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S1 Probability Mass Functions of projection edge weights under ensemble backbone models
In the subsections below, we derive the probability mass functions of P ∗ij used by ensemble backbone
models to evaluate the statistical significance of the weight of edge Pij in a bipartite projection. We
use the following notation:

• Let B be an m × n bipartite matrix, with a vector of row sums R = (r1, . . . , rm), a vector of
column sums C = (c1, . . . , cn), and f cells containing a 1. So

f =
m∑
i=1

ri =
n∑
j=1

cj .

• Let BM be the ensemble of all m × n matrices B∗ = (B∗ij) that obey the constraints of the

respective model. In all models, the probability distribution on BM is uniform except in the
stochastic case.

• Let P ∗ij be a random variable equal to (B∗B∗T )ij for all B∗ ∈ BM. Note that we have

P ∗ij = B∗i1B
∗
j1 +B∗i2B

∗
j2 + · · ·+B∗inB

∗
jn. (1)

S1.1 Fixed Fill Model (FFM)

Let the fixed fill model constrain all B∗ ∈ BFFM to contain the same number of 1s (i.e. fill) as B.

Theorem S1.1. Under the fixed fill model, the distribution of P ∗ij for i 6= j satisfies

Pr(P ∗ij = k) =

(
n

k

)∑
r

2n−k−r
(
n− k
r

)(
(m− 2)n

f − n− k + r

)
(
mn

f

) . (2)

Proof. For the denominator we need to compute the cardinality #BFFM. If B∗ ∈ BFFM then B∗ has
mn entries of which f must be chosen to be ones. So

#BFFM =

(
mn

f

)
.

For the numerator, suppose P ∗ij = k. We see from equation (1) that there are exactly k columns c where

B∗ic = B∗jc = 1. There are
(
n
k

)
ways to choose these columns. Now define the following parameters:

p = number of columns c where B∗ic = 1 and B∗jc = 0,

q = number of columns c where B∗ic = 0 and B∗jc = 1,

r = number of columns c where B∗ic = 0 and B∗jc = 0.

1



The number of ways to pick the columns counted by these parameters from the n − k columns which
do not contains ones in both rows is the trinomial coefficients

(
n−k
p,q,r

)
. Now we have used 2k + p + q

ones in rows i and j. So there are f − 2k − p− q left to distribute to the remaining m− 2 rows. And
these rows have (m−2)n entries. So the number of possibilities for these remaining ones is

( (m−2)n
f−2k−p−q

)
.

Thus the total number of choices from this and the previous paragraph is(
n

k

) ∑
p+q+r=n−k

(
n− k
p, q, r

)(
(m− 2)n

f − 2k − p− q

)
=

(
n

k

) ∑
p+q+r=n−k

(
n− k
r

)(
n− k − r

p

)(
(m− 2)n

f − n− k + r

)

=

(
n

k

)∑
r

(
n− k
r

)(
(m− 2)n

f − n− k + r

)∑
p

(
n− k − r

p

)

=

(
n

k

)∑
r

2n−k−r
(
n− k
r

)(
(m− 2)n

f − n− k + r

)
as desired.

For even modestly large B, computing equation (2) involves values larger than can be handled by some
programs. In practice, we use logs to make these computations practical.

We now show that the sum in the numerator of this probability is related to the famous Jacobi orthogonal
polynomials. This sum is a terminating hypergeometric series. Given a real number a and a nonnegative
integer r the corresponding Pochhammer symbol or rising factorial is

(a)r = a(a+ 1)(a+ 2) · · · (a+ r − 1).

Note that if a is an integer with −r < a ≤ 0 then (a)r = 0 because the product contains 0 as a
factor. Given real numbers a1, a2, . . . , ap and b1, b2, . . . , bq as well as a variable z, the corresponding
hypergeometric series is

pFq

[
a1 a2 . . . ap
b1 b2 . . . bq

; z

]
=
∑
r≥0

(a1)r(a2)r · · · (ap)r
(b1)r(b2)r · · · (bq)r

zr

r!
.

Note that if any of the ai are negative integers then, because of the remark above, this series will
terminate and become a polynomial in z.

To convert a binomial coefficient into Pochhammer symbols, we write(
n

r

)
=

(n)(n− 1) · · · (n− r + 1)

r!

=
(−1)r(−n)(−n+ 1) · · · (−n+ r − 1)

(1)r

=
(−1)r(−n)r

(1)r
.

The following identity will also be useful

(a)b+r = (a)(a+ 1) · · · (a+ b− 1)× (a+ b)(a+ b+ 1) · · · (a+ b+ r − 1)

= (a)b(a+ b)r.
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We now return to the sum in the numerator of equation (2). We will ignore the factor of 2n−k since it
is constant with respect to the sum and so can be pulled outside. For simplicity of calculation we will
also use the substitutions

s = (m− 2)n, t = f − n− k.

Thus we have∑
r

2−r
(
n− k
r

)(
(m− 2)n

f − n− k + r

)
=
∑
r

(
n− k
r

)(
s

t+ r

)
(1/2)r

=
∑
r

(−1)r(k − n)r
(1)r

· (−1)t+r(−s)t+r
(1)t+r

(1/2)r

= (−1)t
∑
r

(k − n)r(−s)t(−s+ t)r
(1)t(t+ 1)r

(1/2)r

(1)r

=
(−1)t(−s)t

(1)t

∑
r

(k − n)r(−s+ t)r
(t+ 1)r

(1/2)r

r!

=

(
s

t

)
2F1

[
k − n − s+ t

t+ 1
;
1

2

]

We are indebted to Marko Petkovšek [personal communication] for pointing out that this 2F1 is, up to
a factor, a specialization of a Jacobi polynomial. Given a nonnegative integer ` and real numbers α, β
the associated Jacobi polynomial is

P
(α,β)
` (z) =

(
α+ `

`

)
2F1

[
−` `+ α+ β + 1

α+ 1
;
1− z

2

]
To make these 2F1 polynomials agree we can let ` = n− k, α = t = f − n− k,

β = −s+ t− (`+ α+ 1) = k − (m− 1)n− 1

and z = 0. With these substitutions we get

∑
r

2−r
(
n− k
r

)(
(m− 2)n

f − n− k + r

)
=

(
(m− 2)n

f − n− k

)
(
f − 2k

n− k

) P
(f−n−k, k−(m−1)n−1)
n−k (0).

S1.2 Fixed Row Model (FRM)

Let the fixed row model constrain all B∗ ∈ BFRM to have the same row sums as B.

Theorem S1.2. Under the fixed row model, the distribution of P ∗ij for i 6= j is hypergeometric and
satisfies

Pr(P ∗ij = k) =

(
rj
k

)(
n− rj
ri − k

)
(
n

ri

) .
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Proof. The total number of ways to pick ri of the n columns for ones in the ith row and rj of the n
columns for ones in the jth row is (

n

ri

)(
n

rj

)
=

(
n

ri

)
n!

rj !(n− rj)!
. (3)

So that will go in the denominator of the desired probability.

For the numerator we follow the same line of reasoning as in the previous proof, where the parameters
therein can be expressed as

p = ri − k,
q = rj − k,
r = n− ri − rj + k.

So we have a total of (
n

k

)(
n− k
p, q, r

)
=

n!

k!(ri − k)!(rj − k)!(n− ri − rj + k)!
(4)

choices.

Dividing equation (4) by (3) and cancelling n! gives

Pr(P ∗ij = k) =

rj !

k!(rj − k)!
· (n− rj)!

(ri − k)!(n− ri − rj + k)!(
n

ri

) =

(
rj
k

)(
n− rj
ri − k

)
(
n

ri

) .

as desired.

S1.3 Distribution of projection edge weights under the Fixed Column Model (FCM)

Let the fixed column model constrain all B∗ ∈ BFCM to have the same column sums as B.

Let X1, . . . , Xn be independent Bernoulli random variables. Let the probability of success for Xi be

Pr(Xi = 1) = pi.

The random variable
X = X1 + · · ·+Xn (5)

is said to have the Poisson binomial distribution with parameters p1, . . . , pn.

Theorem S1.3. Under the fixed column model, the distribution of P ∗ij for i 6= j is Poisson binomial
with parameters

p1 =
c1(c1 − 1)

m(m− 1)
, p2 =

c2(c2 − 1)

m(m− 1)
, . . . , pn =

cn(cn − 1)

m(m− 1)
.
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Proof. The B∗ik are all either zero or one and are independent in different columns when only the
column sums are fixed. So as k varies, the products B∗ikB

∗
jk are independent Bernoulli random variables.

Comparing equations (1) and (5), we see that the distribution of P ∗ij is Poisson binomial.

If column k has column sum c = ck then all zero-one vectors with sum c are equally likely for that
column of B∗. So there are

(
m
c

)
possible kth columns. The number of ways to have a success is the

number of possible columns which have ones in both positions i and j where i 6= j. So the number of
choices is the number of ways to choose the remaining c− 2 ones in that column from the other m− 2
positions, that is,

(
m−2
c−2
)
. Thus

pk = Pr(B∗ikB
∗
jk = 1) =

(
m− 2

c− 2

)
(
m

c

) =
c(c− 1)

m(m− 1)

which finishes the demonstration.

S1.4 Stochastic Degree Sequence Model (SDSM)

In the stochastic degree sequence model, BSDSM consists of all binary m × n matrices. A method is
then chosen to generate probabilities p∗ik. Finally, matrices B∗ ∈ BSDSM are generated using these
probabilities for independent Bernoulli trials, where B∗ik is filled with a one with probability p∗ik and zero
otherwise.

Theorem S1.4. Under the stochastic degree sequence model, the distribution of P ∗ij for i 6= j is Poisson
binomial with parameters

p1 = p∗i1p
∗
j1, . . . , pn = p∗inp

∗
jn.

Proof. The fact that the distribution is Poisson binomial follows immediately from the independence
assumption on the Pr(B∗ik) and equation (1). Furthermore, the probability that the kth variable is one
is

pk = Pr(B∗ikB
∗
jk = 1) = Pr(B∗ik = 1) Pr(B∗jk = 1) = p∗ikp

∗
jk.

So we are done.

S2 Familywise error rates in backbone extraction
When testing the hypothesis that an observed statistic s is different from what would be expected at
random (i.e. under a given null model), the researcher must specify a significance level α. The researcher
then computes the probability p of observing a value greater than or equal to s under the null model.
The null hypothesis is rejected and the alternative hypothesis is supported if p < α. When only one
hypothesis is being tested, this procedure ensures a Type-I error rate – a false positive, or the risk of
rejecting the null hypothesis when it is true – of α.

In the context of backbone extraction, the ‘statistic’ s is the number of co-occurrences between two
agent nodes or the edge weight in the bipartite projection, and the ‘null model’ is defined by the chosen
bipartite ensemble backbone models. When deciding whether a given edge should be included in the
backbone, the researcher is testing a single hypothesis where the null hypothesis is that the edge’s
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weight is no stronger than would be expected under the null model. If the null hypothesis is rejected,
then the edge is included in the backbone. Committing a Type-I error in this context results in including
the edge in the backbone when it should be excluded (i.e. a false positive).

When multiple independent hypotheses are tested simultaneously, the Type-I error rate is inflated.
Specifically, the familywise error rate ᾱ – the risk of making one or more Type-I errors – is 1− (1−α)t,
where t is the number of independent tests. For example, if the Type-I error rate for each hypothesis test
is α = 0.05, and t = 100 independent tests are performed, then ᾱ = 1− (1− 0.05)100 = 0.995. That
is, it is virtually guaranteed that at least one Type-I error will be committed in these 100 hypothesis
tests. Because extracting a backbone requires the researcher to conduct a hypothesis test for every
edge (with non-zero weight) in the network, backbone extraction nearly always involves testing multiple
independent hypotheses.

Many different procedures exist for controlling ᾱ when multiple independent hypothesis tests are con-
ducted. All of these procedures involve using a corrected significance level α∗ for each hypothesis test so
that ᾱ is maintained at the desired tolerance for Type-I error. The simplest but also most conservative
approach is the Bonferroni correction, which defines α∗ = α

t . Other less conservative and more powerful
corrections include the Holm-Bonferroni correction [Holm, 1979] which has been used to extract the
backbone of a political network [Aref and Neal, 2021], and the False Discovery Rate [FDR; Benjamini
and Hochberg, 1995] which has been used to extract the backbones of movie rating and international
trade networks [Saracco et al., 2017]. These correction procedures, as well as several others, are available
in the backbone package we use to extract backbones in our studies [Domagalski et al., 2021].

Using one of these procedures to control ᾱ is usually appropriate when extracting the backbone of a
bipartite projection. Doing so is often straightforward because (1) many backbone models we consider
(FRM, FCM, FFM, SDSM) yield exact p-values, and (2) the backbone package we use to extract
backbones in our studies implements several different methods for correcting α∗ and thus controlling ᾱ.
However, for reasons we describe below, it is computationally infeasible to control ᾱ when extracting
backbones using FDSM. While this represents a significant limitation to using FDSM backbones in
practice, and is a key reason we are seeking alternatives, this is not a problem for our studies. Within
each of our studies, the rate of Type-I error inflation is identical for all backbones, which means that
uncorrected FDSM backbones can be compared to uncorrected non-FDSM backbones.

S2.1 Controlling FWER in FDSM backbones
It is computationally infeasible to control ᾱ when the backbone is extracted from a bipartite projection
using FDSM. The challenge arises because each edge’s p-value is estimated via a Monte Carlo procedure,
and estimating these p-values with sufficient precision and confidence requires an impractically large
number of Monte Carlo trials. In this section, we describe one way to estimate the required number of
trials, and illustrate why controlling ᾱ in FDSM backbones is impractical.

Because the associated probability mass function is unknown, when using FDSM to extract a backbone,
the p-value of a given edge’s weight (i.e. the probability that the same or larger edge weight would be
observed under the null model) is estimated via Monte Carlo methods. Following N Monte Carlo trials
in which a projection P ∗ is constructed from a random B∗ ∈ BFDSM, the p-value of the edge between
i and j is

pij =
number of trials where P ∗ij ≥ Pij

N
.

Therefore, the estimation of pij is equivalent to estimating a proportion from a sample.
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Determining the sample size required to estimate a proportion from a sample with a given error tolerance
is a well-studied problem in statistical inference, under the heading of power analysis. Fleiss et al. [2013]
show that the required minimum sample N to determine whether an estimated proportion P1 differs
from a hypothesized proportion P0, with a Type-I error rate of ε1 and Type-II error rate of ε2, is

N ≥

[
zε1
√
P0 (1− P0) + zε2

√
P1 (1− P1)

P1 − P0

]2
,

where z represents the critical value corresponding to ε1 or ε2 in the standard normal distribution. Note
that the Type-II error rate is the opposite of the Type-I error rate, the risk of failing to rejecting the
null hypothesis when it is, in fact, false (i.e. a false negative). In the backbone context, committing a
Type-II error results in excluding an edge from the backbone when it should be included. They further
recommend performing a minor correction to arrive at a final estimate N ′

N ′ ≥ N +
1

|P1 − P0|
.

With a small adaptation to their first expression, we can use these to estimate the required number of
FDSM Monte Carlo trials. We wish to use it to determine the required minimum number of Monte Carlo
samples N to determine whether an edge’s estimated p-value pij differs from our corrected significance
level α∗. Accordingly, we can re-write the expression given by Fleiss et al. [2013] as:

N ≥

[
zε1
√
α∗ (1− α∗) + zε2

√
pij (1− pij)

pij − α∗

]2
.

Two examples serves to illustrate how this expression implies that an impractically large number of
Monte Carlo trials will be required under even modest assumptions. Suppose we are using FDSM to
extract the backbone from a projection of a 100 agent × 1000 artifact bipartite network, and we wish
to maintain a familywise error rate of ᾱ = 0.05. If we assume that our bipartite projection will be dense
(hence the need for extracting its backbone) and will not contain any zero-weight edges, then we must

conduct 100(100−1)
2 = 4950 independent hypothesis tests. Using the Bonferroni correction for simplicity

of illustration, this implies a corrected two-tailed significance level of α∗ = 0.05/4950
2 ≈ 0.000005 for

each test. Further, assume that we are willing to tolerate a 5% risk of incorrectly including an edge (i.e.
Type-I error, ε1 = 0.05), and a 5% risk of incorrectly excluding an edge (i.e. Type-II error, ε2 = 0.05),
because both types of errors are equally problematic for graphs.

Under these assumptions, we can consider two scenarios. First, we can determine how many (additional)
trials are necessary to make a decision about an edge whose statistical significance appears unambiguous
after some number of initial trials. When it appears that pij = 0, this represents a ‘best case scenario’
in which it should be relatively easy to reach a decision about whether the edge should be included in
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the backbone. We can compute the required number of trials as:

N ≥

[
z.05
√

0.000005 (1− 0.000005) + z.05
√

0 (1− 0)

0− 0.000005

]2

N ≥

[
1.64

√
0.000005 (1− 0.000005) + 1.64

√
0 (1− 0)

0− 0.000005

]2
N ≥ 535 695 (initial estimate)

N ′ ≥ 535 695 +
1

|0− 0.000005|
N ′ ≥ 733 695 (adjusted estimate)

Under this best case scenario, at least 733,695 Monte Carlo trials are required to reach a decision given
our familywise error rate and tolerances for Type-I and Type-II errors. Recall that each Monte Carlo
trial requires sampling one B∗ ∈ BFDSM using the curveball algorithm, then multiplying B∗ by its
transpose. Although the running time of these two operations is relatively fast (approximately 0.07
seconds on the system we use to evaluate running times in Study 1), performing the required number
of trials under this best case scenario would take around 14 hours.

Second, consider a more realistic scenario in which, after some initial number of trials, an edge’s
statistical significance is more ambiguous because pij is near α∗. For the sake of illustration, consider an
edge whose p-value we initially estimate as pij = 0.0000038, which appears smaller than α∗ = 0.000005,
but is close and therefore riskier. In this case,

N ≥ 29 845 088 (initial estimate)

N ′ ≥ 30 637 088 (adjusted estimate)

Under this more realistic scenario, where the edge’s statistical significance is not unambiguous, over 30
million Monte Carlo trials are required to reach a decision given our error tolerance. This would require
a running time of approximately 25 days.
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