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<b>REVIEWER COMMENTS</B> 

Reviewer #1 (Remarks to the Author): 

In this exciting manuscript, the authors examine a long-standing problem in auditory neuroscience- 

the underlying mechanisms of pitch perception. Where earlier computational models and 

experimental data have not been able to fully address this question, the authors use a deep neural 

network architecture to achieve fundamental frequency discrimination with a performance similar 

to that of a human listener, and perturb their model in a multitude of ways to investigate how pitch 

is processed. While we don’t know whether this particular deep neural network works using the 

same strategies as the human brain, the authors are able to accurately replicate many of the 

psychophysical pitch phenomena observed in humans (e.g. sin/rand phase f0 discrimination 

differences). Furthermore, this approach provides substantial flexibility in testing changes to the 

model not possible in nature (e.g. linearally spaced frequency tuning, training without background 

noise). Overall a well written and insightful manuscript. Only a few minor comments. 

Figure 4-superior phase locking (6kHz and 9 kHz) do not improve F0 discrimination thresholds at low 

harmonic numbers, but actually seem to do worse at high harmonic numbers. Why do you think this 

is the case? 

Figure 5-Thresholds are worse for higher harmonic numbers for narrow and wide filters, compared 

to intermediate (human filter BW). Can you speculate on the cause of this observation? 

Figure 5- To follow up on the previous comment, other species can have very different auditory 

filters, and different pitch discrimination thresholds (compared to humans). However, these deep 

neural networks seem very robust to filter changes (especially at low harmonic numbers). Can these 

DNNs explain why non-human species have substantially worse pitch discrimination thresholds? 

Figure 8- while tuning gets sharper in deep layers of the network, its worth noting that it doesn’t 

look much like neural tuning curves (which have more of a gaussian shape), and the background 

level of activity (relative to the peak mean activation) is the biggest factor changing. However, 

looking at F0 tuning to a complex tone alone may not elucidate the processing happening between 

layers. At the very least you should compare pure tone and missing fundamental tuning. There is 

evidence of this occurring potentially in example units 3642 and unit 4605 (Fig 8A), but the 

prevalence of this, and how early it occurs is important to show. 

Reviewer #2 (Remarks to the Author): 



Review of “Deep neural network models reveal interplay of peripheral coding and stimulus statistics 

in pitch perception” by Saddler, Gonzales and McDermott : 

This paper reports the results of what I believe is an important step forward in hearing sciences, 

advancing significantly our knowledge on pitch-perception auditory mechanisms in humans (pitch 

perception being a capacity playing a key role in speech and music recognition). More broadly, this 

paper also advances significantly our understanding of the complex interactions between 

environmental and biological constraints in perception. 

The study is based on an original computational approach making elegant use of a classical model of 

the human cochlea (our sensory receptor for the auditory modality) together with recent advances 

in machine-learning techniques. This approach allows a series of experimental tests that cannot be 

conducted in real human listeners : i) manipulating systematically spectral and temporal coding 

fidelity at the peripheral (cochlear) level; ii) training the central architecture of the pitch-

discrimination system with speech, music, or synthetic tones with or without altered 

characteristics). In short, this study makes two extremely valuable contributions for a journal like 

Nature Communication: not only does it provide a clear answer to a debate on the role of peripheral 

sensory mechanisms that has been revolving for more than half a century (ie, whether pitch 

perception is based on temporal vs spectral/spatial neural cues available at the sensory-receptor 

level), but it also provides clear answers to another fundamental issue in sensory sciences (ie, 

whether characteristics of natural stimuli shape central sensory mechanisms). In addition to that, 

this study makes surprising discoveries on intriguing aspects of pitch perception, such as the 

“auditory perception of the missing fundamental”, by pointing to a role of hearing in noise. I entirely 

agree with the authors that the current approach based on an optimization procedure is useful to 

provide important insights into human behaviour, because the ideal observers are quite difficult - if 

not impossible to figure out - for the (relatively complex) perceptual tasks tested here. The fact that 

the best-performing deep neural networks mimicked both qualitatively and quantitatively human 

data relatively well is another important theoretical finding of this study, revealing that humans 

make a near-optimal use of the low-level sensory cues conveyed by their cochleas. 

The manuscript is extremely well written and made easy to follow for a wide audience including of 

course psychophysicists, neuroscientists, modellers, but also physicists, computer scientists and 

clinicians with some background in neurosciences and experimental audiology (eg, ENT clinicians 

and audiologists). All figures are well designed and present the main findings in a straightforward 

way. The vast literature on the present topic is well reviewed. The method is sound and the paper 

provides enough detail for the work to be reproduced; the data are well analysed and well 

discussed. For all these reasons, I believe that this manuscript deserves being published in Nature 

Communication. For the same reasons, this paper certainly merits being cited in future hearing-

science manuals. I have only six specific but minor comments to make on this study that the authors 

may wish to take into account to improve their manuscript. 

Specific comments: 

1-Dependence on low-order harmonics (experiment A; cf. Fig 2A): The authors acknowledge several 

times that the inflection point on the curve showing simulated discrimination data was lower than in 

real human listeners. I suspect that this reflects characteristics of the model of peripheral auditory 



system used in here. The authors should elaborate more on this relative failure of the modelling 

approach, and attempt to explain why the inflection moves to the 10-15th harmonic in real 

listeners. 

2-Perception of transposed tones (experiment E; cf. Fig 2E; Figure 3E): this now “classical” result of 

the literature suggesting that a correct spatial (tonotopic representation) is requested for normal 

pitch perception is the only situation where the accuracy of model predictions are not related to the 

optimization process. Here again, the authors should elaborate on the reasons why this task does 

not follow the same trends as the other tasks. 

3-I was amazed by the relatively modest effects of altering cochlear frequency selectivity on the 

model’s performance. The results are convincing and this clearly is a major finding of the present 

study as most members of the hearing science community would assume that cochlear frequency 

selectivity strongly constrains pitch discrimination. As to the demonstration of the role of neural 

phase locking (ie, temporal fine structure) cues in pitch perception, I was especially fascinated by 

the fact that an upper limit of neural phase locking at 3kHz and above is required to reproduce the 

invariance of pitch perception to level shown by real human listeners. This as such is another key 

finding of the present study, highlighting the reason why neural phase locking is required to obtain 

robust perception for normal-hearing listeners. This finding has also important audiological 

implications for the understanding of the detrimental effects of cochlear damage (eg, caused by 

ageing or noise exposure) on auditory perception for hearing-impaired people. Recent 

neurophysiological studies indicate that cochlear damage causes a mismatch between neural 

temporal-fine structure information and the place on the basilar membrane that would “normally” 

respond to that information (Henry et al., 2013, 2016, 2019). I guess that this impact of such 

cochlear alterations on pitch perception may be simulated with the present approach by modifying 

certain aspects of the cochlear model (eg, by modifying the tip/tail component of cochlear-filters 

tuning curves). Such data would certainly trigger a huge interest in clinicians and hearing-aid 

manufacturers. 

4-Ability to extract F0 information from high-number harmonics and perception of missing 

fundamental: A very intriguing result suggests that this ability results partly from exposure to noise 

during training (eg, during auditory development). Some elaborations, or even speculations, would 

be welcome here because noise is expected to corrupt any kind of (temporal and/or spectral) cues 

rather than helping the discrimination process. One may speculate about a potential “filling in” 

phenomenon caused by noise. For instance, could it be the case that background noise elicits (poor) 

temporal cues at the output of low center-frequency (CF) cochlear channels tuned at or close the 

(missing) F0 that may assist the optimization process? In other words, at low CF channels required 

during the training phase (to test this, these channels may be turned off)? 

5-Network physiology: Simulated electrophysiology experiments on the best-performing networks 

showed that units in the deepest layers were selectively and sharply tuned to F0, consistent with 

electrophysiological data for non-human animals and brain-imaging data for humans. This is a nice 

result that certainly deserves further characterization. How does such a tuning emerge in the 

processing architecture? What are the low-level mechanisms allowing for the conversion of 

peripheral (time, place, time and place) information into a “rate-place” code for pitch ? 

6-Future directions: By showing that pitch discrimination depends both on the information available 

at the output of the peripheral auditory system and on the environmental constraints in which the 

auditory system is optimized, this study opens an exciting path that may renew the study of auditory 

development (with and without sensorineural hearing loss; eg understanding the variable outcome 

of paediatric cochlear implantation) or auditory acclimatization to hearing aids for adults. The 



authors may wish to make a short note pointing in this direction (this is already suggested on line 

653). 

End. 

References: 

Heinz MG, Henry KS (2013) Modeling disrupted tonotopicity of temporal coding following 

sensorineural hearing loss. Proc Mtgs Acoust 19:050177. 

Henry KS, Kale S, Heinz MG (2016) Distorted tonotopic coding of temporal envelope and fine 

structure with noise-induced hearing loss. J Neurosci 36:2227–2237. 
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Between Two Common Etiologies of Sensorineural Hearing Loss. J Neurosci, 39(35):6879–6887 

Reviewer #3 (Remarks to the Author): 

Review of “Deep neural network models reveal interplay of 

peripheral coding and stimulus statistics in pitch 

perception” by Saddler et al. 

This article proposes a computational approach towards teasing out the components of 
pitch perception attributable to ear physiology as opposed to the environment. 

The authors use an approach that has become common in computational neuroscience, 
namely to train deep neural networks for a task, pitch discrimination in this case, and to 
utilize the network to gain normative insights into how the brain achieves the task. The au- 
thors trained deep neural networks for pitch estimation using natural sounds pre-processed 
with a cochlear model and found that the networks exhibit human-like behavior. The au- 
thors demonstrate that altering the statistics of the sound used to train the networks alters 
the behavior of the networks, making them less human-like for “un-natural” sounds, which, 
they suggest, points to an environmental component to pitch perception. 

The novelty of this works seems to stem, not on the use of deep learning per se, but on 
its use in conjunction with inputs of different statistics to arrive at the conclusion of an 
environmental component to pitch perception. 



I appreciate the thoroughness with which the authors describe their deep learning ex- 
periments, and the experiments performed to compare the performance of ’the model’ to 
humans.  I found the fact that ’the model’ exhibits human-like behavior interesting,  as   as 
the authors’ characterization of network psychophysics. Below, I make a few com- 
ments/suggestions to the authors that I believe can help to improve the manuscript and, 
possibly, lead to interesting computational findings. 

1 Can the architecture learn the cochlear pre-processing 

module from data? 

By using a cochlear model as a pre-processing, I understand the authors’ motivation to 
impose physiological constraints on the architecture. Personally, I would find the authors’ 
finding much more interesting if the networks could learn this pre-processing stage. As far 
as I understand, from a deep learning perspective, this stage has a simple interpretation that 
one could specify as trainable layer. 

In the section “Human-like behavior is less dependent on cochlear filter bandwidths”, 
the authors say that “Linearly-spaced cochlear filters also yielded best thresholds that were 
not significantly different from those for normal human tuning...”. The Fourier basis rep- 
resents the simplest example of a linearly-spaced filter bank (you can think of the filters as 
either complex exponentials or sines/cosines). In the time domain, we can interpret filtering 
operations as convolutions, suggesting that the authors can replace the cochlear pre-
processing model with a convolutional layer with one-dimensional convolutional filters (100 
of them for the authors), followed by a Fourier transform and a magnitude nonlinearity 



to obtain. Applying this in successive windows of input sounds would yield a 100 x 1000 
representation of the same shape as that obtained by the cochlear module. I would suggest to 
the authors that they train the filters from this layer. In my opinion, analyzing the filters from 
this layer and comparing them to cochlear processing could reveal differences that lead to 
(likely) better pitch discrimination than with the cochlear module. I also suspect that training 
this layer for sound from different statistics may close the gap the authors see between speech 
and music performance. In other words, I suspect that the difference the authors see for 
different sound statistics, which I personally do not find surprising, comes from the cochlear-
processing step. I would find it interesting that the architecture learns a filter bank tailored to 
statistics of the input sounds. 

Note: What I suggest may involve neural nets with complex values, depending on im- 
plementation. There exists a rich literature on the topic. 

2 Network averaging and Bayesian deep learning/ensemble 

models 

By averaging networks to obtain ‘the model’, the authors essentially form deep ensem- bles 
[1]. These have garnered recent interest, particularly in the context of Bayesian deep learning 
[2]. I would encourage the authors to cite this literature, put ‘the model’ explic- itly in the 
context of this literature, and to think about ways in which they currently/could leverage 
Bayesian deep learning (perhaps without knowing it) in their work. In my opin- ion, doing so 
could help to raise awareness, within the neuroscience community, as to the issues of 
uncertainty quantification in deep learning. 

References 

[1] Lakshminarayanan, B., Pritzel, A., & Blundell, C. “Simple and scalable predictive 
uncertainty estimation using deep ensembles”. In Advances in Neural Information 
Process-ing Systems, pp. 64026413, 2017. 

[2] Wilson, Andrew Gordon. ”The case for Bayesian deep learning.” arXiv preprint 
arXiv:2001.10995 (2020). 
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Please note that all line numbers are taken from the pdf for review that has figures 
embedded in the text for ease of reading. We have also included a version with tracked 
changes to make it easy to see the revisions. 

 
Reviewer #1 (Remarks to the Author) 
 
In this exciting manuscript, the authors examine a long-standing problem in auditory neuroscience-  
the underlying mechanisms of pitch perception. Where earlier computational models and 
experimental data have not been able to fully address this question, the authors use a deep neural 
network architecture to achieve fundamental frequency discrimination with a performance similar to 
that of a human listener, and perturb their model in a multitude of ways to investigate how pitch is 
processed.  While we don’t know whether this particular deep neural network works using the same 
strategies as the human brain, the authors are able to accurately replicate many of the 
psychophysical pitch phenomena observed in humans (e.g. sin/rand phase f0 discrimination 
differences). Furthermore, this approach provides substantial flexibility in testing changes to the 
model not possible in nature (e.g. linearally spaced frequency tuning, training without background 
noise). Overall a well written and insightful manuscript. Only a few minor comments. 
 

Thank you! 
 
 
Figure 4-superior phase locking (6kHz and 9 kHz) do not improve F0 discrimination thresholds at low 
harmonic numbers, but actually seem to do worse at high harmonic numbers.  Why do you think this 
is the case? 
 

For networks with IHC cutoff frequencies between 320 Hz and 9000 Hz, there is a trend 
that lower phase-locking cutoffs produce slightly better F0 discrimination thresholds at 
high harmonic numbers. When the peripheral representation contains less high 
frequency phase-locked spike timing information, there is a greater incentive for 
networks to use envelope timing cues to extract F0 information (because nerve fibers 
have a reduced ability to phase-lock to the fine structure). This likely biases the learned 
strategy of the networks, resulting in better thresholds for stimuli containing only high-
numbered harmonics (for which envelope F0 cues are particularly important). When the 
peripheral representation contains superior phase-locking (6 kHz and 9 kHz IHC 
cutoffs), the reverse likely happens. The networks are incentivized to rely more on fine 
structure spike-timing (because it enables better F0 estimation on the 
speech/instrument dataset), which is less useful for stimuli containing only high 
harmonics. 
 
We have added discussion of this issue to the relevant section of the Results: 
 
“Discrimination thresholds for high-numbered harmonics were in fact slightly worse for 
increased cutoff frequencies. One explanation is that increasing the model’s access to 
fine timing information biases the learned strategy to rely more on this information, 
which is less useful for determining the F0 of stimuli containing only high-numbered 
harmonics.” (lines 347-351) 

 
 
Figure 5-Thresholds are worse for higher harmonic numbers for narrow and wide filters, compared to 
intermediate (human filter BW).  Can you speculate on the cause of this observation? 
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Somewhat poorer thresholds at higher harmonic numbers can be expected for networks 
trained with narrower cochlear filters, because narrower filters result in less salient 
envelope F0 cues (from the beating of adjacent harmonics). However, we are puzzled 
why thresholds for the broader filter networks are also poorer. 
 
We ruled out one possible explanation for the worse thresholds with altered cochlear 
filter bandwidths: overfitting of the architecture. Since we performed the architecture 
search with human filter bandwidths, it is plausible that the best network architectures 
are overfit to the human filter bandwidths. However, we found no significant differences 
between the validation set accuracies when we made the filters broader or narrower, 
suggesting this was not the case. 
 
Though we do not have an explanation for the poorer thresholds at high harmonics, we 
emphasize that the effect is not obviously consequential. For stimuli containing only 
high harmonics, human pitch perception is generally poor (thresholds are about an 
order of magnitude worse than they are for low harmonics) and all of the models exhibit 
what would be considered poor performance in this regime, and are thus all generally 
consistent with human perception for such stimuli. 
 
We have clarified this issue in the revised results section: 
 
“All three models with altered cochlear filter bandwidths produced worse thresholds for 
stimuli containing only high-numbered harmonics (Fig. 6D). While this is expected for 
the narrower and linearly-spaced conditions (smaller bandwidths result in reduced 
envelope cues from beating of adjacent harmonics), we do not have an explanation for 
why networks with broader filters also produced poorer thresholds. One possibility that 
we ruled out is overfitting of the network architectures to the human cochlear filter 
bandwidths; validation set accuracies were no worse with broader filters (t(18)=0.66, 
p=0.52; two-sample t-test). However, we note that all of the models exhibit what would 
be considered poor performance for stimuli containing only high harmonics (thresholds 
are at least an order of magnitude worse than they are for low harmonics), and are thus 
all generally consistent with human perception in this regime.” (lines 430-440) 

 
 
Figure 5- To follow up on the previous comment, other species can have very different auditory filters, 
and different pitch discrimination thresholds (compared to humans).  However, these deep neural 
networks seem very robust to filter changes (especially at low harmonic numbers). Can these DNNs 
explain why non-human species have substantially worse pitch discrimination thresholds? 
 

Our results suggest that differences between species are more likely driven by 
differences in auditory environment and/or the ecological need for an optimized F0 
estimation system than by differences in cochlear filter bandwidths per se. We suspect 
that the extremely good pitch discrimination thresholds of humans reflect some of the 
unique demands of speech and music, which may require humans to be more sensitive 
to small F0 differences than other species. By contrast, other species may not require 
comparably fine-grained discrimination abilities. This is consistent with larger 
discrimination thresholds in many non-human animals (e.g., close to an octave for 
ferrets). 
 
We have expanded our discussion of this issue in the relevant section of the 
Discussion: 



 3 

 
“While our results suggest that differences in cochlear filters alone are unlikely to 
explain absolute differences in pitch perception abilities across species, they leave 
open the possibility that human pitch abilities reflect the demands of speech and music, 
which plausibly require humans to be more sensitive to small F0 differences than other 
species. This issue could be clarified by optimizing network representations for 
different auditory tasks.” (lines 771-776) 

 
 
Figure 8- while tuning gets sharper in deep layers of the network, its worth noting that it doesn’t look 
much like neural tuning curves (which have more of a gaussian shape), and the background level of 
activity (relative to the peak mean activation) is the biggest factor changing.  However, looking at F0 
tuning to a complex tone alone may not elucidate the processing happening between layers.  At the 
very least you should compare pure tone and missing fundamental tuning.  There is evidence of this 
occurring potentially in example units 3642 and unit 4605 (Fig 8A), but the prevalence of this, and 
how early it occurs is important to show. 
 

We agree that the F0 tuning curves we had originally provided do not make for a good 
comparison to neural data – we constructed them by averaging tuning curves across 
large numbers of units (aligning the best F0s before averaging), which produces quite 
different shapes than those reported in neurophysiology experiments. We overhauled 
this figure in response to this comment and related comments from Reviewer 2. We now 
show F0 tuning curves measured from representative single units in several different 
layers in response to stimuli with different harmonic composition (including pure tones, 
complex tones containing the fundamental, and missing-fundamental complex tones), 
which better illustrates how F0 tuning properties emerge within the model. 
 
Overall, the results of this analysis at the early and deep layers are qualitatively 
consistent with previous physiological observations: the early layers exhibit tuning to 
frequency, showing responses to each resolved harmonic of complex tones. By 
contrast, the deep layers show tuning both to pure tone frequency and the F0 of 
missing-F0 complex tones. Intermediate layers are more difficult to interpret, but 
typically have broadband frequency tuning.   
 
Here is the revised figure (Fig. 9 in the revised manuscript): 
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Figure 9. Network neurophysiology. 
Network activations were measured in 
response to pure tones and  complex 
tones with four different harmonic 
compositions. (A) Left: Power spectra 
for stimuli with 200 Hz F0. Center: 
expected F0 tuning curves for an 
idealized frequency-tuned unit. The 
tuning curves are color-matched to the 
corresponding stimulus (e.g., black for 
pure tones and red for harmonics 6-14). 
A frequency-tuned unit should respond 
to pure tones near its preferred 
frequency (414 Hz) or to complex tones 
containing harmonics near its preferred 
frequency (e.g., when F0 = 212, 138, 
103.5, or 82.8 Hz, i.e. 414/2, 414/3 or 
414/4 Hz). Right: expected F0 tuning 
curves for an idealized F0-tuned unit. 
An F0-tuned unit should produce tuning 
curves that are robust to harmonic 
composition. The strength of a unit’s F0 
tuning can thus be quantified as the 
mean correlation between the pure tone 
(frequency) tuning curve and each of 
the complex tone tuning curves. (B) F0 
tuning curves measured from five 
representative units in each of five 
network layers. Units in the first layer 
(relu_0) seem to exhibit frequency 
tuning. Units in the last layer (fc_top) 
exhibit F0 tuning. (C) Left: Nominal F0 
tuning curves were measured for 
complex tones made inharmonic by 
jittering component frequencies. Center: 
Such curves are shown for one 
example unit in the network’s last layer. 
Unlike for harmonic tones, the tuning 
curves for tones with different frequency 
compositions do not align. Right: The 
overall F0 tuning of a network layer was 
computed by averaging the F0 tuning 
strength across all units in the layer. A 
unit’s F0 tuning strength was quantified 
as the mean correlation between the 
pure tone (frequency) tuning curve and 
each of the complex tone tuning curves. 
For each of our 10 best network 
architectures, overall F0 tuning 
(computed separately using either 
harmonic or inharmonic complex tones) 
is plotted as a function of network layer. 
Network units become progressively 
more F0-tuned deeper into the 

networks, but only for harmonic tones. (D) Left: Population responses of pitch-selective units in marmoset auditory 
cortex, human auditory cortex, and our model’s output layer, plotted as a function of lowest harmonic number. 
Marmoset single-unit recordings were made from 3 animals and error bars indicate SEM across 50 neurons (re-
plotted from 27). Center: Human fMRI responses to harmonic tones, as a function of their lowest harmonic number. 
Data were collected from 13 participants and error bars indicate within-subject SEM (re-plotted from 28). Responses 
were measured from a functional region of interest defined by a contrast between harmonic tones and frequency-
matched noise. Responses were measured in independent data (to avoid double dipping). Right: Network unit 
activations to harmonic tones as a function of lowest harmonic number. Activations were averaged across all units in 
the final fully-connected layer of our 10 best network architectures (error bars indicate 95% confidence intervals 
bootstrapped across the 10 best network architectures). 

 
 
And the revised Results section describing these results: 

D.  Population responses as a function of lowest harmonic number
Pitch-selective neurons in 
marmoset auditory cortex

Pitch-selective voxels in 
human auditory cortex

Mean response of
all units in fc_top

Bendor & Wang, 2005 Norman-Haignere et al., 2013

n=50 n=13

Model trained on natural sounds

C. Inharmonic complex tones disrupt F0 tuning

B. Emergence of F0 tuning in an example network 

A. Example stimuli and hypothetical idealized tuning curves
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“We simulated electrophysiology experiments on our best-performing network 
architecture by measuring time-averaged model unit activations to pure and complex 
tones varying in harmonic composition (Fig. 9A). F0 tuning curves of units in different 
network layers (Fig. 9B) illustrate a transition from frequency-tuned units in the first 
layer (relu_0, where units responded whenever a harmonic of a complex tone aligned 
with their pure-tone tuning) to complex tuning in intermediate layers (relu_2, relu_4, and 
fc_int) to unambiguous F0 tuning in the final layer (fc_top), where units responded 
selectively to specific F0s across different harmonic compositions. These latter units 
thus resemble pitch-selective neurons identified in primate auditory cortex27 in which 
tuning to the F0 of missing-fundamental complexes aligns with pure tone tuning. 
 
We quantified the F0 tuning of individual units by measuring the correlation between 
pure tone and complex tone tuning curves. High correlations between tuning curves 
indicate F0 tuning invariant to harmonic composition. In each of the 10 best-performing 
networks, units became progressively more F0-tuned deeper into the network (Fig. 9C, 
right, solid symbols). Critically, this result depended on the harmonicity of the tones. 
When we repeated the analysis with complex tones made inharmonic by jittering 
component frequencies19 (Fig. 9C, left), network units no longer showed F0 tuning (Fig. 
9B, center) and the dependence on network layer was eliminated (Fig. 9C, right, open 
symbols). In this respect the units exhibit a signature of human F0-based pitch, which is 
also disrupted by inharmonicity19,54, and of pitch-tuned neurons in non-human 
primates55. 
 
To compare the population tuning to that observed in the auditory system, we also 
measured unit activations to harmonic complexes as a function of the lowest harmonic 
in the stimulus. The F0-tuned units in our model’s final layer responded more strongly 
when stimuli contained low-numbered harmonics (Fig. 9D, right; main effect of lowest 
harmonic number on mean activation, F(1.99,17.91)=134.69, p<0.001, 𝜼𝒑𝒂𝒓𝒕𝒊𝒂𝒍𝟐 = 𝟎.𝟗𝟒). 
This result mirrors the response characteristics of pitch-selective neurons (measured 
with single-unit electrophysiology) in marmoset auditory cortex (Fig. 9D, left)27 and 
pitch-selective voxels (measured with fMRI) in human auditory cortex (Fig. 9D, 
center)28.” (lines 557-588) 

  



 6 

Reviewer #2 (Remarks to the Author) 
 
Review of “Deep neural network models reveal interplay of peripheral coding and stimulus statistics in 
pitch perception” by Saddler, Gonzales and McDermott 
 
This paper reports the results of what I believe is an important step forward in hearing sciences, 
advancing significantly our knowledge on pitch-perception auditory mechanisms in humans (pitch 
perception being a capacity playing a key role in speech and music recognition). More broadly, this 
paper also advances significantly our understanding of the complex interactions between 
environmental and biological constraints in perception. 
 
The study is based on an original computational approach making elegant use of a classical model of 
the human cochlea (our sensory receptor for the auditory modality) together with recent advances in 
machine-learning techniques. This approach allows a series of experimental tests that cannot be 
conducted in real human listeners: i) manipulating systematically spectral and temporal coding fidelity 
at the peripheral (cochlear) level; ii) training the central architecture of the pitch-discrimination system 
with speech, music, or synthetic tones with or without altered characteristics). In short, this study 
makes two extremely valuable contributions for a journal like Nature Communication: not only does it 
provide a clear answer to a debate on the role of peripheral sensory mechanisms that has been 
revolving for more than half a century (ie, whether pitch perception is based on temporal vs 
spectral/spatial neural cues available at the sensory-receptor level), but it also provides clear answers 
to another fundamental issue in sensory sciences (ie, whether characteristics of natural stimuli shape 
central sensory mechanisms). In addition to that, this study makes surprising discoveries on intriguing 
aspects of pitch perception, such as the “auditory perception of the missing fundamental”, by pointing 
to a role of hearing in noise. I entirely agree with the authors that the current approach based on an 
optimization procedure is useful to provide important insights into human behaviour, because the 
ideal observers are quite difficult - if not impossible to figure out - for the (relatively complex) 
perceptual tasks tested here. The fact that the best-performing deep neural networks mimicked both 
qualitatively and quantitatively human data relatively well is another important theoretical finding of 
this study, revealing that humans make a near-optimal use of the low-level sensory cues conveyed by 
their cochleas. 
 
The manuscript is extremely well written and made easy to follow for a wide audience including of 
course psychophysicists, neuroscientists, modellers, but also physicists, computer scientists and 
clinicians with some background in neurosciences and experimental audiology (eg, ENT clinicians 
and audiologists). All figures are well designed and present the main findings in a straightforward 
way. The vast literature on the present topic is well reviewed. The method is sound and the paper 
provides enough detail for the work to be reproduced; the data are well analysed and well discussed. 
For all these reasons, I believe that this manuscript deserves being published in Nature 
Communication. For the same reasons, this paper certainly merits being cited in future hearing-
science manuals. I have only six specific but minor comments to make on this study that the authors 
may wish to take into account to improve their manuscript. 
 

Thank you! 
 
 
Specific comments: 
 
1-Dependence on low-order harmonics (experiment A; cf. Fig 2A): The authors acknowledge several 
times that the inflection point on the curve showing simulated discrimination data was lower than in 
real human listeners. I suspect that this reflects characteristics of the model of peripheral auditory 
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system used in here. The authors should elaborate more on this relative failure of the modelling 
approach, and attempt to explain why the inflection moves to the 10-15th harmonic in real listeners. 
 

The difference in transition point may reflect shortcomings of the peripheral auditory 
model, but we do not know what those might be. We tried manipulating both the 
frequency tuning (broader and narrower filters) and spike-timing information 
(increasing and decreasing the phase-locking cutoff), and neither of these produced a 
better quantitative fit. In response to Reviewer #3’s comments, we also tried replacing 
the hard-coded peripheral auditory model with a layer of learnable filters operating 
directly on the audio. We note that the transition point of these networks remains lower 
than those reported for humans. 
 
We suspect the discrepancy is therefore more likely to be a shortcoming of the training 
dataset (which we demonstrate in Figure 6 can have a drastic effect on the transition 
point). We chose speech and music with F0s ranging from 80 to 1000 Hz for our dataset 
because (1) we felt this was a reasonable (but of course not exhaustive) representation 
of the sounds for which pitch is important to humans and (2) speech and music audio 
data covering this range of F0s was readily available in the quantities required for 
supervised machine learning. However, it seems likely that the distribution of our 
training data is not exactly matched to the sound distribution that constrains human 
pitch perception. In addition, the task our models are trained on is not exactly matched 
to the set of pitch-related tasks humans might be optimized for. It is thus is probably 
not surprising to get some quantitative discrepancy between the human and model 
results. 
 
We have added a brief discussion of these points to the revised manuscript: 
 
“For instance, the inflection point in the graph of Fig. 2A occurs at a somewhat lower 
harmonic number in the model than in humans. Given the evidence presented here that 
pitch perception reflects the stimulus statistics a system is optimized for, some 
discrepancies might be expected from the training set, which (due to the limitations of 
available corpora) consisted entirely of speech and musical instrument sounds, and 
omitted other types of natural sounds that are periodic in time. The range of F0s we 
trained on was similarly limited by available audio data sets, and prevents us from 
making predictions about the perception of very high frequencies58. The uniform 
distributions over sound level and SNR in our training dataset were also not matched in 
a principled way to the natural world. Discrepancies may also reflect shortcomings of 
our F0 estimation task (which used only 50ms clips) or peripheral model, which 
although state-of-the-art and relatively well validated, is imperfect (e.g., peripheral 
representations consisted of firing rates rather than spikes).” (lines 694-706) 

 
 
2-Perception of transposed tones (experiment E; cf. Fig 2E; Figure 3E): this now “classical” result of 
the literature suggesting that a correct spatial (tonotopic representation) is requested for normal pitch 
perception is the only situation where the accuracy of model predictions are not related to the 
optimization process. Here again, the authors should elaborate on the reasons why this task does not 
follow the same trends as the other tasks. 
 

Our results suggest that the transposed tones psychophysical result is simply a very 
robust effect that virtually any model trained to estimate F0 from natural sounds will 
exhibit. Our interpretation is that a system does not need to be highly optimized in order 
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to replicate this effect, because the transposed tones present patterns of stimulation 
that never occur for sounds with that F0. Thus, essentially any model that learns to 
associate naturally occurring peripheral cues with F0 will exhibit poor performance for 
transposed tones. 
 
We have clarified this issue in the revised paper: 
 
“For four of the five experiments (Fig. 3A-D), there was a significant positive correlation 
between training task performance and human-model similarity (p<0.001 in each case). 
The transposed tones experiment (Fig. 3E) was the exception, as all networks similarly 
replicated the main human result regardless of their training task performance. We 
suspect this is because transposed tones cause patterns of peripheral stimulation that 
rarely occur for natural sounds. Thus, virtually any model that learns to associate 
naturally-occurring peripheral cues with F0 (regardless of how well it is optimized) will 
exhibit poor performance for transposed tones.” (lines 245-252) 

 
 
3-I was amazed by the relatively modest effects of altering cochlear frequency selectivity on the 
model’s performance. The results are convincing and this clearly is a major finding of the present 
study as most members of the hearing science community would assume that cochlear frequency 
selectivity strongly constrains pitch discrimination. As to the demonstration of the role of neural phase 
locking (ie, temporal fine structure) cues in pitch perception, I was especially fascinated by the fact 
that an upper limit of neural phase locking at 3kHz and above is required to reproduce the invariance 
of pitch perception to level shown by real human listeners. This as such is another key finding of the 
present study, highlighting the reason why neural phase locking is required to obtain robust 
perception for normal-hearing listeners. This finding has also important audiological implications for 
the understanding of the detrimental effects of cochlear damage (eg, caused by ageing or noise 
exposure) on auditory perception for hearing-impaired people. 
 

Thank you. 
 
 
Recent neurophysiological studies indicate that cochlear damage causes a mismatch between neural 
temporal-fine structure information and the place on the basilar membrane that would “normally” 
respond to that information (Henry et al., 2013, 2016, 2019). I guess that this impact of such cochlear 
alterations on pitch perception may be simulated with the present approach by modifying certain 
aspects of the cochlear model (eg, by modifying the tip/tail component of cochlear-filters tuning 
curves). Such data would certainly trigger a huge interest in clinicians and hearing-aid manufacturers. 
 

The cohc parameter in the Bruce et al. (2018) auditory nerve model controls the 
contribution of the OHC and is a convenient way to model some effects of hearing loss 
(i.e., reducing the tip component of the cochlear filter tuning curves). However, in our 
experiments with the model we have always found the best frequency to remain 
unchanged when the simulated OHC contribution is reduced, in contrast to the 
published results reporting shifts in best frequency that would induce the mismatches 
described by the reviewer. Here are some example tuning curves from the model: 
 
Tuning curves with OHC loss  
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We thus feel that modeling these effects properly will require customizing the nerve 
model. This is a serious undertaking that is beyond the scope of our paper.  
 
More generally, we think the application of these methods to hearing impairment is an 
important direction in its own right, and deserves a dedicated paper if done properly 
(this is very much in our future plans). We have thus noted that this is a potentially 
impactful direction for the near future: 
 
“The approach we used here has natural extensions to understanding other aspects of 
hearing66, in which similar questions about the roles of peripheral cues have remained 
unresolved. Our methods could also be extended to investigate hearing impairment, 
which can be simulated with alterations to standard models of the cochlea67 and which 
often entails particular types of deficits in pitch perception50. Prostheses such as 
cochlear implants are another natural application of task-optimized modeling. Current 
implants restore some aspects of hearing relatively well, but pitch perception is not one 
of them68. Models optimized with different types of simulated electrical stimulation 
could clarify the patterns of behavior to expect. Models trained with either acoustically- 
or electrically-stimulated peripheral auditory representations (or combinations thereof) 
and then tested with electrically-stimulated input could yield insights into the variable 
outcomes of pediatric cochlear implantation. Similar approaches could be applied to 
study acclimatization to hearing aids in adults.” (lines 754-766) 

 
 
4-Ability to extract F0 information from high-number harmonics and perception of missing 
fundamental: A very intriguing result suggests that this ability results partly from exposure to noise 
during training (eg, during auditory development). Some elaborations, or even speculations, would be 
welcome here because noise is expected to corrupt any kind of (temporal and/or spectral) cues rather 
than helping the discrimination process. One may speculate about a potential “filling in” phenomenon 
caused by noise. For instance, could it be the case that background noise elicits (poor) temporal cues 
at the output of low center-frequency (CF) cochlear channels tuned at or close the (missing) F0 that 
may assist the optimization process? In other words, at low CF channels required during the training 
phase (to test this, these channels may be turned off)? 
 

We think that the absence of noise makes the most obvious cue to F0 (the frequency of 
the lowest harmonic) sufficient for solving the task, and the networks learn to exploit 
this. The presence of noise, which often obscures the lowest harmonic, makes the 
network adopt a different strategy (i.e., one that does not just latch on to the lowest 
harmonic) and when this strategy is tested on the psychophysical stimuli, the result is 
better discrimination of tones with exclusively higher harmonics. We note that this 
general result is consistent with other findings that machine learning models are more 
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likely to learn a robust and general strategy when noise or other forms of uncertainty 
are added to the training set. 
 
We have clarified this issue in the revised discussion section: 
 
“Networks trained without background noise did not extract F0 information from high-
numbered harmonics, relying instead solely on the lowest-numbered harmonics. Such a 
strategy evidently works well for idealized environments (where the lowest harmonics 
are never masked by noise), but not for realistic environments containing noise, and 
diverges from the strategy employed by human listeners. This result suggests that pitch 
is also in part a consequence of needing to hear in noise.” (lines 660-666) 

 
 
5-Network physiology: Simulated electrophysiology experiments on the best-performing networks 
showed that units in the deepest layers were selectively and sharply tuned to F0, consistent with 
electrophysiological data for non-human animals and brain-imaging data for humans. This is a nice 
result that certainly deserves further characterization. How does such a tuning emerge in the 
processing architecture? What are the low-level mechanisms allowing for the conversion of peripheral 
(time, place, time and place) information into a “rate-place” code for pitch? 
 

We completely re-worked Fig. 8 to better illustrate what is going on in our model. We 
show pure and complex tone F0 tuning curves for representative units at several 
different layers. They illustrate a transition from somewhat interpretable frequency-
tuned units in the earliest layer, to complex and difficult-to-describe tuning curves in 
intermediate layers, to unambiguous F0 tuning in the final layer (i.e., similar tuning to 
pure tones and missing-fundamental complex tones). 
 
Here is the revised figure (Fig. 9 in the revised manuscript): 
 

 



 11 

Figure 9. Network neurophysiology. 
Network activations were measured in 
response to pure tones and  complex 
tones with four different harmonic 
compositions. (A) Left: Power spectra 
for stimuli with 200 Hz F0. Center: 
expected F0 tuning curves for an 
idealized frequency-tuned unit. The 
tuning curves are color-matched to the 
corresponding stimulus (e.g., black for 
pure tones and red for harmonics 6-14). 
A frequency-tuned unit should respond 
to pure tones near its preferred 
frequency (414 Hz) or to complex tones 
containing harmonics near its preferred 
frequency (e.g., when F0 = 212, 138, 
103.5, or 82.8 Hz, i.e. 414/2, 414/3 or 
414/4 Hz). Right: expected F0 tuning 
curves for an idealized F0-tuned unit. 
An F0-tuned unit should produce tuning 
curves that are robust to harmonic 
composition. The strength of a unit’s F0 
tuning can thus be quantified as the 
mean correlation between the pure tone 
(frequency) tuning curve and each of 
the complex tone tuning curves. (B) F0 
tuning curves measured from five 
representative units in each of five 
network layers. Units in the first layer 
(relu_0) seem to exhibit frequency 
tuning. Units in the last layer (fc_top) 
exhibit F0 tuning. (C) Left: Nominal F0 
tuning curves were measured for 
complex tones made inharmonic by 
jittering component frequencies. Center: 
Such curves are shown for one 
example unit in the network’s last layer. 
Unlike for harmonic tones, the tuning 
curves for tones with different frequency 
compositions do not align. Right: The 
overall F0 tuning of a network layer was 
computed by averaging the F0 tuning 
strength across all units in the layer. A 
unit’s F0 tuning strength was quantified 
as the mean correlation between the 
pure tone (frequency) tuning curve and 
each of the complex tone tuning curves. 
For each of our 10 best network 
architectures, overall F0 tuning 
(computed separately using either 
harmonic or inharmonic complex tones) 
is plotted as a function of network layer. 
Network units become progressively 
more F0-tuned deeper into the 

networks, but only for harmonic tones. (D) Left: Population responses of pitch-selective units in marmoset auditory 
cortex, human auditory cortex, and our model’s output layer, plotted as a function of lowest harmonic number. 
Marmoset single-unit recordings were made from 3 animals and error bars indicate SEM across 50 neurons (re-
plotted from 27). Center: Human fMRI responses to harmonic tones, as a function of their lowest harmonic number. 
Data were collected from 13 participants and error bars indicate within-subject SEM (re-plotted from 28). Responses 
were measured from a functional region of interest defined by a contrast between harmonic tones and frequency-
matched noise. Responses were measured in independent data (to avoid double dipping). Right: Network unit 
activations to harmonic tones as a function of lowest harmonic number. Activations were averaged across all units in 
the final fully-connected layer of our 10 best network architectures (error bars indicate 95% confidence intervals 
bootstrapped across the 10 best network architectures). 

 
 
and here is the updated section of the Results: 

D.  Population responses as a function of lowest harmonic number
Pitch-selective neurons in 
marmoset auditory cortex

Pitch-selective voxels in 
human auditory cortex

Mean response of
all units in fc_top

Bendor & Wang, 2005 Norman-Haignere et al., 2013

n=50 n=13

Model trained on natural sounds

C. Inharmonic complex tones disrupt F0 tuning

B. Emergence of F0 tuning in an example network 

A. Example stimuli and hypothetical idealized tuning curves
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“We simulated electrophysiology experiments on our best-performing network 
architecture by measuring time-averaged model unit activations to pure and complex 
tones varying in harmonic composition (Fig. 9A). F0 tuning curves of units in different 
network layers (Fig. 9B) illustrate a transition from frequency-tuned units in the first 
layer (relu_0, where units responded whenever a harmonic of a complex tone aligned 
with their pure-tone tuning) to complex tuning in intermediate layers (relu_2, relu_4, and 
fc_int) to unambiguous F0 tuning in the final layer (fc_top), where units responded 
selectively to specific F0s across different harmonic compositions. These latter units 
thus resemble pitch-selective neurons identified in primate auditory cortex27 in which 
tuning to the F0 of missing-fundamental complexes aligns with pure tone tuning. 
 
We quantified the F0 tuning of individual units by measuring the correlation between 
pure tone and complex tone tuning curves. High correlations between tuning curves 
indicate F0 tuning invariant to harmonic composition. In each of the 10 best-performing 
networks, units became progressively more F0-tuned deeper into the network (Fig. 9C, 
right, solid symbols). Critically, this result depended on the harmonicity of the tones. 
When we repeated the analysis with complex tones made inharmonic by jittering 
component frequencies19 (Fig. 9C, left), network units no longer showed F0 tuning (Fig. 
9B, center) and the dependence on network layer was eliminated (Fig. 9C, right, open 
symbols). In this respect the units exhibit a signature of human F0-based pitch, which is 
also disrupted by inharmonicity19,54, and of pitch-tuned neurons in non-human 
primates55. 
 
To compare the population tuning to that observed in the auditory system, we also 
measured unit activations to harmonic complexes as a function of the lowest harmonic 
in the stimulus. The F0-tuned units in our model’s final layer responded more strongly 
when stimuli contained low-numbered harmonics (Fig. 9D, right; main effect of lowest 
harmonic number on mean activation, F(1.99,17.91)=134.69, p<0.001, 𝜼𝒑𝒂𝒓𝒕𝒊𝒂𝒍𝟐 = 𝟎.𝟗𝟒). 
This result mirrors the response characteristics of pitch-selective neurons (measured 
with single-unit electrophysiology) in marmoset auditory cortex (Fig. 9D, left)27 and 
pitch-selective voxels (measured with fMRI) in human auditory cortex (Fig. 9D, 
center)28.” (lines 557-588) 

 
 
6-Future directions: By showing that pitch discrimination depends both on the information available at 
the output of the peripheral auditory system and on the environmental constraints in which the 
auditory system is optimized, this study opens an exciting path that may renew the study of auditory 
development (with and without sensorineural hearing loss; eg understanding the variable outcome of 
paediatric cochlear implantation) or auditory acclimatization to hearing aids for adults. The authors 
may wish to make a short note pointing in this direction (this is already suggested on line 653). 
 

Thanks for pointing this out. We agree and added a short note in the discussion: 
 
“Prostheses such as cochlear implants are another natural application of task-
optimized modeling. Current implants restore some aspects of hearing relatively well, 
but pitch perception is not one of them68. Models optimized with different types of 
simulated electrical stimulation could clarify the patterns of behavior to expect. Models 
trained with either acoustically- or electrically-stimulated peripheral auditory 
representations (or combinations thereof) and then tested with electrically-stimulated 
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input could yield insights into the variable outcomes of pediatric cochlear implantation. 
Similar approaches could be applied to study acclimatization to hearing aids in adults.” 
(lines 758-766) 

 
 
References: 
 
Heinz MG, Henry KS (2013) Modeling disrupted tonotopicity of temporal coding following 
sensorineural hearing loss. Proc Mtgs Acoust 19:050177. 
 
Henry KS, Kale S, Heinz MG (2016) Distorted tonotopic coding of temporal envelope and fine 
structure with noise-induced hearing loss. J Neurosci 36:2227–2237. 
 
Henry KS, Sayles M, Hickox, ME, HeinzMG  (2019)  Divergent Auditory Nerve Encoding Deficits 
Between Two Common Etiologies of Sensorineural Hearing Loss. J Neurosci, 39(35):6879–6887 
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Reviewer #3 (Remarks to the Author) 
 
Review of “Deep neural network models reveal interplay of peripheral coding and stimulus statistics in 
pitch perception” by Saddler et al. 
 
This article proposes a computational approach towards teasing out the components of pitch 
perception attributable to ear physiology as opposed to the environment. The authors use an 
approach that has become common in computational neuroscience, namely to train deep neural 
networks for a task, pitch discrimination in this case, and to utilize the network to gain normative 
insights into how the brain achieves the task. The authors trained deep neural networks for pitch 
estimation using natural sounds pre-processed with a cochlear model and found that the networks 
exhibit human-like behavior. The authors demonstrate that altering the statistics of the sound used to 
train the networks alters the behavior of the networks, making them less human-like for “un-natural” 
sounds, which, they suggest, points to an environmental component to pitch perception. The novelty 
of this works seems to stem, not on the use of deep learning per se, but on its use in conjunction with 
inputs of different statistics to arrive at the conclusion of an environmental component to pitch 
perception. I appreciate the thoroughness with which the authors describe their deep learning 
experiments, and the experiments performed to compare the performance of ’the model’ to humans. I 
found the fact that ’the model’ exhibits human-like behavior interesting, as as the authors’ 
characterization of network psychophysics.  
 

Thank you! 
 
 
Below, I make a few comments/suggestions to the authors that I believe can help to improve the 
manuscript and, possibly, lead to interesting computational findings. 
 
1 Can the architecture learn the cochlear pre-processing module from data? 
 
By using a cochlear model as a pre-processing, I understand the authors’ motivation to impose 
physiological constraints on the architecture. Personally, I would find the authors’ finding much more 
interesting if the networks could learn this pre-processing stage. As far as I understand, from a deep 
learning perspective, this stage has a simple interpretation that one could specify as trainable layer. 
In the section “Human-like behavior is less dependent on cochlear filter bandwidths”, the authors say 
that “Linearly-spaced cochlear filters also yielded best thresholds that were not significantly different 
from those for normal human tuning...”. The Fourier basis rep- resents the simplest example of a 
linearly-spaced filter bank (you can think of the filters as either complex exponentials or 
sines/cosines). In the time domain, we can interpret filtering operations as convolutions, suggesting 
that the authors can replace the cochlear pre-processing model with a convolutional layer with one-
dimensional convolutional filters (100 of them for the authors), followed by a Fourier transform and a 
magnitude nonlinearity to obtain. Applying this in successive windows of input sounds would yield a 
100 x 1000 representation of the same shape as that obtained by the cochlear module. I would 
suggest to the authors that they train the filters from this layer. In my opinion, analyzing the filters 
from this layer and comparing them to cochlear processing could reveal differences that lead to 
(likely) better pitch discrimination than with the cochlear module. I also suspect that training this layer 
for sound from different statistics may close the gap the authors see between speech and music 
performance. In other words, I suspect that the difference the authors see for different sound 
statistics, which I personally do not find surprising, comes from the cochlear-processing step. I would 
find it interesting that the architecture learns a filter bank tailored to statistics of the input sounds. 
Note: What I suggest may involve neural nets with complex values, depending on implementation. 
There exists a rich literature on the topic. 
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We performed the suggested experiment by replacing the hardwired peripheral auditory 
model with a bank of 100 learnable cochlear filters operating directly on the audio. The 
results were interesting. Networks optimized directly on the sound waveforms exhibit 
qualitatively different (and less human-like) psychophysical behavior than networks 
optimized on the simulated nerve representations. Networks whose “cochlear 
representations” (first layer filters) were optimized specifically for F0 estimation tended 
to rely less on high-numbered harmonics. Performance with high-numbered harmonics 
was very poor and effects of harmonic phase were not evident. This result provides 
some support for the approach we adopted, in which we hard-wired the cochlear model. 
The most obvious interpretation is that the cochlea is constrained by multiple tasks or 
functions, and that its form influences the solution to f0 estimation arrived at by the 
brain (and our model). We present these findings in a new figure (Fig. 4 in the revised 
manuscript). 

 

 
 

Here is the new section of the Results text that describes this new experiment: 

Figure 4. Networks trained to estimate 
F0 directly from sound waveforms 
exhibit less human-like pitch behavior. 
(A) Schematic of model structure. Model 
architecture was identical to that 
depicted in Fig. 1A, except that the 
hardwired cochlear input representation 
was replaced by a layer of 1-dimensional 
convolutional filters operating directly on 
sound waveforms. The first-layer filter 
kernels were optimized for the F0 
estimation task along with the rest of the 
network weights. We trained the 10 best 
networks from our architecture search 
with learnable first-layer filters. (B) The 
best frequencies (sorted from lowest to 
highest) of the 100 learned filters for 
each of the 10 network architectures are 
plotted in magenta. For comparison, the 
best frequencies of the 100 cochlear 
filters in the hardwired peripheral model 
are plotted in black. (C) Effect of learned 
cochlear filters on network behavior in all 
five main psychophysical experiments 
(see Fig. 2A-E): F0 discrimination as a 
function of harmonic number and phase 
(Expt. A), pitch estimation of alternating-
phase stimuli (Expt. B), pitch estimation 
of frequency-shifted complexes (Expt. 
C), pitch estimation of complexes with 
individually mistuned harmonics (Expt. 
D), and frequency discrimination with 
pure and transposed tones (Expt. E). (D) 
Comparison of human-model similarity 
metrics between networks trained with 
either the hardwired cochlear model 
(black) or the learned cochlear filters 
(magenta) for each psychophysical 
experiment. Asterisks indicate 
significance of two-sample t-tests 

comparing the two cochlear model conditions: ***p<0.001, *p<0.05. Human-model similarity scores were significantly 
lower for networks with learned cochlear filters in Expt. A and Expt. B. Error bars indicate 95% confidence intervals 
bootstrapped across the 10 network architectures. 
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“To first determine whether a biologically-constrained cochlear model was necessary 
for human-like pitch behavior, we trained networks to estimate F0 directly from sound 
waveforms (Fig. 4A). We replaced the cochlear model with a bank of 100 one-
dimensional convolutional filters operating directly on the audio. The weights of these 
first-layer filters were optimized for the F0 estimation task along with the rest of the 
network.  
 
The learned filters deviated from those in the ear, with best frequencies tending to be 
lower than those of the hardwired peripheral model (Fig. 4B). Networks with learned 
cochlear filters also exhibited less human-like behavior than their counterparts with the 
fixed cochlear model (Fig, 4C&D). In particular, networks with learned cochlear filters 
showed little ability to extract pitch information from high-numbered harmonics. 
Discrimination thresholds for higher harmonics were poor (Fig. 4C, Expt. A) and 
networks did not exhibit phase effects (Fig. 4C, Expt. A & B). Accordingly, human-model 
similarity was significantly lower with learned cochlear filters for two of five 
psychophysical experiments (Fig. 4D; Expt. A: t(18)= 5.23, p<0.001, d=2.47; Expt. B: 
t(18)=12.69, p<0.001, d=5.98). This result suggests that a human-like cochlear 
representation is necessary to obtain human-like behavior, but also that the F0 
estimation task on its own is insufficient to produce a human-like cochlear 
representation, likely because the cochlea is shaped by many auditory tasks. Thus, the 
cochlea may be best considered as a constraint on pitch perception rather than the 
other way around.” (lines 288-309) 
 
We also trained the network with learnable cochlear filters exclusively on speech or 
music stimuli. The discrimination thresholds for the two resulting models were more 
similar than when the cochlear filters were fixed, but the best thresholds for music-only-
trained networks remained significantly lower than those for speech-only-trained 
networks. We believe this difference reflects the fact that the instrument sounds are 
more similar to the synthetic test stimuli than are the speech sounds (in which the F0 is 
constantly fluctuating). Nonetheless, this was interesting experiment to run and we 
incorporated it as a new supplemental figure (Supplemental Fig. 9 in the revised 
manuscript): 

 

 
 
Supplemental Figure 9. F0 discrimination thresholds as a function of lowest harmonic number, measured from networks 
trained separately on speech-only and music-only datasets. (A) Results from networks trained on simulated auditory nerve 
representations produced by a fixed peripheral auditory model (reproduced from Fig. 7C). (B) Results from networks trained 
directly on sound waveforms (first-layer “cochlear” filters are learned alongside the rest of the network weights; see Fig. 4). 
Error bars indicate 95% confidence intervals bootstrapped across the 10 best network architectures. 

 
 

A. B.
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2 Network averaging and Bayesian deep learning/ensemble models 
 
By averaging networks to obtain ‘the model’, the authors essentially form deep ensembles [1]. These 
have garnered recent interest, particularly in the context of Bayesian deep learning [2]. I would 
encourage the authors to cite this literature, put ‘the model’ explicitly in the context of this literature, 
and to think about ways in which they currently/could leverage Bayesian deep learning (perhaps 
without knowing it) in their work. In my opinion, doing so could help to raise awareness, within the 
neuroscience community, as to the issues of uncertainty quantification in deep learning. 
 

Thank you for the suggestion. We have included citations and a brief discussion of this 
literature in the revised paper: 
 
“Given evidence for individual differences across different networks optimized for the 
same task44, most figures feature results averaged across the 10 best networks 
identified in our architecture search (which we collectively refer to as 'the model'). 
Averaging across an ensemble of networks effectively allows us to marginalize over 
architectural hyperparameters and provide uncertainty estimates for our model’s 
results45,46.” (lines 173-178) 

 
 
References 
[1] Lakshminarayanan, B., Pritzel, A., & Blundell, C. “Simple and scalable predictive uncertainty 
estimation using deep ensembles”. In Advances in Neural Information Processing Systems, pp. 
64026413, 2017. 
[2] Wilson, Andrew Gordon. “The case for Bayesian deep learning.” arXiv preprint arXiv:2001.10995 
(2020). 
 



<b>REVIEWERS' COMMENTS</b> 

Reviewer #1 (Remarks to the Author): 

the revised manuscript looks great. No further comments. 

Reviewer #2 (Remarks to the Author): 

The authors answered all my questions, and included these elements in the revised version of their 

manuscript. I am quite satisfied with this new version and have no further comments to make. My 

congratulations to the authors. This study should have a substantial impact on the field of hearing 

sciences. 

Reviewer #3 (Remarks to the Author): 

I thank the authors for addressing my comments related to the deep-learning aspects of the article. I 

recommend the manuscript for acceptance. 

Demba Ba. 



 1 

Saddler et al. Response to Reviews 
 
Reviewer #1 (Remarks to the Author): the revised manuscript looks great. No further comments.  

Thank you! 
 
Reviewer #2 (Remarks to the Author):  
The authors answered all my questions, and included these elements in the revised version of their 
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