Supp 51)

Let d < min (dg,d;) and let USEVT be the d— rank SVD approximation of M. We define the d
source (resp. target) principal vectors as the matriz Qs € R¥P (resp. Q; € RIXP) qs:

Q, = U'P, and Q; = VP, (Supp 52)

Samples can be projected on these four matrices (Ps, Py, Qs and Q) by inner-product, i.e. canon-
ical projection operator in Fuclidean space.

P, and P, are here defined generally as two families of orthonormal vectors. In particular, we
consider for the rest that they are the results of PCA on respectively the source and the target
covariance matrices X! C,, O X, and X[ C,,,CT X;. Using the linear PVs from Deﬁnition
we define a linear interpolation scheme as follows.

Definition Supp 8.2 (Linear Interpolation). Using notations from Definition [Supp 8.1, we
define the linear principal angles as:

Vg e {1,..,d}, cos9L »k (Supp 53)

9,q9°

For the PV pair q € {1, ..,d}, we define the interpolation function qqu as follows:

sin (1 — 74) 0, sin 7,0,

sin 0,

bg: T, €[0,1] (Qs), +

(@), (Supp 54)

sin 0,
Before stating the main result, we need the following well-known lemma.
Lemma Supp 8.3 (Equivalence of spectrum). Let X € R**P. We denote by ST = {(/\T, +) ,

o ()\;L+,U;+)} the non-singular spectrum of XXT and S~ = {()\f,vf) s (A;,v;)} the non-
singular spectrum of XTX, i.e. A1 > Ao > .. > Mg > 0 in both spectrum. Then dt = d~ and

Vie{l,..,d*}, A= A7, v =Xv] and vi_zXTUj' (Supp 55)

7 7

We consider two scenario using the same source and target datasets: linear PRECISE, and our
kernelized approach with a linear kernel. We consider all other parameters set to the same
values.

Proposition Supp 8.4 (Equality of cosine similarity matrixes). Let M and M¥ be the cosine
similarity matrices obtained respectively using linear PRECISE (Definition |Supp 8.1|) and the
kernelized version with a linear kernel (Definition [Supp 5.1)), all hyperparameters equal. Then
M = MK,
Proof. We here use notations from Definitions |Supp 5. 1| and |Supp 3. 1l We define X =C,, X
~T
and Xt Cp, Xt We also use K X X, and Kt XtXt .
~T~ ~1
By definition of PCA, P, contains the top ds eigenvectors of the matrix X, X, while o® K¢
~ ~T
contalns the top ds eigenvectors of X X, . Using the result from [Supp 8. 3L we have P; =

SK X Similarly, we obtain on the target P, = « Kt Xt Using Proposition [Supp 5.2|,

1o v T3 v T T

M = o’K,’ X, X, K;’a"" = o*X,X; o/ = MK, (Supp 56)

~1 ~1 — —
using the fact that a5K52 and a'K/? is an eigenvector of K and K; respectively. |
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From Proposition follows directly this equivalence.

Theorem Supp 8.5. With all hyperparameters equal, PRECISE and the kernelized version
with a linear kernel are equivalent.

Theorem [Supp 8.5 shows that all results obtained in linear case [6] hold for TRANSACT with a
linear similarity function, and in particular the correspondence with the Geodesic Flow Kernel.

Supp 9 Difference with CCA on the genes

Another data-strategy used in single-cell data analysis consists in using the gene-level corre-
spondence to perform a Canonical Correlation Analysis (CCA) on the genes. Using the same
notations as in Section this approach boils down to solve the following maximization
procedure:

s1,t = argmax  s! X X1t
b SERng,sTs:I, o (Supp 57)
teR™t tT¢=1

and the subsequent directions defined orthogonally to these directions. This procedure find di-
rections of maximum covariance at the gene-level between source and target. It will find two
combinations of samples (one for source, and one for target) that show the maximum covariance
among genes. It differs markedly from our methods on several aspects. First, from a computa-
tional standpoint, the SVD-equivalent definition of PVs (Theorem consists in breaking
down a relatively small matrix (ds X d;) and not a sample-sample similarity matrix. Second, by
performing a PCA on source and target independently, we restrict our analysis to a low-rank
view of source and target data — which provides a first step filtering. Finally, although there are
similarities in the maximization procedures from Equations [Supp 11| and [Supp 57 the product
of our maximization procedure gives geometrical weights, and not directly the scores used in
the regression. Although we maximize the same objective function, the constraints are different,
which would make the final vectors surely different.
We believe our approach to be better suited for our specific problem for several reasons. First be-
cause it uses a low-rank representations of source and target. As shown in Figure 1 of main text,
the kernel matrices K, and K; contain larger values than K which would increase signal-to-
noise ratio. Our sample-size is small — compared to single cell studies at least — and penalization
is expected to focus on important signal. Second, our approach gives us a direct access to the
geometric components (PV) which we can analyze to understand the making of the common
signal. Finally, using PVs allow us to interpolate and get a projection on a single component
that would be shared across source and target.
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Supp 10 Algorithm workflow

Algorithm 1 TRANSACT

Require: source data X, target data X;, number of domain-specific factors ds and d;, p.s.d.
kernel K, number of principal vector d.
K, < source kernel matrix.
K, « target kernel matrix.
K, < source-target kernel matrix.
a® < Kernel Principal Components of source (from Kj).
a! + Kernel Principal Components of source (from Kj).
ME «— o*C, Ky Cp, o' T.
B55Bt < d-rank SVD of MK ie. MK ~ g5xpt” .
Fst < [F51(0), F*t(0.01),.., F'** (1)] defined as in Theorem

for ¢+ 1toddo
S, « [F“ (0]

T
F 0015, 0o B [

ling,q’

Tq — [FSt [O]ns:n5+nt,q 7FSt [O'Ol]nS:nSJrnt,q ’t FSt [1]n5:ns+nt,q:| '
D, «+ {D (54]0],T4[0]) , D (S4[0.01], T,]0.01]) , .., D (S,[1], T, [1]) }-
T, < argmin_D,.

end for

F « [®1 (1), ®2(72), .., P (7a)]

T [Tf,..,T;].

XProi « Fot 1%

Xém"oj <~ Fst [T*]nszns-‘rnt'

Train a regression model on XP"%J

Apply it on the projected target data X?"*

ling"
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Supp 11 Glossary
Notation Meaning
R Real numbers
N Integers
[l |lF Frobenius norm
I, Identity matrix of size n.
1, Vector of size n with only ones.
X Source data
Vs Source labels
Xy Target data
Ng, Ty Number of source and target samples.
D Number of genes (features)
ds,dy Number of source and target principal components (NLPCs).
d Number of principal vectors pairs (and consensus features).
F (RP,R) Spaces of functions from R? to R.
K Kernel functions (R? x R? — R).
vy Scaling factor of RBF kernel.
H Feature space induced by K.
() Hilbert norm associated to K.
© Feature map induced by K.
K, K Source and target kernel matrices
Ky € Rrsxm Kernel matrix between source and target samples.
s Mean source embedding.
PDs Feature map induced by K translated by pus.
Lt Mean target embedding.
Ot Feature map induced by K translated by .
C, Centering matrix of size n € N*.
a® € Rdsxns Sample importance scores of source NLPCs.
at € Rbxm Sample importance scores of target NLPCs.
81,..,84 Source principal vectors (PV).
t1, .., tq Target principal vectors (PV).
span Linear subspace generated by a family of vectors.
MK ¢ Rdsxde Cosine similarity matrix between source and target NLPCs.
B € Rdsxd Left singular vectors of M.
pt € Rdexd Right singular vectors of M.
by Diagonal matrix with top d singular values of MX.
p° € RIx7s Sample importance scores of source PVs.
pt € Rdxne Sample importance scores of target PVs.
01,..04 Principal angles between source and target PVs.
85,8t Source data projected on source and target PVs.
T, T Target data projected on source and target PVs.
I'and & Angular interpolation functions.
®1,--0q Interpolation between each pair of PVs.
T =[T1, .., Td] Interpolation times for each PV pair.
Fst (1) Source and target data projected on interpolation
at time 7.
T* € [0, 1}d Optimal interpolation time for each PV pair.
O04,..,04 Offset contribution of each consensus feature.
Lqk Linear contribution of gene k in consensus feature q.
Lk, Contribution of interaction between genes k and ! to consensus feature g.
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