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Supp. Figure 1. TRANSACT: Generating non-linear manifold representations to 

transfer predictors of response from pre-clinical models to human tumors. (A) 

Samples are compared using a similarity function yielding similarity matrices 
between pre-clinical models (source, 𝑲𝒔), between tumors samples (target, 𝑲𝒕) 

and between pre-clinical models and tumors (𝑲𝒔𝒕). (B) Using non-linear PCA, the 

pre-clinical and tumor similarity matrices are independently decomposed into 
non-linear principal components (NLPCs) geometrically represented by “sample 

importance scores” (Supp. Figure 2A) that represent the importance of each 

sample in each NLPC (𝜶𝒔 and 𝜶𝒕, for source and target space, respectively). (C) 

Geometrical comparison of pre-clinical and tumor NLPCs results in a non-linear 

cosine similarity matrix 𝑴𝑲. (D) Alignment of NLPCs using the notion of principal 

vectors (Supp. Figure 2B). (E) Interpolation within each pair of vectors to select 

one vector per PV-pair that balances the effect of pre-clinical and tumor signals: 

the consensus features (Supp. Figure 2C). (F) Projection of each tumor and pre-

clinical sample on the consensus features to obtain consensus scores: scores 

that correspond to the activity of processes conserved between tumors and pre-
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clinical models. (G) Finally, these scores can be used as input to any predictive 

model, for instance to predict drug response based on these consensus scores. 
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Supp. Figure 2. Visual explanation of geometric alignment. (A) Difference 

between importance scores (𝜶𝒔, 𝜶𝒕) and projected scores. Since the space 

induced by the similarity function 𝑲 is intractable, we use a dual representation of 

the NLPC in terms of samples: the importance scores. To project samples on 
NLPCs, one needs to compute the similarity between this sample and all of the 

samples used to gauge the NLPC. The projected score is obtained by taking the 
vector-product between this similarity vector and the importance scores. The 

same rational yields principal vectors that are represented by 𝜸𝒔and 𝜸𝒕.  (B) Visual 

example of principal vectors (PV). We here consider 3 genes (features) and 2 
NLPCs. The pre-clinical (source) and tumor (target) NLPCs intersect in one 

direction, which form the pair of closest vectors: the first PV forms the pair of the 
two red vectors – although these are identical. The second pair of PVs is defined 

orthogonally to the red pair. This defines the green vectors (with a swap in 
direction for visual purposes). These pairs reconstruct the original NLPC spaces 

and are ordered by similarity. (C) Interpolation between PVs. For one pair of PVs 

– e.g. the green one in B – source and target vectors are different. In order to 

generate one robust vector out of these two and avoid redundancy, we draw an 
arc between these two vectors. We then project source and target datasets onto 

these interpolated vectors and select one intermediate representation where 
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source and target projected signals are maximally matched. This optimal 
intermediate vector is called the consensus feature. 
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Supp. Figure 3. Composition of the GDSC dataset (cell lines). We make use of 

the GDSC1000 cell line panel14. (A) Number of cell lines per tissue type. (B) 

Number of cell lines screened for each drug that we used in our experiments. 
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Supp. Figure 4. Composition of the NIBR PDXE dataset (patient derived 

xenografts). We make use of the NIBR PDXE patient derived xenograft panel15. (A) 

Number of PDXs per tissue type. (B) Number of unique PDXs screened for each 

drug that we used in our experiments. 

  



 
 

9 
 

 

Supp. Figure 5. Structure of the TCGA dataset (primary tumors). We make use of 

the TCGA dataset for primary tumors. (A) Number of samples per cancer type. (B) 

For each drug, number of samples with known response. 
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Supp. Figure 6. Structure of the HMF dataset (metastatic lesions). We make use 

of the Hartwig Medical Foundation (HMF) dataset for metastatic lesions. (A) 

Number of samples per cancer type (primary tumor location). (B) For each patient, 

number of response measurements made. For further analysis, we considered the 

first response measure – i.e. first measure after treatment start. (C) Histogram of 

number of weeks between treatment start and response measurement. (D) For 
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each protein coding gene, we measure the Spearman correlation between read 
counts obtained using Salmon and STAR alignment tools using all samples in the 

HMF dataset. We then ranked genes based on the obtained Spearman correlation 
(x-axis) and plotted it against the mean-expression of these genes obtained using 

Salmon (y-axis). Since lowly concordant genes tend to have low expression, we 

put a threshold at 𝒄𝒐𝒓𝒓 = 𝟎. 𝟓 and discarded genes below this threshold. (E) After 

the previous selection, we computed the sample-level Pearson and Spearman 

correlations between read counts obtained with STAR and Salmon. All samples 
but five show a correlation above 0.8 – these were discarded. We finally further 

restricted to genes from the mini-cancer genome. 
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Supp. Figure 7. Analysis of consensus features between cell lines (GDSC) and 

PDXs with 𝜸 = 𝟎. 𝟎𝟎𝟎𝟓. We use a Gaussian similarity matrix with hyper-parameter 

𝜸 = 𝟎. 𝟎𝟎𝟎𝟓 and run TRANSACT. (A) Cosine similarity between the 20 top source 

and target NLPCs. (B) Similarity between principal vectors (blue line) alongside 

the similarity obtained after gene-level permutation on GDSC (boxplots). (C) For 

each consensus feature, proportion of offset, linear and interaction term. (D) 

UMAP of data projected on the consensus features, colored by tissue of origin. 

(E) For each tissue type in PDXs, we compare the distances between 

corresponding PDXs with cell lines from the same tissue of origin (blue), or from 

another tissue (orange). (F) For the first consensus feature, sorted contribution of 

each linear features (i.e. gene, left) and interaction terms (right). (G) For the second 

consensus feature, sorted contribution of each linear features (i.e. gene, left) and 

interaction terms (right). 
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Supp. Figure 8. Tissue clustering without domain adaptation and with PRECISE 

alignment between GDSC and PDXE. (A) UMAP plot of cell lines and PDXs 

colored by tissue type without any domain-adaptation. Data was normalized prior 

to performing UMAP: cell lines and PDXs were independently mean-centered and 

scaled to unit variance. (B) UMAP plot of cell lines and PDXs colored by tissue 

type after projection on consensus features obtained with linear PRECISE. (C) 

Comparison of distances between PDXs and cell lines from the same tissue type 

(blue) or from a different tissue type (orange) without domain adaptation. (D) 

Comparison of distances when using linear PRECISE. We zoom in on lung 
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(NSCLC) without domain adaptation (E), with linear PRECISE (F) or with 

TRANSACT (G) using same setting as in  
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Supp. Figure 9. Choice of the number of NLPCs and consensus features between 

GDSC and TCGA. (A) Cumulative sum of eigenvalues of 𝑲𝒔.  (GDSC) with 𝜸∗ =

𝟓 × 𝟏𝟎%𝟒. The cumulative sum increases steeply, reaches an inflection point and 

then follows an almost-linear behavior. We select all the NLPCs before this 

almost-linear zone, corresponding to 75 NLPCs. (B) Cumulative sum of 

eigenvalues of 𝑲𝒕. (TCGA) with 𝜸∗ = 𝟓 × 𝟏𝟎%𝟒. Following similar reasoning as in 

(A), we restrict the study to the first 150 NLPCs. (C) Similarity between PVs when 

75 NLPCs are considered for GDSC and 150 for TCGA. We observe that the 33 
first PVs have a similarity above 0.5 (our cut-off) and round the selection to 30 

PVs. 
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Supp. Figure 10. Choice of the number of NLPCs and consensus features 

between GDSC and HMF. (A) Cumulative sum of eigenvalues of 𝑲𝒔.  (GDSC) with 

𝜸∗ = 𝟓 × 𝟏𝟎%𝟒. The cumulative sum increases steeply, reaches an inflection point 

and then follows an almost-linear behavior. We select all the NLPCs before this 

almost-linear zone, corresponding to 75 NLPCs. (B) Cumulative sum of 

eigenvalues of 𝑲𝒕.  (HMF) with 𝜸∗ = 𝟓 × 𝟏𝟎%𝟒. Following similar reasoning as in (A), 

we restrict the study to the first 75 NLPCs. (C) Similarity between PVs when 75 

NLPCs are considered for both GDSC and HMF. We observe that the 21 first PVs 

have a similarity above 0.5 (our cut-off) and round the selection to 20 PVs. 
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Supp. Figure 11. Pan-cancer consensus features between cell lines and tumors 

conserve tissue type information (Supplement of Figure 3) (A) UMAP plot of 
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metastatic lesions (HMF) and cell lines, colored by primary tissue for both HMF 

and GDSC. For both UMAP plots in this figure, the full legend can be found in 

Panel B. (B) Legend of UMAP plots for Figure 3D-E and Panel A in this figure. (C) 

UMAP plot of HMF metastatic lesions (same as Figure 3E) colored by metastatic 

site. (D) In TCGA, for each tumor type, distance between tumors and cell lines 

from similar (blue) and non-similar (orange) tissue.  (E) In HMF, for each primary 

tumor type, distance between metastatic sample and cell line from similar and 

non-similar tissue of origin. (F) In HMF, for each metastatic site, distance between 

metastatic sample and cell line from tissue of origin similar (blue) or dissimilar from 
the metastatic site. 
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Supp. Figure 12. Impact of initialization on results for the Deep Learning (DL) 

approach. For each drug on TCGA and HMF, we considered the architecture and 
the set of hyper-parameters with the lowest Mean Squared Error on GDSC given 

an initialization. We then randomly generated 50 independent initializations of the 
resulting networks and trained them using the GDSC data. Each of these trained 

networks was then employed to predict the TCGA or HMF response. The resulting 
prediction accuracies (area under the ROC) are plotted for the different drugs on 

the TCGA and HMF data. (A) Pearson correlation of the Mean Square Error of the 

predictor on GDSC to the Area under the ROC of the same predictor on TCGA. 

(B) Pearson correlation on HMF between MSE (GDSC) and Area under the ROC 

(HMF). 
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Supp. Figure 13. Impact of initialization on results for the ComBat+DL approach. 

For each drug on TCGA and HMF, we considered the architecture and the set of 

hyper-parameters with the lowest Mean Squared Error on GDSC given an 
initialization. We then randomly generated 50 independent initializations of the 

resulting networks and trained them using the GDSC data. Each of these trained 
networks was then employed to predict the TCGA or HMF response. The resulting 

predictions accuracies (area under the ROC) are plotted for the different drugs on 

the TCGA and HMF data. (A) Pearson correlation of the Mean Square Error of the 

predictor on GDSC to the Area under the ROC of the same predictor on TCGA. B 

(D) Pearson correlation on HMF between MSE (GDSC) and Area under the ROC 

(HMF). 
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Supp. Figure 14. Comparison of clinical status and AUC predicted by TRANSACT 

for HMF patients. Using TRANSACT and a predictive model trained solely on 
GDSC response data, we predicted the response of HMF patients to six different 

drugs (y-axis). These predicted values are then compared to clinical response 
which fall into three possible categories: PR (Partial Response), SD (Stable 

Disease) or PD (Progressive Disease). Patients treated with six drugs were 
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considered: Trastuzumab (A), Carboplatin (B), Gemcitabine (C), Irinotecan (D), 

Paclitaxel (E) and 5-Fluorouracil (F).  
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Supp Figure 15 Pathway enriched for resistant linear coefficients in GDSC-to-

TCGA Gemcitabine drug response predictor. Additional pathways significantly 
enriched in the linear part of the GDSC-to-TCGA predictor. 



Supplementary Information Text - Algorithm Derivation

In this supplementary note, we present the algorithmic derivation of TRANSACT. Our approach
works as follows:

1. We transform the original data (cell-view) and map it into a new space using a function
ϕ. This mapping aims at representing the data in a more amenable way to standard linear
analysis.

2. Once the whole dataset has been mapped, we find directions of importance in source
and target datasets. Specifically, we reduce dimensionality, we align the low-rank direc-
tions, and interpolate between the two views to obtain single directions important in both
datasets.

3. Finally, we project the mapped data in these directions. The obtained scores can then be
used in any statistical model.

In the rest of this note, we prove the different steps leading to this extended algorithm. Al-
though the note might seem technical, this all boils down to this overarching paradigm. To the
reader who wishes to get directly to the main results, we highlighted the end products of our
demonstration as Theorems (Theorems Supp 5.3, Supp 6.6 and Supp 8.5).
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Supp 1 Notations and settings

In our scenario, we have two datasets living in the same space – i.e. represented by the same p
features (genes, SNPs, methylation probes, ...):

• A source dataset Xs =
{
xs1, x

s
2, .., x

s
ns

}
⊂ Rp, with labels Ys =

{
ys1, ...y

s
ns

}
.

• A target dataset Xt =
{
xt1, x

t
2, .., x

t
nt

}
⊂ Rp usually unlabelled.

We represent the source (resp. target) data as a matrix Xs ∈ Rns×p (resp. Xt ∈ Rnt×p) with
samples in the rows and features in the columns.
We consider a similarity function, or kernel, K : Rp×Rp 7→ R that we will assume for the sequel
to be positive semi-definite. Using the theory of Reproducible Kernel Hilbert Space [1], K is
represented by the following dual formulation.

Proposition Supp 1.1 (Reproducing Hilbert Space). There exists a unique functional Hilbert
space (H, 〈·, ·〉H), with H ⊂ F (Rp,R) (functions from Rp to R), and a mapping function ϕ :
Rp 7→ H such that:

∀x, y ∈ Rp, K (x, y) = 〈ϕ (x) , ϕ (y)〉H. (Supp 1)

The mapping ϕ furthermore satisfies the Reproducing property:

∀f ∈ H, f : x ∈ Rp 7→ 〈ϕ (x) , f〉H. (Supp 2)

We refer to ds (resp. dt) the number of low-rank components we reduced the source data (resp.
target data) to. We set d as the maximum number of principal vectors, d = min (ds, dt).
Superscript s is used for source items and superscript t for target items. K (x, ·) , for x ∈ Rp, is
the function y ∈ Rp 7→ K (x, y). We use the superscript ·T as the transposition operation.
Finally, we define the following kernel matrices:

Definition Supp 1.2 (Kernel matrices). We define the following four matrices:

• Source kernel matrix Ks : Ks =
[
K
(
xsi , x

s
j

)]
1≤i,j≤ns

∈ Rns×ns .

• Target kernel matrix Kt : Kt =
[
K
(
xti, x

t
j

)]
1≤i,j≤nt

∈ Rnt×nt .

• Source-target kernel matrix Kst : Kst =
[
K
(
xsi , x

t
j

)]
1≤i≤ns,1≤j≤nt

∈ Rns×nt .

• Target-source kernel matrix : Kts as Kts = KT
st ∈ Rnt×ns .

Supp 2 Kernel-mean centering

We set out to work in the Hilbert space H after embedding the data with the mapping ϕ. Prior
to any statistical processing, we first need to mean-center the data in the kernel feature space
H. For that purpose, we define two means, the mean source embedding µs and the mean target
embedding µt, as follows:

µs =
1

ns

ns∑
i=1

ϕ (xsi ) =
1

ns

ns∑
i=1

K (xsi , ·)

µt =
1

nt

nt∑
i=1

ϕ
(
xti
)

=
1

ns

nt∑
i=1

K
(
xti, ·

) (Supp 3)

Using the means computed in Equation (Supp 3), we define two sets of corrected embeddings as
follows:
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Definition Supp 2.1 (Mean-centered embedding and kernel function). The source centered
kernel embedding ϕ̃s is defined as:

∀x ∈ Rp, ϕ̃s (x) = ϕ (x)− µs = K (x, ·)− µs. (Supp 4)

We then defined the source-centered kernel function K̃s as:

∀x, y ∈ Rp, K̃s (x, y) = 〈ϕ̃s (x) , ϕ̃s (y) .〉 (Supp 5)

We define equivalently the target centered kernel embedding ϕ̃t and corresponding target-centered
kernel function K̃t.

We use the mean-centered kernel functions defined in Definition Supp 2.1 to correct the kernel
matrices from Definition Supp 1.2 and define the following four matrices.

Definition Supp 2.2 (Centered Kernel matrices). We define the following four matrices:

• Source-centered kernel matrix K̃s : K̃s =
[
K̃s

(
xsi , x

s
j

)]
1≤i,j≤ns

∈ Rns×ns .

• Target-centered kernel matrix K̃t : K̃t =
[
K̃t

(
xti, x

t
j

)]
1≤i,j≤nt

∈ Rnt×nt .

• Source-target-centered kernel matrix K̃st : K̃st =
[
〈ϕ̃s (xsi ) , ϕ̃t

(
xtj
)
〉
]
1≤i≤ns,1≤j≤nt

∈
Rns×nt .

• Target-source kernel matrix : K̃ts as K̃ts = K̃T
st ∈ Rnt×ns .

To get a relation between matrices given in Definition Supp 2.2 and Definition Supp 1.2, we
define the centering matrix of size n, denoted as Cn:

Definition Supp 2.3 (Centering matrix). Let n ∈ N∗. We define the centering matrix of size
n, denoted Cn as:

Cn = In −
1

n
1n1Tn , (Supp 6)

where In is the identity matrix of size n and 1n is the n-sized vector constituted solely of 1.

Proposition Supp 2.4 (Computation of centered kernel matrices). We have the following
equalities:

K̃s = Cns
KsCns

,

K̃t = CntKtCnt ,

K̃st = Cns
KstCnt

.

(Supp 7)

Supp 3 Kernel PCA on source and target

We use Kernel PCA to compute directions of maximum variance in the embedded space [7],
yielding kernel Principal Components, also called non-linear principal components (NLPCs) in
the main text. These NLPCs for source and target are respectively defined as linear combinations
of source and target samples’ embeddings (after mean-centering) in the kernel feature space.

Definition Supp 3.1 (Non-linear source and target principal components [7]). Non-linear prin-
cipal components for source

(
fs1 , .., f

s
ds

)
and target

(
f t1, .., f

t
dt

)
are defined as linear combinations

of source and target embedded samples respectively. Denoting as αs the ds top eigenvectors of
K̃s and αt the dt top eigenvectors of K̃t, we have the following equality:

fsq =

ns∑
i=1

αsq,iϕ̃s (xsi ) for q ∈ {1, .., ds} ,

f tq =

nt∑
i=1

αtq,iϕ̃t
(
xti
)

for q ∈ {1, .., dt} ,
. (Supp 8)
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These non-linear principal directions satisfy some orthogonality constraints on the kernel space
H:

∀x ∈ {s, t} , ∀k, l ∈ {1, .., d} , 〈fxk , fxl 〉H = δk,l, (Supp 9)

where δ is the equality indicator function. These constraints are equivalent to:

αsK̃sα
sT = Ids and αtK̃tα

tT = Idt (Supp 10)

The two matrices αs ∈ Rds×ns and αt ∈ Rdt×nt correspond to factors by samples matrices,
but do not represent the projected score. Instead, they are equivalent to the feature loadings
in linear PCA and correspond to a dual representation of the features in H that can not be
explicitly computed due to the high-dimensions of H. We refer to them as sample importance
loadings to explicit the difference these have with projected scores.

Supp 4 Variational definition of principal vectors

We define the first pair of principal vectors between source and target NLPCs as the two unitary
vectors s1 and t1, with s1 in source NLPCs span and t1 in target NLPCs span, such that their
similarity is maximized. This extends in H the principal vectors defined by Golub and Van Loan
in [3] and are mathematically formalized using the following variational definition:

s1, t1 = argmax
s∈span(fs

1 ,..,f
s
ds),

t∈span(ft
1,..,f

t
dt

)

〈s, t〉H

s.t 〈s, s〉H = 〈t, t〉H = 1

. (Supp 11)

We further define the principal vector by adding an orthogonality constraint, as in [3].

Definition Supp 4.1 (Kernel Principal Vectors). We define the d pairs of principal vectors
(s1, t1) , (s2, t2) , .., (sd, td) as, for all k ∈ {1, .., d} :

sk, tk = argmax
s∈span(fs

1 ,..,f
s
ds),

t∈span(ft
1,..,f

t
dt

)

〈s, t〉H

s.t 〈s, s〉H = 〈t, t〉H = 1,

and ∀l < k, sl ⊥ s, tl ⊥ t

. (Supp 12)

Supp 5 Computation of Principal Vectors

The first step towards computing principal vectors is to compare the principal components
defined in Definition Supp 3.1. We define for that purpose the cosine similarity matrix between
source and target NLPCs and present a closed-form solution for computing it based on centered
kernel matrices (Definition Supp 2.2) and NLPCs’ coefficients (Definition Supp 3.1).
The cosine similarity matrix is a standard way to compare orthonormal basis of vectors and has
already been used to compare linear principal components in subspace-based domain adaptation
[2, 4, 5]. We here extend it to kernel-based non-linear dimensionality reduction.

Definition Supp 5.1 (Cosine similarity matrix). We define the cosine similarity matrix MK

between source and target kernel principal components as:

MK =
[
〈fsk , f tl 〉H

]
1≤k≤ds,1≤l≤dt

∈ Rds×dt . (Supp 13)
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Proposition Supp 5.2 (Computation of cosine similarity matrix). MK can be computed using
the matrices αs, αt and KST as:

MK = αsK̃stα
tT

= αsCns
KstCnt

αt
T
.

(Supp 14)

Proof. Let 1 ≤ k, l ≤ d, then using Equation Supp 8,

〈fsk , f tl 〉 =

ns∑
i=1

nt∑
j=1

αsk,iα
t
l,j〈ϕ̃s (xsi ) , ϕ̃t

(
xtj
)
〉 = αsk,:

T K̃stα
t
l,: (Supp 15)

which put together as a matrix gives the wanted result. �

Similarly to the linear setting, we use this cosine similarity matrix to NLPC by means of SVD
of MK .

Theorem Supp 5.3 (SVD computation of Principal Vectors). Let βs ∈ Rds×d (resp. βt ∈
Rdt×d) be the first d left (resp. right) singular vectors of MK , i.e. MK ≈ βsΣβt

T
. Then, for

all 1 ≤ q ≤ d:

sq =

ds∑
k=1

ns∑
i=1

βsk,qα
s
k,iϕ̃s (xsi ) and tq =

dt∑
l=1

nt∑
j=1

βtl,qα
t
l,jϕ̃t

(
xtj
)

(Supp 16)

Proof. Let s1, .., sd ∈ span
(
fs1 , .., f

s
ds

)
and t1, .., td ∈ span

(
f t1, .., f

t
dt

)
with norm 1, there exists

βs,∈ Rds×d and βt ∈ Rdt×d such that, for all q ∈ {1, .., d},

sq =

ds∑
k=1

βsk,qf
s
k =

ns∑
i=1

ds∑
k=1

αsk,iβ
s
k,qϕ̃s (xsi ) and tq =

dt∑
l=1

βtl,qf
t
l =

nt∑
j=1

dt∑
l=1

αtl,jβ
t
l,qϕ̃t

(
xtj
)
.

(Supp 17)
The orthogonality constraint 〈sk, sl〉H = 〈tk, tl〉H = δk,l, for 1 ≤ k, l ≤ d coupled with the

orthogonality constrains from Equation (Supp 9) is then equivalent to βsTβs = βt
T
βt = Id.

Computing inner product between source and target PV therefore yields

[〈sk, tl〉]1≤k,l≤d = βsTαsK̃stα
tTβt

T
= βsTMKβt. (Supp 18)

Therefore, the maximization problem from Equation (Supp 11) is equivalent to the following:

max
βs∈Rds×d,

βt∈Rdt×d

βsTMKβt

s.t. βsTβs = βt
T
βt = Id

, (Supp 19)

which unique solutions are the left and right orthogonal vectors of MK , obtained by SVD. �

In order to work at the sample-level for each principal vector, we define the PV sample-
importance loadings as follows.

Definition Supp 5.4 (Principal Vector sample importance loadings). We define the source
(resp. target) sample importance loadings ρs ∈ Rd×ns (resp. ρt ∈ Rd×nt) as:

ρs = βsTαs and ρt = βt
T
αt. (Supp 20)
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These PV importance loadings are related to the source and target PVs as follow:

Proposition Supp 5.5. Source and target principal vectors have the equivalent following defi-
nition:

∀q ∈ {1, ..d} ,


sq =

ns∑
i=1

ρsq,iϕ̃s (xsi ) ,

tq =

nt∑
i=1

ρtq,iϕ̃t
(
xti
)
.

(Supp 21)

We finally defined the similarity between the principal vectors as cosines of angles referred to as
principal angles.

Definition Supp 5.6 (Principal Angles). Let 1 ≤ q ≤ d. We define the q-th principal angle as
the unique θq ∈

[
0, π2

]
that satisfies:

cos θq = 〈sq, tq〉H. (Supp 22)

Proposition Supp 5.7 (SVD computation of Principal Angles). Let Σ be the diagonal matrix
obtained by SVD of MK (as in Proposition Supp 5.2), then:

∀q ∈ {1, .., d} , cos θq = Σq,q. (Supp 23)

Proof.
cos θq = 〈sq, tq〉H = βs:,q

TMKβt:,q = Σq,q, (Supp 24)

by definition of the SVD. �

We showed how to compute the PVs as functions in H and gave a closed-form solution for the
evaluation in Rp. We finally show that the evaluation of PVs correspond to a projection of the
embedded vector, keeping the same intuition than in linear setting.

Proposition Supp 5.8 (Evaluation of principal vectors). Let x ∈ Rp. For q ∈ {1, ..d}, the
evaluation of source and target principal vectors sq and tq is equivalent to the projection of the
embedding of x on these vectors:

sq (x) = 〈sq, ϕ (x)〉H and tq (x) = 〈tq, ϕ (x)〉H (Supp 25)

Proof. Combining Equations (Supp 3), (Supp 4) and (Supp 21), source PV are sum of elements
of H:

sq =

ns∑
i=1

ρsq,iϕ̃s (xsi ) with, ∀i ∈ {1, .., ns} , ϕ̃s (xsi ) ∈ H. (Supp 26)

Therefore sq ∈ H since H is an Hilbert space. Using the reproducing property of the RKHS and
the definition of ϕ (Equation (Supp 1), we obtain

∀x ∈ Rp, sq (x) = 〈sq, ϕ (x)〉H . (Supp 27)

Following the same idea, we obtain the equivalent equality for target PVs. �
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Supp 6 Interpolation scheme

The Principal Vectors are pairs of vectors (one form source, one from target) that are geometri-
cally similar. We select only the pairs above a certain threshold of similarity in order to restrict
to directions shared by the two signals. Therefore, within each pair, source and target vectors
show an important correlation and using the two into a predictive model would not be optimal.
We therefore set out to construct a single vector out of each pair by interpolating between the
two vectors. This interpolation is the geodesic flow between PVs and is defined as follows.

Definition Supp 6.1 (Angular interpolation function). Let q ∈ {1, .., d}, we define the angular
interpolation functions Γq and ξq between the qth pair of principal vector as:

∀τ ∈ [0, 1] , Γq (τ) =
sin ((1− τ) θq)

sin θq
and ξq (τ) =

sin τθq
sin θq

. (Supp 28)

Definition Supp 6.2 (Geodesic flow between principal vectors). Let q ∈ {1, .., d}, we define
the interpolation φq between the qth pair of principal vector as:

∀τ ∈ [0, 1] , φq (τ) = Γq (τ) sq + ξq (τ) tq. (Supp 29)

Since H is a Hilbert space, φq ∈ H.

Proposition Supp 6.3 (Estimation using PV sample importance loadings). Let q ∈ {1, .., d}
and φq be the geodesic between the qth pair of principal vectors. The geodesic defined in Equation
(Supp 29) has the following equivalent formulation:

∀τ ∈ [0, 1] , φq (τ) = Γq (τ)

ns∑
i=1

ρsq,iϕ̃s (xsi ) + ξq (τ)

nt∑
j=1

ρtq,jϕ̃t
(
xtj
)
. (Supp 30)

Proof. Combining the definition of the geodesic from Definition Supp 6.2 with the equivalent
principal vector formulation of Proposition Supp 5.5 yields the result. �

The formulation of the geodesic from Proposition Supp 6.3 can easily be written down as a matrix
product (for computation purposes) for each sample. We define the matrix angular interpolation
function as follow.

Definition Supp 6.4 (Matrix angular interpolation function). We define the matrix angular
interpolation functions Γ and Ξ

∀τ ∈ [0, 1]
d
, Γ (τ) = diag [Γq (τq)]1≤q≤d and Ξ (τ) = diag [ξ (τq)]1≤q≤d . (Supp 31)

Proposition Supp 6.5 (Matrix estimation of principal vectors). Let’s denote by s (resp. t) the
vectors of d source (resp. target) principal vectors ordered by similarity. We define Ss and St
as the matrices that contain the source principal vectors values evaluated on source and target
data respectively:

Ss =
[
s (xs1)

T
, .., s

(
xsns

)T ]T ∈ Rns×d, (Supp 32)

St =
[
s
(
xt1
)T
, .., s

(
xtnt

)T ]T ∈ Rnt×d. (Supp 33)
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We define similarly T s ∈ Rns×d as the matrix that contains the target principal vectors evaluated
on the source data – and T t ∈ Rnt×d as the matrix that contains the target principal vectors
evaluated on the target data. These matrices can be computed as follows:{

Ss = KsCns
ρsT ,

St = KstCns
ρsT ,

and

{
T t = KtsCnt

ρt
T
.

T t = KtCnt
ρt
T
.

(Supp 34)

Proof. Using the definition of principal vectors with ρ coefficients from Equation (Supp 21), we
get, for l ∈ {1, .., ns} and q ∈ {1, .., d}:

sq (xsl ) =

ns∑
i=1

ρsq,i

K (xsi , x
s
l )−

1

ns

ns∑
j=1

(
xsj , x

s
l

)
=

ns∑
i=1

(
ρsq,:
)
i

[
Ks
i,l −

1

ns

(
1ns1

T
ns
Ks
)
i,l
.

] (Supp 35)

Using the centering matrix defined in Definition Supp 2.3, we get:

sk (xsl ) = [ρsCnsK
s]k,l , (Supp 36)

and therefore Ss = (ρsCns
Ks)

T
. The other equalities follow from the same proof.

�

Let’s finally define the geodesic matrix between source and target at interpolation time τ ∈ [0, 1]
as the estimation of both source and target on the geodesic in the kernel feature space.

Theorem Supp 6.6. We define as Fst (τ) for as the matrix of geodesic values evaluated at

interpolation time τ ∈ [0, 1]
d
, i.e.:

Fst (τ) =


φ (τ) (xs1)

...
φ (τ)

(
xsns

)
φ (τ) (xt1)

...
φ (τ)

(
xsnt

)

 ∈ R(ns+nt)×d. (Supp 37)

. Then Fst (τ) can be computed as follow:

Fst (τ) =

[
Ss T s
St T t

] [
Γ (τ)
Ξ (τ)

]
. (Supp 38)

This formulation is equivalent to:

Fst (τ) =

[
Ks Kst

Kts Kt

] [
Cns

0ns×nt

0nt×ns
Cnt

] [
ρsT 0ns×d

0nt×d ρt
T

] [
Γ (τ)
Ξ (τ)

]
. (Supp 39)

Proof. Direct by combining Definition Supp 6.4 and Proposition Supp 6.5. �

In order to get zero-centered projected source and target samples, we can use two solutions. On
one hand, we can perform a consensus-feature-level mean-centering independently on source and
target after projection. Equivalently, we can also left-multiply by centering matrix the projected
matrix Fst (τ).
We finally show that the evaluation of the consensus features functions is equivalent to the
projection of embedding in the feature space H.
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Proposition Supp 6.7. Let x ∈ Rp, q ∈ {1, ..d} and τq ∈ [0, 1], then:

φq (τq) (x) = 〈φq (τq) , ϕ (x)〉H . (Supp 40)

Proof. Using Proposition Supp 5.8,

φq (τq) (x) = Γq (τq) sq (x) + ξq (τq) tq (x)

= 〈Γq (τq) sq + ξq (τq) tq, ϕ (x)〉H
= 〈φq (τq) , ϕ (x)〉H .

(Supp 41)

�

Supp 7 Gene set enrichment analysis of consensus features

In order to gain insight into the making of consensus features, we use a Taylor expansion of the
Gaussian kernel [8]. The Gaussian kernel can be expressed as outer-product of the following
basis functions.

Definition Supp 7.1. Let i ≤ 0 be an integer. We define as ei : R 7→ R the basis function
defined as:

∀x ∈ R, ei (x) =

√
2γi

i!
xi exp

(
−γx2

)
. (Supp 42)

Proposition Supp 7.2 (Countable orthonormal basis of H [8]). Let’s define for (i1, .., ip) ∈ Np
the following function

e(i1,..,ip) = x ∈ Rp 7→ ei1 (x1)× ei2 (x2)× · · ×eip (xp) . (Supp 43)

Then,
(
e(i1,..,ip)

)
(i1,..,ip)∈Np is an orthonormal basis of H, and for x, y ∈ Rp,

exp
(
−γ||x− y||2

)
=

∑
i1,..,ip∈Np

e(i1,..,ip) (x) e(i1,..,ip) (y) .

= ϕ̂ (x)
T
ϕ̂ (y) ,

(Supp 44)

with ϕ̂ : x 7→
(
e(i1,..,ip) (x)

)
(i1,..,ip)∈Np .

Let’s consider this approximation map ϕ̂. We extract three different features of interest for our
analysis: the offset (sum of indices is 0), the linear terms (sum of indices is 1) and the interaction
terms (sum of indices is 2). We define them as follows:

Definition Supp 7.3 (Offset, linear and interaction terms).
We define the offset feature eO as e0Np , i.e. when all indices are 0.
For each gene (feature k ∈ {1, .., p}), we define the kth linear feature ek as eδk where δk is the
vector of zeros with a single 1 on kth position.
For each combination of genes (feature k, l ∈ {1, .., p}), we define the (k, l)th interaction fea-
ture ek,l as eδk,l

where δk,l is the vector of zero with one 1 on kth and lth position only if k 6= l,

and 2 on kth position if k = l.

Definition Supp 7.4 (Offset, linear and interaction terms for consensus features).
We define the offset contribution to consensus feature q as Oq = 〈eO, φq

(
τ∗q
)
〉.

For k ∈ {1, .., p}, we define the kth linear contribution to consensus feature q as Lq,k =
〈ek, φq

(
τ∗q
)
〉.

For k, l ∈ {1, .., p}), we define the (k, l)th interaction contribution to consensus feature q as
Iq,k,l = 〈ek,l, φq

(
τ∗q
)
〉.
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We now compute the contribution of each of these features to the consensus features. We first
rewrite the different contributions to the consensus features for readability.

Definition Supp 7.5. For q ∈ {1, .., d}, we define σsq = Γq
(
τ∗q
)
ρsq and σtq = ξq

(
τ∗q
)
ρtq.

We finally define the source and target mean centered features.

Definition Supp 7.6. We define the source (resp. target) mean-centered offset feature for the
qth consensus feature ẽsO (resp. ẽtO) as:

ẽsO = eO −
1

ns

ns∑
i=1

eO (xsi ) and ẽtO = eO −
1

nt

nt∑
i=1

eO
(
xti
)
. (Supp 45)

For k ∈ {1, .., p}, we define the source (resp. target) mean-centered linear feature for the qth

consensus feature ẽsk (resp. ẽtk) as:

ẽsk = ek −
1

ns

ns∑
i=1

ek (xsi ) and ẽtk = ek −
1

nt

nt∑
i=1

ek
(
xti
)
. (Supp 46)

For k, l ∈ {1, .., p}, we define the source (resp. target) mean-centered linear feature for the qth

consensus feature ẽsk,l (resp. ẽtk,l) as:

ẽsk,l = ek,l −
1

ns

ns∑
i=1

ek,l (x
s
i ) and ẽtk,l = ek,l −

1

nt

nt∑
i=1

ek,l
(
xti
)
. (Supp 47)

Proposition Supp 7.7. The differents contribution Oq Lq,i and Iq,i,j for the qth consensus
feature can be computed as follow:

Oq =

ns∑
i=1

σsq,iẽ
s
O (xsi ) +

nt∑
i=1

σtq,iẽ
t
O

(
xti
)
, (Supp 48)

Lq,k =

ns∑
i=1

σsq,iẽ
s
q,k (xsi ) +

nt∑
i=1

σtq,iẽ
t
q,k

(
xti
)
, (Supp 49)

Iq,k,l =

ns∑
i=1

σsq,iẽ
s
q,k,l (x

s
i ) +

nt∑
i=1

σtq,iẽ
t
q,k,l

(
xti
)
. (Supp 50)

Proof. Combining the expression of consensus features as mean-centered source and target em-
bedding from Supp 6.3, Definition Supp 7.5 and Definitions Supp 7.4 and Supp 7.6 gives the
wanted results. �

Definition Supp 7.8. For the qth consensus feature, we define the offset proportion as
Oq = O2

q , the linear contribution as Lq =
∑p
k=1 L2

q,k and the interaction contribution as

Iq =
∑

1≤k≤l≤p I2q,k,l.
Finally, we define the higher-order contribution as Rq = 1−Oq − Lq − Iq.

We now restrict to one gene set to measure the effect of this gene set on interactions and linear
effects.
We here restricted to the Gaussian kernel. However, our results would easily be extended to any
kernel, provided the feature space H has a known orthonormal basis.
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Supp 8 Equivalence with Geodesic Flow Kernel

In this section we showed the equivalence with the previously published linear version of the
algorithm, the so-called PRECISE model [6]. We recall the main steps of the algorithm.

Definition Supp 8.1 (Linear Principal Vectors). Let Ps ∈ Rds×p and Pt ∈ Rdt×p be two families
of orthonormal vectors, i.e. PsP

T
s = Ids and PtP

T
t = Idt . We define the cosine similarity matrix

M as:
M = PsP

T
t . (Supp 51)

Let d ≤ min (ds, dt) and let UΣLV T be the d− rank SVD approximation of M . We define the d
source (resp. target) principal vectors as the matrix Qs ∈ Rd×p (resp. Qt ∈ Rd×p) as:

Qs = UTPs and Qt = V TPt. (Supp 52)

Samples can be projected on these four matrices (Ps, Pt,Qs and Qt) by inner-product, i.e. canon-
ical projection operator in Euclidean space.

Ps and Pt are here defined generally as two families of orthonormal vectors. In particular, we
consider for the rest that they are the results of PCA on respectively the source and the target
covariance matrices XT

s CnsC
T
ns
Xs and XT

t CntC
T
nt
Xt. Using the linear PVs from Definition Supp

8.1, we define a linear interpolation scheme as follows.

Definition Supp 8.2 (Linear Interpolation). Using notations from Definition Supp 8.1, we
define the linear principal angles as:

∀q ∈ {1, .., d} , cos θLq = ΣLq,q. (Supp 53)

For the PV pair q ∈ {1, .., d}, we define the interpolation function φLq as follows:

φq : τq ∈ [0, 1] 7→ sin (1− τq) θq
sin θq

(Qs)q +
sin τqθq
sin θq

(Qt)q (Supp 54)

Before stating the main result, we need the following well-known lemma.

Lemma Supp 8.3 (Equivalence of spectrum). Let X ∈ Rn×p. We denote by S+ =
{(
λ+1 , v

+
1

)
,

..,
(
λ+d+ , v

+
d+

)}
the non-singular spectrum of XXT and S− =

{(
λ−1 , v

−
1

)
, ..,
(
λ−d− , v

−
d−

)}
the non-

singular spectrum of XTX, i.e. λ1 ≥ λ2 ≥ .. ≥ λd > 0 in both spectrum. Then d+ = d− and

∀i ∈
{

1, .., d+
}
, λ+i = λ−i , v+i = Xv−i and v−i = XT v+i (Supp 55)

We consider two scenario using the same source and target datasets: linear PRECISE, and our
kernelized approach with a linear kernel. We consider all other parameters set to the same
values.

Proposition Supp 8.4 (Equality of cosine similarity matrixes). Let M and MK be the cosine
similarity matrices obtained respectively using linear PRECISE (Definition Supp 8.1) and the
kernelized version with a linear kernel (Definition Supp 5.1), all hyperparameters equal. Then
M = MK.

Proof. We here use notations from Definitions Supp 5.1 and Supp 3.1. We define X̃s = Cns
Xs

and X̃t = CntXt. We also use K̃s = X̃sX̃s

T
and K̃t = X̃tX̃t

T
.

By definition of PCA, Ps contains the top ds eigenvectors of the matrix X̃s

T
X̃s, while αsK̃

1
2
s

contains the top ds eigenvectors of X̃sX̃s

T
. Using the result from Supp 8.3, we have Ps =

αsK̃s

1
2
X̃s. Similarly, we obtain on the target Pt = αtK̃t

1
2
X̃t. Using Proposition Supp 5.2,

M = αsK̃s

1
2
X̃sX̃t

T
K̃t

1
2
αt
T

= αsX̃sX̃t

T
αt
T

= MK , (Supp 56)

using the fact that αsK̃
1
2
s and αtK̃

1
2
t is an eigenvector of K̃s and K̃t respectively. �
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From Proposition Supp 8.4 follows directly this equivalence.

Theorem Supp 8.5. With all hyperparameters equal, PRECISE and the kernelized version
with a linear kernel are equivalent.

Theorem Supp 8.5 shows that all results obtained in linear case [6] hold for TRANSACT with a
linear similarity function, and in particular the correspondence with the Geodesic Flow Kernel.

Supp 9 Difference with CCA on the genes

Another data-strategy used in single-cell data analysis consists in using the gene-level corre-
spondence to perform a Canonical Correlation Analysis (CCA) on the genes. Using the same
notations as in Section Supp 1, this approach boils down to solve the following maximization
procedure:

s1, t1 = argmax
s∈Rns ,sT s=1,

t∈Rnt ,tT t=1

sTXsX
T
t t

(Supp 57)

and the subsequent directions defined orthogonally to these directions. This procedure find di-
rections of maximum covariance at the gene-level between source and target. It will find two
combinations of samples (one for source, and one for target) that show the maximum covariance
among genes. It differs markedly from our methods on several aspects. First, from a computa-
tional standpoint, the SVD-equivalent definition of PVs (Theorem Supp 5.3) consists in breaking
down a relatively small matrix (ds × dt) and not a sample-sample similarity matrix. Second, by
performing a PCA on source and target independently, we restrict our analysis to a low-rank
view of source and target data – which provides a first step filtering. Finally, although there are
similarities in the maximization procedures from Equations Supp 11 and Supp 57, the product
of our maximization procedure gives geometrical weights, and not directly the scores used in
the regression. Although we maximize the same objective function, the constraints are different,
which would make the final vectors surely different.
We believe our approach to be better suited for our specific problem for several reasons. First be-
cause it uses a low-rank representations of source and target. As shown in Figure 1 of main text,
the kernel matrices Ks and Kt contain larger values than Kst which would increase signal-to-
noise ratio. Our sample-size is small – compared to single cell studies at least – and penalization
is expected to focus on important signal. Second, our approach gives us a direct access to the
geometric components (PV) which we can analyze to understand the making of the common
signal. Finally, using PVs allow us to interpolate and get a projection on a single component
that would be shared across source and target.
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Supp 10 Algorithm workflow

Algorithm 1 TRANSACT

Require: source data Xs, target data Xt, number of domain-specific factors ds and dt, p.s.d.
kernel K, number of principal vector d.
Ks ← source kernel matrix.
Kt ← target kernel matrix.
Kst ← source-target kernel matrix.
αs ← Kernel Principal Components of source (from Ks).
αt ← Kernel Principal Components of source (from Kt).
MK ← αsCns

KstCnt
αtT.

βsΣβt ← d-rank SVD of MK , i.e. MK ≈ βsΣβtT .
Fst ← [F st (0) , F st (0.01) , .., F st (1)] defined as in Theorem Supp 6.6.
for q ← 1 to d do

Sq ←
[
Fst [0]1:ns,q

,Fst [0.01]1:ns,q
, ..,Fst [1]1:ns,q

]T
Tq ←

[
Fst [0]ns:ns+nt,q

,Fst [0.01]ns:ns+nt,q
, ..,Fst [1]ns:ns+nt,q

]T
Dq ← {D (Sq[0], Tq[0]) , D (Sq[0.01], Tq[0.01]) , .., D (Sq[1], Tq[1])}.
τ∗q ← argminτDq.

end for
F← [Φ1 (τ1) ,Φ2 (τ2) , ..,Φd (τd)]
τ∗ ←

[
τ∗1 , .., τ

∗
q

]
.

Xproj
s ← Fst [τ∗]1:ns

.

Xproj
t ← Fst [τ∗]ns:ns+nt

.

Train a regression model on Xproj
s

Apply it on the projected target data Xproj
t
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Supp 11 Glossary

Notation Meaning

R Real numbers
N Integers
|| · ||F Frobenius norm
In Identity matrix of size n.
1n Vector of size n with only ones.
Xs Source data
Ys Source labels
Xt Target data
ns, nt Number of source and target samples.
p Number of genes (features)
ds, dt Number of source and target principal components (NLPCs).
d Number of principal vectors pairs (and consensus features).
F (Rp,R) Spaces of functions from Rp to R.
K Kernel functions (Rp × Rp 7→ R).
γ Scaling factor of RBF kernel.
H Feature space induced by K.
〈·, ·〉H Hilbert norm associated to K.
ϕ Feature map induced by K.
Ks,Kt Source and target kernel matrices
Kst ∈ Rns×nt Kernel matrix between source and target samples.
µs Mean source embedding.
ϕ̃s Feature map induced by K translated by µs.
µt Mean target embedding.
ϕ̃t Feature map induced by K translated by µt.
Cn Centering matrix of size n ∈ N∗.
αs ∈ Rds×ns Sample importance scores of source NLPCs.
αt ∈ Rdt×nt Sample importance scores of target NLPCs.
s1, .., sd Source principal vectors (PV).
t1, .., td Target principal vectors (PV).
span Linear subspace generated by a family of vectors.
MK ∈ Rds×dt Cosine similarity matrix between source and target NLPCs.
βs ∈ Rds×d Left singular vectors of MK .
βt ∈ Rdt×d Right singular vectors of MK .
Σ Diagonal matrix with top d singular values of MK .
ρs ∈ Rd×ns Sample importance scores of source PVs.
ρt ∈ Rd×nt Sample importance scores of target PVs.
θ1, ..θd Principal angles between source and target PVs.
Ss,St Source data projected on source and target PVs.
T s, T t Target data projected on source and target PVs.
Γ and ξ Angular interpolation functions.
φ1, ..φq Interpolation between each pair of PVs.
τ = [τ1, .., τd] Interpolation times for each PV pair.
Fst (τ) Source and target data projected on interpolation

at time τ .

τ∗ ∈ [0, 1]
d

Optimal interpolation time for each PV pair.
O1, ..,Od Offset contribution of each consensus feature.
Lq,k Linear contribution of gene k in consensus feature q.
Iq,k,l Contribution of interaction between genes k and l to consensus feature q.
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