Title: Depletion of Central Memory CD8⁺ T Cells Might Impede the Antitumor Therapeutic Effect of Mogamulizumab

Authors: Yuka Maeda¹, Hisashi Wada^{2*}, Daisuke Sugiyama³, Takuro Saito⁴, Takuma Irie¹, Kota Itahashi¹, Kodai Minoura⁵, Susumu Suzuki⁶, Takashi Kojima⁷, Kazuhiro Kakimi⁸, Jun Nakajima⁹, Takeru Funakoshi¹⁰, Shinsuke Iida¹¹, Mikio Oka¹², Teppei Shimamura⁵, Toshihiko Doi⁷, Yuichiro Doki⁴, Eiichi Nakayama¹³, Ryuzo Ueda^{6*} and Hiroyoshi Nishikawa^{1,3*}

Supplementary Information

Supplementary Fig. 1: Clinical courses of patients with solid cancers treated with mogamulizumab.

Supplementary Fig. 2: The entire landscape of changes at pre- and post- mogamulizumab treatment.

Supplementary Fig. 3: The gating strategy for T cell assays.

Supplementary Fig. 4: Control of CCR4 expression by FoxP3 in CD4⁺ T cells and ATLL cell line.

Supplementary Fig. 5: NK-cell exhaustion and CCR4 expression in T cell subsets are potentially associated with patient survival.

Supplementary Fig. 6: Central memory CD8⁺ T cells and eTreg cells exhibit different sensitivity to mogamulizumab treatment.

Supplementary Table 1. Patient characteristics and clinical responses who were examined with CyTOF.

Supplementary Table 2. Antibodies and tetramers used in the CyTOF analyses.

Supplementary Table 3. Antibodies and tetramers used in the flow cytometry analyses. Supplementary methods

Supplementary Fig. 1: Clinical courses of patients with solid cancers treated with mogamulizumab.

a, **b**. Kaplan-Meier curves of OS (**a**) and PFS (**b**) for 39 CCR4-negative solid cancer patients (11 esophageal cancer, 12 lung cancer, 6 malignant melanoma, 5 gastric cancer and 5 ovarian cancer patients) who were treated with mogamulizumab (0.1 or 1.0 mg/kg). Green lines, total patients; red line, patients who received 1.0 mg/kg mogamulizumab; blue lines, patients who received 0.1 mg/kg mogamulizumab. Source data are provided as a Source Data file.

Supplementary Fig. 2: The entire landscape of changes at pre- and postmogamulizumab treatment.

a, b. UMAP projection with green color indicating cells assigned to cluster 10 (Treg cells) (**a**) and cells assigned to cluster 12, which comprised the CD8⁺ T cell population in the mixed population of CD4⁺ and CD8⁺ T cells (**b**). **c**. Boxplot of pre- and post-treatment proportions of all clusters (clusters 1, p = 0.676; 2, p = 0.449; 3, p = 0.586; 4, p = 0.065; 5, p = 0.05; 6, p = 0.704; 7, p = 0.484; 8, p = 0.052; 9, p = 0.052; 10, *p = 0.049; 11, p = 0.071; 12, p = 0.233; 13, p = 0.461; 14, p = 0.912; 15, p = 0.47; 16, p = 0.115; 17, p = 0.527; 18, p = 0.451; 19, p = 0.993; 20, p = 0.613; 21, p = 0.408; 22, p = 0.457; 23, p = 0.07; 24, p = 0.596; 25, p = 0.125; 26, p = 0.812) detected by CYBERTRACK2.0 in CyTOF analysis using PBMCs (n=4). The center line indicates the median, and the box limits indicate the 1st and 3rd quartiles. Whiskers extend to the 1.5x interquartile range. Two-sided paired Student's t-test was used for the comparison of changes at pre- and post-mogamulizumab treatment. Source data are provided as a Source Data file.

Supplementary Fig. 3: The gating strategy for T cell assays.

The live cells were identified as gating live/dead marker negative cells, and live lymphocytes were defined by gating FSC-A vs. SSC-A. Singlets were identified by exclusion of doublets using an FSC-H vs. FSC-W plot and SSC-H vs. SSC-W plot. Then, gates were set on CD3⁺cells (T cells) and then CD4⁺CD8⁻ T cells and CD4⁻CD8⁺ T cells. CD4⁺ T cells were further separated based on the expression of CD45RA and FoxP3 to identify each CD4⁺T cell subpopulation.

b

Supplementary Fig. 4: Control of CCR4 expression by FoxP3 in CD4⁺ T cells and ATLL cell line.

a. Unstimulated CD4⁺ T cells from PBMCs of healthy individuals (n = 2) were transduced with *FoxP3* gene and were cultured with IL-2 (30 IU/mL) for three days. CCR4 expression was examined with flow cytometry. Red dots, FoxP3^{high}CCR4⁺ cells; black dots, CD4⁺ T cells. **b.** Knockdown of intracellular *FoxP3* in MJ, a FoxP3-expressing ATLL cell line, mediated by shRNAs was performed. Gene expression of *CCR4* (***p* = 0.0057) and *FoxP3* (***p* = 0.0024) in MJ cell lines was examined with real time-PCR. Error bars represent the standard deviation of triplicates. **b**, two-sided unpaired Student's t-test was used. The data represent the mean \pm SD. ***p* < 0.001. Source data are provided as a Source Data file.

Supplementary Fig. 5: NK-cell exhaustion and CCR4 expression in T cell subsets are potentially associated with patient survival.

Heatmap of the frequency of exhausted NK cells and the ratios of CCR4 expression levels (mean fluorescence intensity: MFI) in eTreg cells to central memory CD8⁺ T cells (Central memory). Source data are provided as a Source Data file.

Supplementary Fig. 6: Central memory CD8⁺ T cells and eTreg cells exhibit different sensitivity to mogamulizumab treatment.

NSG mice were administered with the indicated dose of mogamulizumab at one day after transferring PBMCs ($1x10^7$ cells / mouse) and spleen cells were collected from the mouse at three days after transferring PBMCs to examine with flow cytometry. The reduction of central memory CD8⁺ T cells (Central memory) and eTreg cells was examined. Source data are provided as a Source Data file.

	OUH-04	OUH-05	OUH-10	OUH-16
sex	Female	Male	Male	Female
age (year-old)	65	64	70	73
BMI (kg/m ²)	25.7	17.6	19.7	25.8
cancer organ	Ovary	Esophagus	Stomach	Ovary
clinical response	PD	PR	PD	PD
PFS (days) (RECIST)	66	491	70	76
OS (days)	413	511	271	84

Supplementary Table 1. Patient characteristics and clinical responses who were examined with CyTOF.

Antibodies used for CyTOF						
Molecule	Clone	Company	Conjugation			
EOMES	WD1928	Fluidigm	141Pr			
CD40	5C3	Fluidigm	142Nd			
CD45RA	HI100	Fluidigm	143Nd			
CD8a	RPA-T8	Fluidigm	146Nd			
CD11c	Bu15	Fluidigm	147Sm			
CD14	RMO52	Fluidigm	148Nd			
pLck [T505]	4/LCK-Y505	Fluidigm	149Sm			
CD134 (OX40)	ACT35	Fluidigm	150Nd			
CD107a (LAMP1)	H4A3	Fluidigm	151Eu			
CD194 (CCR4)	205410	Fluidigm	153Eu			
CD3	UCHT1	Fluidigm	154Sm			
CD279 (PD-1)	EH12.2H7	Fluidigm	155Gd			
CD86	IT2.2	Fluidigm	156Gd			
pStat3 [Y705]	4	Fluidigm	158Gd			
FoxP3	236A/E7	Fluidigm	159Tb			
Tbet	4B10	Fluidigm	160Gd			
CD152 (CTLA-4)	14D3	Fluidigm	161Dy			
CD80 (B7-1)	2D10.4	Fluidigm	162Dy			
CD183 (CXCR3)	G025H7	Fluidigm	163Dy			
CD185 (CXCR5)	51505	Fluidigm	164Dy			
CD223 (LAG3)	874501	Fluidigm	165Но			
pNF-kB p65 [S529]	K10-895.12.50	Fluidigm	166Er			
CD197 (CCR7)	G043H7	Fluidigm	167Er			
CD154 (CD40L)	24-31	Fluidigm	168Er			
CD25 (IL-2R)	2A3	Fluidigm	169Tm			
CCR8	L263G8	Fluidigm	170Yb			
CD20	2H7	Fluidigm	171Yb			
pS6 [S235/S236]	N7-548	Fluidigm	172Yb			
CD274 (PD-L1)	29E.2A3	Fluidigm	175Lu			
CD4	RPA-T4	Fluidigm	176Yb			

Supplementary Table 2. Antibodies and tetramers used in the CyTOF analyses.

Antibodies used for flow cytometry						
Molecule	Clone	Company	Conjugation			
Human CD3	UCHT1	BD Biosciences	AF-700			
Human CD4	SK3	BD Biosciences	BV510			
Human CD8	RPA-T8	BD Biosciences	BV786			
Human CCR4	1G1	BD Biosciences	PerCP-Cy5.5			
Human	HI100	Diel agend	BV711			
CD45RA	HIIOU	BioLegend	AF-488			
Human PD-1	MIH4	BD Biosciences	BV421			
Human FoxP3	236A/E7	eBioscience	PE			
Human CTLA-4	BNI3	BD Biosciences	APC			
Human LAG3	17B4	Enzo	FITC			
Human CCR7	150503	BD Biosciences	PE-CF594			
Zombie NIR		BioLegend	NIR			

Supplementary Table 3. Antibodies and tetramers used in the flow cytometry analyses.

Supplementary methods

Lentivirus transduction to primary human CD4⁺ T cells

Human *FoxP3* gene were inserted into pLVSIN-EF1 α -Pur vector (Takara Bio, Shiga, Japan). In the lentiviral vector, *FoxP3*-pLVSIN-EF1 α -Pur, psPAX2 (Addgene plasmid # 12260) and pMD2.G (Addgene plasmid # 12259) were combined at a ratio of 2:1:1, respectively, in Opti-MEM (Thermo Fisher Scientific, Waltham, MA). The DNA mixture was incubated with PEI-MAX (Polysciences, Inc, Warrington, PA) at a ratio of 1:3 for 15 minutes at room temperature. The complex was added to the Lenti-X 293T cell line. The culture supernatant was collected after 24 and 48 hour incubation and was passed through a 0.45 µm pore PVDF Millex-HV filter (Millipore, Billerica, MA). Concentrated lentivirus through centrifugation at 6000g overnight was added to the culture of primary human CD4⁺ T cells, which were purified from PBMCs of healthy donors with a CD4⁺ T cells were cultured with IL-2 (30 IU/mL) for 3 days, and were examined with flow cytometry.

Lentivirus transduction to ATLL cell line

FoxP3 knockdown in MJ, a FoxP3-expressing ATLL cell line, was performed with lentiviral transduction of FoxP3-shRNA vectors purchased from Vectorbuilder (VB900097-4153eup). Transduced cells were selected with puromycin at a concentration of 5 μ g/ml for further analyses. MJ cells expressing a scrambled control shRNA were used for control (VB010000-0009mxc).

Real time-PCR

RNA was extracted from MJ cells transfected with control-shRNA or FoxP3-shRNA using a RNeasy Mini Kit (QIAGEN). cDNA was generated with a SuperScript IV VILO (Thermo Fisher Scientific), and RT-PCR was performed with PowerUp SYBR Green Master Mix (Thermo Fisher Scientific) using a QuantStudio 7 Flex Real-Time PCR System (Thermo Fisher Scientific). The gene expression was normalized with GAPDH as an endogenous control. The following PCR primers were used: GAPDH forward: GCACCGTCAAGGCTGAGAAC; GAPDH reverse: ATGGTGGTGAAGACGCCAGT; CCR4 forward: TGCTCTGCCAATACTGTGGG; ATGATCCATGGTGGACTGCG.

In vivo humanized mouse model

NSG (NOD.Cg-*Prkdc^{scid} Il2rg^{tm1Wjl}*/SzJ; 6-week-old females) mice were purchased from Charles River Laboratories (Yokohama, Japan). The mice were 6-10 week old female and housed in cages under specific pathogen free conditions, provided with sterilized standard food, given sterilized drinking water, and on a 12:12 light/dark cycle with lights on at 9:00 am. Temperature was kept at 22°C (20-26°C) and humidity at 45% (40-60%). Transferred with human PBMCs (1x10⁷ cells / mouse) through tail vein. These mice were administered with the indicated dose of mogamulizumab at one day after transferring PBMCs. Spleens were collected from the mouse at three days after transferring PBMCs, and single-cell suspensions were prepared. The cells were analyzed with an LSRFortessa instrument (BD Biosciences) and FlowJo software (BD Biosciences). All mice were maintained in a specific pathogen-free facility at Nagoya University Graduate School of Medicine. Animal care and all experiments were conducted according to the guidelines of the Animal Committee of Nagoya University after approval by the Ethics Review Committee for Animal Experimentation of Nagoya University.