Supplemental Material

1 Model parameter values

The resistance and inertance of the LVAD is captured by the parameters R_{LVAD} and L_{LVAD} . We use the values from [53] as shown in Table Table S1 and given by

 $L_{\text{LVAD}} = L_i + L_o + 0.02177,$ $R_{\text{LVAD}} = R_i + R_o + 0.1707.$

We altered the model from [30] to the situation of left heart failure by increasing the left atrial and ventricular compliance, increasing the systemic resistance, decreasing the length of AVPD, increasing the cross-section of LA and LV in order to account for a dilated heart, and decreasing the contraction force F_C . The specific parameter values are defined in Table Table S1.

 Table S1
 Default parameter values for the cardiovascular, circulatory system, and LVAD model.

Parameter	Description	Value
$C_{\rm LA}$	Left atrial compliance	0.6 ml/mmHg
$C_{\rm LV}$	Left ventricular compliance	0.45 ml/mmHg
C_{A}	Aortic compliance	0.08 ml/mmHg
$C_{\rm S}$	Systemic arterial compliance	1.2 ml/mmHg
$C_{\rm V}$	Venous compliance	50 ml/mmHg
R _M	Mitral valve resistance	0.005 mmHg s/ml
$R_{\rm AoV}$	Aortic valve resistance	0.005 mmHg s/ml
R _S	Systemic arterial resistance	1.1 mmHg s/ml
R _C	Characteristic resistance	0.05 mmHg s/ml
Ri	LVAD inlet resistance	0.0677 mmHg s/ml
Ro	LVAD outlet resistance	0.0677 mmHg s/ml
$R_{\rm AVP}$	Damping of AVP	300 mmHg cm s
$L_{\rm S}$	Arterial inertance	0.001 mmHg s ² /ml
Li	Inlet inertance of LVAD	0.0127 mmHg s ² /ml
Lo	Outlet inertance of LVAD	0.0127 mmHg s ² /ml
$L_{\rm AVP}$	Inertia of AVP	30 mmHg cm s ²
β	Pump-to-pressure coefficient	-9.9025e-7
$A_{\rm LA}$	Left atrial cross-section	25 cm^2
$A_{\rm LV}$	Left ventricular cross-section	50 cm^2
F _{AC}	Left atrial contraction force	1000 mmHg cm ²
F _{VC}	LV contraction force	5000 mmHg cm ²
k _{RAD}	Radial function coefficient	1.2
S _D	Switching threshold for AVP	0.4 cm

2 Optimization parameter values

The following lower and upper bounds for the variables of the optimization problems were applied.

$$\mathbf{p} = [R_{\text{AVP}}, C_{\text{LV}}, L_{\text{AVP}}, F_{\text{VC}}, F_{\text{AC}}, A_{\text{LV}}, A_{\text{LA}}, k_{\text{RAD}}, S_D]^{\top},$$

$$\mathbf{p}_{\text{lb}} = [100, 0.45, 15, 4500, 900, 30, 15, 0.5, 0.2]^{\top},$$

$$\mathbf{p}_{\text{ub}} = [600, 5, 60, 7000, 1500, 42, 25, 1.35, 0.6]^{\top},$$

$$\mathbf{x} = [P_{\text{LA}}, P_{\text{LV}}, P_{\text{A}}, P_{\text{S}}, P_{\text{V}}, Q_{\text{A}}, Q_{\text{LVAD}}, v, s]^{\top},$$

$$\mathbf{x}_{\text{lb}} = [0, 0, 40, 0, 0, -100, -60, -15, -1.2]^{\top},$$

$$\mathbf{x}_{\text{ub}} = [60, 150, 160, 160, 150, 1000, 300, 15, 1.2]^{\top},$$

$$\mathbf{u}_{\text{lb}} = 2000, \quad \mathbf{u}_{\text{ub}} = 16000.$$

We used as initial differential state value for the parameter estimation problem:

$$\mathbf{x}_0 = [8, 8, 90, 90, 8, 10, 0, 0, -0.2]^{+}$$

Furthermore, the following parameters for constraints were applied:

$$\begin{split} \boldsymbol{\varepsilon}_{\mathrm{flow}} &= 10 \text{ ml/s}, \quad \boldsymbol{\varepsilon}_{\mathrm{back}} = -40 \text{ ml/s}, \quad \boldsymbol{\varepsilon}_{\mathrm{CO}} = 80 \text{ ml}, \\ \boldsymbol{V}_{\mathrm{CO}} &= 5000 \text{ ml}, \quad \boldsymbol{\varepsilon}_{\mathrm{sw}} = 0.001, \quad \boldsymbol{\varepsilon}_{\mathrm{per}} = 0.09, \\ \boldsymbol{\varepsilon}_{\mathrm{partial}} &= 0.01 \text{ ml}. \end{split}$$

The minimum dwell times for the pwc pump speed levels were

$$D_1 = 0.1s, \quad D_2 = 0.1s, \quad D_3 = 0.1s.$$

We also enforced upper bounds τ_{ub} on the seven phase durations to be

 $\tau_{\rm ub} = [0.3, 0.2, 0.2, 0.2, 0.2, 0.3, 0.5]^{\top}$ seconds.

The objective parameters are

$$\rho_1 = 0.5$$
, $\rho_2 = 0.000133$ J / (mmHg ml), $\rho_3 = 0.01$ J s/ml.

We used the following IPOPT setting: 'tol': 1e-6, 'constr_viol_tol': 1e-6, 'compl_inf_tol': 1e-6, 'dual_inf_tol': 1e-6.