Title:

Er:YAG laser irradiation enhances bacterial and lipopolysaccharide clearance and human gingival fibroblast adhesion on titanium discs

Chen-Ying Wang ^{1,2#}, Bor-Shiunn Lee ^{1,3#}, Ya-Ting Jhang ^{1,4}, Kevin Sheng-Kai Ma ⁵, Chen-Pang Huang ^{1,4}, Kuan-Lun Fu ^{1,4}, Chern-Hsiung Lai ⁶, Wan-Yu Tseng ^{1,2}, Mark Yen-Ping Kuo ^{1,2}, Yi-Wen Chen ^{1,4*}.

* Corresponding author

[#] Prof. Wang and Prof. Lee contributed equally to this work as first authors.

¹ Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan

² School of Dentistry, National Taiwan University, Taipei, Taiwan

³ Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan

⁴ Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan

⁵ Department of Life Science, National Taiwan University, Taipei, Taiwan

⁶ College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan

b= distance from tip end d= diameter of the fiber core θ = beam divergence D= diameter of the fiber varied by distance b

S= Irradiation area

D=d+2a=d+2btan θ S= π xD²/4= π x(d+2btan θ)²/4 Radiant exposure = Radiant energy x Tip transmittance/ Irradiation area(S)

b=0 mm, d=0.6mm, θ =5.2, D=0.78 mm, S=0.28 mm² Radiant exposure = 80mJ X 0.62 / 0.28mm² = 177.14 mJ/mm² = 17.714 J/cm²

In our study:

b=1 mm, d=0.6mm, θ =5.2, D=0.78 mm, S=0.48 mm² Radiant exposure = 80mJ x 0.62 / 0.48mm² = 103.33 mJ/mm² = 10.333 J/cm²

The declined rate is 10.333 / 17.714=0.5833

Considering the titanium surface (7.5 mm x 7.5 mm x 3.14=176.625 mm²) and irradiation time (600 seconds) The total radiant exposure is

80 mJ/pulse x 0.62 x 25 pulse/sec x 600 sec x 0.5833 / 176.625 mm2= 2457 mJ/mm²=245.7 J/cm²