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Supplementary Figure 1. Pitch behavior of the 10 best network architectures ranked by F0 estimation performance 
on natural sounds. Each column shows results from a single neural network architecture (depicted at the top). 
Detailed descriptions of each architecture are provided in Supplementary Table 1. The five rows in this grid 
correspond to the five main psychophysical experiments (see Fig. 2a-e): F0 discrimination as a function of harmonic 
number and phase (row 1), pitch estimation of alternating-phase stimuli (row 2), pitch estimation of frequency-shifted 
complexes (row 3), pitch estimation of complexes with individually mistuned harmonics (row 4), and frequency 
discrimination with pure and transposed tones (row 5). 
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Supplementary Figure 2. Network architectures producing better F0 estimation for natural sounds exhibit more 
human-like pitch behavior. The five rows in this grid correspond to the five main psychophysical experiments (see 
Fig. 2a-e): F0 discrimination as a function of harmonic number and phase (row 1), pitch estimation of alternating-
phase stimuli (row 2), pitch estimation of frequency-shifted complexes (row 3), pitch estimation of complexes with 
individually mistuned harmonics (row 4), and frequency discrimination with pure and transposed tones (row 5). First 
three columns show results measured from the 40 worst, middle, and best-performing network architectures (out of 
the 400 architectures trained in our architecture search, ranked by F0 estimation performance on natural sounds), 
respectively. Error bars plot bootstrapped 95% confidence intervals around the mean across the 40 networks. Human 
results (reproduced from Fig. 1) are shown in column 4. Column 5 contains scatter plots of human-model behavioral 
similarity (quantified as a correlation between the results of each model and that of humans) vs. validation set 
accuracy for all trained networks (reproduced from Fig. 3). Pearson correlations between validation set accuracy and 
human-model similarity for each experiment are noted in the legends. 
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Supplementary Figure 3. Deep networks better account for human psychophysical behavior than networks with just 
one convolutional layer. Of the 400 randomly-generated networks we considered, 54 contained only one 
convolutional layer. These 54 single-convolutional-layer networks produced lower validation set accuracies (z=7.31, 
p<0.001, Wilcoxon rank-sum test), shown on the x-axis of the graphs in the right column. The single-convolutional-
layer networks also produce less human-like psychophysical results. The five rows in this grid correspond to the five 
main psychophysical experiments (see Fig. 2a-e): F0 discrimination as a function of harmonic number and phase 
(row 1), pitch estimation of alternating-phase stimuli (row 2), pitch estimation of frequency-shifted complexes (row 3), 
pitch estimation of complexes with individually mistuned harmonics (row 4), and frequency discrimination with pure 
and transposed tones (row 5). In column 1, network psychophysical results are shown averaged across the top 10% 
(34 of 346) of networks (ranked by validation set performance) containing more than one convolutional layer. In 
column 2, results are shown averaged across the top 10% (5 of 54) of networks containing just one convolutional 
layer. Human results are shown in column 3. Column 4 contains scatter plots of human-model behavioral similarity 
(quantified as a correlation between the results of each model and that of humans) vs. validation set accuracy for all 
trained networks. Gray and magenta data points correspond to multi-convolutional-layer and single-convolutional-
layer networks, respectively. Median data points are included for each group to illustrate how single-layer networks 
generally both performed worse on the F0 estimation task and produced poorer matches to human behavior. Error 
bars plot bootstrapped 95% confidence intervals around the mean across architectures. When pooled across all five 
experiments, human-model similarity was lower for single-convolutional-layer networks than the remaining 346 multi-
convolutional-layer networks (z=9.24, p<0.001, two-sided Wilcoxon rank-sum test). Moreover, the top 40% of 
networks ranked according to overall human-model similarity consisted entirely of multi-convolutional-layer networks. 
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Supplementary Figure 4. Effect of number of auditory nerve fibers on F0 estimation error and discrimination 
thresholds measured from networks without spike-timing information. (a) Median F0 estimation error on the natural 
sounds validation set for 10 networks trained and tested with five different peripheral model configurations varying in 
the number of input auditory nerve fibers (ANFs) and in whether the frequency and time dimensions were 
"transposed" (indicated by superscript T). The network architectures were constrained to take a 100-by-1000 array as 
input. The default input representation was 100 frequency channels (auditory nerve fibers) by 1000 timesteps. A 
transposed input representation consists of 1000 frequency channels by 100 timesteps. To manipulate the number of 
nerve fibers while keeping the size of the input representation fixed, transposed peripheral representations with fewer 
than 1000 nerve fibers were upsampled to 1000 (via linear interpolation) along the frequency (auditory nerve fiber) 
dimension. Time was sampled at 2 kHz to yield 100 timesteps. For all networks included in the plot, the IHC filter 
cutoff frequency was set to 50 Hz to eliminate all phase-locked temporal information (see Fig. 5). (b) F0 
discrimination thresholds as a function of lowest harmonic number of synthetic tones, measured from the same 
networks as (a). The best thresholds are re-plotted to the left of the main axes. Error bars plot bootstrapped 95% 
confidence intervals around the mean across the 10 best network architectures. 
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Supplementary Figure 5. Effects of phase locking cutoff on network pitch behavior. Columns correspond to 
networks trained and tested with seven different configurations of the peripheral auditory model. Configurations 
differed in the upper frequency limit of auditory nerve phase locking (inner hair cell lowpass filter cutoff) and the 
number of auditory nerve fibers (ANFs) (see Fig. 5).  Rows correspond to the five main psychophysical experiments 
(see Fig. 2a-e): F0 discrimination as a function of harmonic number and phase (row 1), pitch estimation of alternating-
phase stimuli (row 2), pitch estimation of frequency-shifted complexes (row 3), pitch estimation of complexes with 
individually mistuned harmonics (row 4), and frequency discrimination with pure and transposed tones (row 5). Error 
bars plot bootstrapped 95% confidence intervals around the mean across the 10 best network architectures. 
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Supplementary Figure 6. Networks do not rely on place cues to F0 in the excitation pattern to produce human-like 
pitch behavior. (a) Simulated peripheral representations of the same stimulus (harmonic tone with 200 Hz F0) with 
unmodified (left column) or flattened (right column) time-averaged excitation patterns. The peaks and valleys in the 
unmodified excitation pattern, which provide place cues to F0, were eliminated by separately scaling each frequency 
channel of the nerve representation to have the same time-averaged response. (b) Psychophysical results from the 
best-performing network architecture tested on auditory nerve representations with either unmodified or flattened 
excitation patterns. In both cases, the model was trained on auditory nerve representations with unmodified excitation 
patterns. Rows correspond to the five main psychophysical experiments (see Fig. 2a-e): F0 discrimination as a 
function of harmonic number and phase (row 1), pitch estimation of alternating-phase stimuli (row 2), frequency-
shifted complexes (row 3), and complexes with individually mistuned harmonics (row 4), and frequency discrimination 
with pure and transposed tones (row 5). Error bars plot bootstrapped 95% confidence intervals around the mean 
across the 10 best network architectures.  

Unmodified
excitation pattern

a. Example auditory nerve representations

b. Effect of excitation pattern on network pitch behavior

Flattened
excitation pattern



 
 
Supplementary Figure 7. Effects of altered cochlear frequency selectivity on network pitch behavior. The four 
columns correspond to networks trained and tested with four different settings of cochlear frequency selectivity: 
linearly spaced cochlear filters with constant bandwidths (column 1), cochlear filters with bandwidths two times 
narrower than those estimated for normal hearing-humans but normally spaced (i.e., evenly spaced on an ERB scale, 
to best approximate the spacing believed to characterize the ear) (column 2), normally spaced cochlear filters with 
bandwidths matched to those of normal-hearing humans (column 3), and cochlear filters with two times broader 
bandwidths but normally spaced (column 4) (see Fig. 6). Rows correspond to the five main psychophysical 
experiments (see Fig. 2a-e): F0 discrimination as a function of harmonic number and phase (row 1), pitch estimation 
of alternating-phase stimuli (row 2), pitch estimation of frequency-shifted complexes (row 3), pitch estimation of 
complexes with individually mistuned harmonics (row 4), and frequency discrimination with pure and transposed 
tones (row 5). Error bars plot bootstrapped 95% confidence intervals around the mean across the 10 best network 
architectures. Psychophysical results were qualitatively robust to changes in peripheral frequency tuning. The main 
exceptions were the effects of harmonic phase, which were reduced for the linearly spaced models (correlations 
between human and model results for the phase randomization and alternating phase experiments were lower in the 
linearly spaced condition than in the human tuning condition; phase randomization: t(18)=3.13, p<0.01, d=1.40; 
alternating phase: t(18)=6.50, p<0.001, d=2.91; two-sided two-sample t-tests). These results are to be expected 
because the sharp tuning of the linearly spaced filters (Fig. 6B) results in less interaction between adjacent 
harmonics, which is believed to drive phase effects. 
  

Linearly spaced
cochlear filters

2x narrower coch.
filter bandwidths

Human cochlear
filter bandwidths

2x broader coch.
filter bandwidths



 
 
Supplementary Figure 8. Effects of training set sound statistics on network pitch behavior. Columns correspond to 
different training datasets (described in column titles). Rows correspond to the five main psychophysical experiments 
(see Fig. 2a-e): F0 discrimination as a function of harmonic number and phase (row 1), pitch estimation of alternating-
phase stimuli (row 2), pitch estimation of frequency-shifted complexes (row 3), pitch estimation of complexes with 
individually mistuned harmonics (row 4), and frequency discrimination with pure and transposed tones (row 5). 
Results are shown for the best-performing network architecture, averaged across 10 instances of the architecture 
trained from different random initializations. Error bars plot bootstrapped 95% confidence intervals around the mean 
across the 10 best network architectures. 
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Supplementary Figure 9. F0 discrimination thresholds as a function of lowest harmonic number, measured from 
networks trained separately on speech-only and music-only datasets. (a) Results from networks trained on simulated 
auditory nerve representations produced by a fixed peripheral auditory model (reproduced from Fig. 7c). (b) Results 
from networks trained directly on sound waveforms (first-layer “cochlear” filters were learned alongside the rest of the 
network weights; see Fig. 4). Error bars plot bootstrapped 95% confidence intervals around the mean across the 10 
best network architectures. 
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Supplementary Figure 10. Effects of auditory nerve fiber type (high vs. low spontaneous rate) on network pitch 
behavior. (a) Simulated peripheral representations of the same stimulus (harmonic tone with 200 Hz F0) with high (70 
spikes/s; left column) and low (0.1 spikes/s; right column) spontaneous rate auditory nerve fibers. (b) Psychophysical 
results from the best-performing network architecture trained and tested with each of the two different nerve fiber 
types. Rows correspond to the five main psychophysical experiments (see Fig. 2a-e): F0 discrimination as a function 
of harmonic number and phase (row 1), pitch estimation of alternating-phase stimuli (row 2), frequency-shifted 
complexes (row 3), and complexes with individually mistuned harmonics (row 4), and frequency discrimination with 
pure and transposed tones (row 5). Error bars plot bootstrapped 95% confidence intervals around the mean across 
the 10 best network architectures.  
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Supplementary Figure 11. Effects of F0 classification bin width on F0 estimation error and discrimination thresholds. 
(a) Median F0 estimation error on the natural sounds validation set for 10 networks trained and tested with five 
different F0 classification bin widths. (b) F0 discrimination thresholds as a function of lowest harmonic number of 
synthetic tones, measured from the same networks as a. The best thresholds are re-plotted to the left of the main 
axes. Error bars plot bootstrapped 95% confidence intervals around the mean across the 10 best network 
architectures. 
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Architecture arch_0191 arch_0302 arch_0288 arch_0335 arch_0346 arch_0286 arch_0083 arch_0154 arch_0190 arch_0338 

Validation set 
rank (of 400) 1 2 3 4 5 6 7 8 9 10 

Validation set 
accuracy (%) 24.9 24.6 24.1 23.6 23.6 23.5 23.4 23.2 22.7 22.7 

Operation  input [100, 1000, 1] input [100, 1000, 1] input [100, 1000, 1] input [100, 1000, 1] input [100, 1000, 1] input [100, 1000, 1] input [100, 1000, 1] input [100, 1000, 1] input [100, 1000, 1] input [100, 1000, 1] 

1 conv_1 [2, 83, 32] conv_1 [1, 250, 32] conv_1 [3, 77, 64] conv_1 [1, 71, 32] conv_1 [3, 53, 32] conv_1 [1, 180, 64] conv_1 [2, 82, 32] conv_1 [1, 70, 64] conv_1 [2, 97, 32] conv_1 [2, 110, 64] 

2 relu_1 [99, 918, 32] relu_1 [100, 751, 32] relu_1 [98, 924, 64] relu_1 [100, 930, 32] relu_1 [98, 948, 32] relu_1 [100, 821, 64] relu_1 [99, 919, 32] relu_1 [100, 931, 64] relu_1 [99, 904, 32] relu_1 [99, 891, 64] 

3 pool_1 [1, 2] pool_1 [1, 5] pool_1 [1, 2] pool_1 [1, 1] pool_1 [1, 2] pool_1 [2, 6] pool_1 [1, 2] pool_1 [1, 5] pool_1 [1, 6] pool_1 [3, 2] 

4 norm_1 [99, 459, 32] norm_1 [100, 151, 32] norm_1 [98, 462, 64] norm_1 [100, 930, 32] norm_1 [98, 474, 32] norm_1 [50, 137, 64] norm_1 [99, 460, 32] norm_1 [100, 187, 64] norm_1 [99, 151, 32] norm_1 [33, 446, 64] 

5 conv_2 [1, 164, 64] conv_2 [19, 11, 64] conv_2 [1, 193, 128] conv_2 [1, 114, 32] conv_2 [1, 60, 64] conv_2 [2, 37, 128] conv_2 [1, 162, 64] conv_2 [7, 21, 128] conv_2 [5, 11, 64] conv_2 [1, 126, 128] 

6 relu_2 [99, 296, 64] relu_2 [82, 141, 64] relu_2 [98, 270, 128] relu_2 [100, 817, 32] relu_2 [98, 415, 64] relu_2 [49, 101, 128] relu_2 [99, 299, 64] relu_2 [94, 167, 128] relu_2 [95, 141, 64] relu_2 [33, 321, 128] 

7 pool_2 [3, 7] pool_2 [1, 7] pool_2 [4, 3] pool_2 [1, 3] pool_2 [2, 4] pool_2 [1, 1] pool_2 [2, 2] pool_2 [4, 3] pool_2 [1, 1] pool_2 [3, 3] 

8 norm_2 [33, 43, 64] norm_2 [82, 21, 64] norm_2 [25, 90, 128] norm_2 [100, 273, 32] norm_2 [49, 104, 64] norm_2 [49, 101, 128] norm_2 [50, 150, 64] norm_2 [24, 56, 128] norm_2 [95, 141, 64] norm_2 [11, 107, 128] 

9 conv_3 [5, 9, 128] conv_3 [12, 9, 128] conv_3 [8, 10, 128] conv_3 [1, 86, 64] conv_3 [3, 46, 128] conv_3 [15, 10, 128] conv_3 [1, 72, 128] conv_3 [4, 26, 256] conv_3 [1, 56, 128] conv_3 [4, 30, 256] 

10 relu_3 [29, 35, 128] relu_3 [71, 13, 128] relu_3 [18, 81, 128] relu_3 [100, 188, 64] relu_3 [47, 59, 128] relu_3 [35, 92, 128] relu_3 [50, 79, 128] relu_3 [21, 31, 256] relu_3 [95, 86, 128] relu_3 [8, 78, 256] 

11 pool_3 [1, 7] pool_3 [3, 1] pool_3 [2, 6] pool_3 [4, 1] pool_3 [1, 6] pool_3 [1, 1] pool_3 [4, 2] pool_3 [1, 6] pool_3 [4, 7] pool_3 [2, 5] 

12 norm_3 [29, 5, 128] norm_3 [24, 13, 128] norm_3 [9, 14, 128] norm_3 [25, 188, 64] norm_3 [47, 10, 128] norm_3 [35, 92, 128] norm_3 [13, 40, 128] norm_3 [21, 6, 256] norm_3 [24, 13, 128] norm_3 [4, 16, 256] 

13 conv_4 [4, 3, 256] conv_4 [7, 7, 256] conv_4 [2, 2, 256] conv_4 [13, 13, 128] conv_4 [8, 1, 256] fc_1 [512] conv_4 [6, 3, 128] conv_4 [2, 1, 512] conv_4 [8, 5, 256] conv_4 [1, 5, 256] 

14 relu_4 [26, 3, 256] relu_4 [18, 7, 256] relu_4 [8, 13, 256] relu_4 [13, 176, 128] relu_4 [40, 10, 256] relu_fc_1 [512] relu_4 [8, 38, 128] relu_4 [20, 6, 512] relu_4 [17, 9, 256] relu_4 [4, 12, 256] 

15 pool_4 [2, 1] pool_4 [1, 1] pool_4 [2, 2] pool_4 [1, 8] pool_4 [2, 2] norm_fc_1 [512] pool_4 [2, 5] pool_4 [2, 1] pool_4 [1, 2] pool_4 [1, 3] 

16 norm_4 [13, 3, 256] norm_4 [18, 7, 256] norm_4 [4, 7, 256] norm_4 [13, 22, 128] norm_4 [20, 5, 256] dropout [512] norm_4 [4, 8, 128] norm_4 [10, 6, 512] norm_4 [17, 5, 256] norm_4 [4, 4, 256] 

17 conv_5 [5, 2, 512] conv_5 [5, 3, 512] conv_5 [2, 1, 512] conv_5 [2, 10, 256] conv_5 [7, 2, 256] fc_out [700] fc_1 [128] conv_5 [5, 3, 256] conv_5 [1, 3, 256] conv_5 [2, 2, 512] 

18 relu_5 [9, 2, 512] relu_5 [14, 5, 512] relu_5 [3, 7, 512] relu_5 [12, 13, 256] relu_5 [14, 4, 256]   relu_fc_1 [128] relu_5 [6, 4, 256] relu_5 [17, 3, 256] relu_5 [3, 3, 512] 

19 pool_5 [1, 1] pool_5 [3, 1] pool_5 [1, 1] pool_5 [1, 3] pool_5 [1, 1]   norm_fc_1 [128] pool_5 [1, 1] pool_5 [2, 1] pool_5 [1, 1] 

20 norm_5 [9, 2, 512] norm_5 [5, 5, 512] norm_5 [3, 7, 512] norm_5 [12, 5, 256] norm_5 [14, 4, 256]   dropout [128] norm_5 [6, 4, 256] norm_5 [9, 3, 256] norm_5 [3, 3, 512] 

21 fc_1 [256] fc_1 [1024] conv_6 [2, 4, 1024] conv_6 [3, 2, 512] conv_6 [2, 2, 512]   fc_out [700] conv_6 [2, 2, 256] dropout [6912] conv_6 [1, 1, 1024] 

22 relu_fc_1 [256] relu_fc_1 [1024] relu_6 [2, 4, 1024] relu_6 [10, 4, 512] relu_6 [13, 3, 512]     relu_6 [5, 3, 256] fc_out [700] relu_6 [3, 3, 1024] 

23 norm_fc_1 [256] norm_fc_1 [1024] pool_6 [1, 1] pool_6 [2, 1] pool_6 [2, 1]     pool_6 [1, 1]   pool_6 [1, 1] 

24 dropout [256] dropout [1024] norm_6 [2, 4, 1024] norm_6 [5, 4, 512] norm_6 [7, 3, 512]     norm_6 [5, 3, 256]   norm_6 [3, 3, 1024] 

25 fc_out [700] fc_out [700] fc_1 [256] dropout [10240] conv_7 [1, 1, 512]     conv_7 [3, 1, 256]   conv_7 [1, 1, 1024] 

26     relu_fc_1 [256] fc_out [700] relu_7 [7, 3, 512]     relu_7 [3, 3, 256]   relu_7 [3, 3, 1024] 

27     norm_fc_1 [256]   pool_7 [1, 1]     pool_7 [1, 1]   pool_7 [1, 1] 

28     dropout [256]   norm_7 [7, 3, 512]     norm_7 [3, 3, 256]   norm_7 [3, 3, 1024] 

29     fc_out [700]   fc_1 [512]     dropout [2304]   fc_1 [256] 

30         relu_fc_1 [512]     fc_out [700]   relu_fc_1 [256] 

31         norm_fc_1 [512]         norm_fc_1 [256] 

32         dropout [512]         dropout [256] 

33         fc_out [700]         fc_out [700] 

34                     

 
Supplementary Table 1. Details of 10 best network architectures. Columns correspond to 10 distinct convolutional 
neural network architectures (the 10 best-performing networks identified in our random architecture search). Rows 
include descriptors of constituent network operations. Grey horizontal bands group operations by convolutional layer. 
With two exceptions, all results figures present results averaged across all 10 architectures. The two exceptions are 
Fig. 9a, which features only the best-performing architecture (arch_0191), and Supplementary Fig. 1, which displays 
results separately for each of these 10 architectures. Legend: 
• 𝑐𝑜𝑛𝑣 [ℎ,𝑤, 𝑘] : convolutional layer with ℎ = kernel height (frequency dimension), 𝑤 = kernel width (time 

dimension), and 𝑘 = number of kernels 
• 𝑟𝑒𝑙𝑢 [𝑁! ,𝑁! ,𝑁!] : rectified linear unit activation function operating on inputs with the specified shape (𝑁! = 

frequency dimension, 𝑁! = time dimension, and 𝑁! = kernel dimension) 
• 𝑝𝑜𝑜𝑙 [𝑠! , 𝑠!]: weighted averaged pooling operation with stride 𝑠! in the frequency dimension and stride 𝑠! in the 

time dimension 
• 𝑛𝑜𝑟𝑚 [𝑁! ,𝑁! ,𝑁!] : batch normalization operating on inputs with the specified shape (𝑁! = frequency dimension, 
𝑁! = time dimension, and 𝑁! = kernel dimension) 

• 𝑓𝑐 𝑁  : fully-connected layer with 𝑁 units 
• 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 : dropout regularization with 50% dropout rate 


