

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com).

If you have any questions on BMJ Open's open peer review process please email info.bmjopen@bmj.com

BMJ Open

The impact of carbapenem resistance on mortality in patients infected with Enterobacteriaceae: a global systematic review and meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-054971
Article Type:	Original research
Date Submitted by the Author:	29-Jun-2021
Complete List of Authors:	Zhou, Ruyin; China Agricultural University, College of Economics and Management Fang, Xiangming; China Agricultural University; Georgia State University Zhang, Jinjin; China Agricultural University Zheng, Xiaodong; Zhejiang Gongshang University Shangguan, Shuangyue; China Agricultural University Chen, Shibo; China Agricultural University Shen, Yingbo; Chinese Academy of Sciences Liu, Zhihai; Qingdao Agricultural University Li, Juan; National Institute for Communicable Disease Control and Prevention, China CDC Zhang, Rong; Zhejiang University Shen, Jianzhong Walsh, Timothy R; University of Oxford, Department of Zoology Wang, Yang; China Agricultural University, College of Veterinary Medicine
Keywords:	EPIDEMIOLOGY, Public health < INFECTIOUS DISEASES, HEALTH ECONOMICS

SCHOLARONE™ Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

The impact of carbapenem resistance on mortality in patients infected with

Enterobacteriaceae: a global systematic review and meta-analysis

Ruyin Zhou¹, Xiangming Fang^{1,2}, Jinjin Zhang¹, Xiaodong Zheng³, Shuangyue Shangguan¹, Shibo

Chen⁴, Yingbo Shen⁵, Zhihai Liu⁶, Juan Li⁷, Rong Zhang⁸, Jianzhong Shen⁹, Timothy R Walsh¹⁰,

Yang Wang⁹

¹College of Economics and Management, China Agricultural University, Beijing, China;

²School of Public Health, Georgia State University, Atlanta, USA;

³School of Economics, Zhejiang Gongshang University, Hangzhou, China;

⁴College of Veterinary Medicine, China Agricultural University, Beijing, China;

⁵CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China;

⁶College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China;

⁷State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, China;

⁸The Second Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou, China;

⁹ Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China;

Corresponding author:

Xiangming Fang, PhD

College of Economics and Management

China Agricultural University

Address: No.17, Qinghuadong Road, Haidian District, Beijing, 100083, China E-mail address: xmfang@cau.edu.cn

Word count: 3956

¹⁰Department of Zoology, University of Oxford, Oxford, UK.

ABSTRACT

Objective To provide a comprehensive assessment of the impact of carbapenem resistance on mortality among patients infected with *Enterobacteriaceae* and explore the source of heterogeneity between studies.

Methods We conducted a systematic review and meta-analysis of all observational studies published between 1 January 1994 and 30 August 2020 which reported mortality outcomes of hospitalized patients infected with carbapenem-resistant *Enterobacteriaceae* (CRE) and carbapenem-susceptible *Enterobacteriaceae* (CSE). Stratified analysis and meta-regression were further performed to investigate the heterogeneity between studies.

Results Of 10304 identified studies, 50 studies were included. The results showed that carbapenem resistance has doubled the mortality rate of patients infected with CRE compared to patients infected with CSE (RR, 2.14, 95% CI, 1.85-2.48), and in absolute terms, CRE infection can increase the risk of mortality by 22% (RD, 0.22, 95%CI, 0.18-0.26). The results of the stratified analysis and meta-regression suggested the effect of carbapenem resistance on mortality varied by infection type, geographic region, sample size and year of publication.

Conclusion CRE infections were associated with a higher risk of death compared with CSE infection. The magnitude of the effect of carbapenem resistance on mortality may be influenced by infection type, geographic region, sample size and publication year. In further research, more studies need to be conducted in low-income countries and other regions to provide more evidence to draw resources to fight against CRE.

Keywords: Enterobacteriaceae; carbapenems; meta-analysis; mortality; resistance

Article summary

Strengths and limitations of this study

- This study provided a comprehensive meta-analysis to assess the impact of carbapenem resistance on mortality among patients infected with *Enterobacteriaceae*, including nearly 20 new published studies in recent three years that were not included in previous relevant reviews.
- This is the first review to explore the source of heterogeneity between studies through meta-regression analysis in consideration of country economic status and geographic region when assessing the association between carbapenem resistance and mortality among patients infected with *Enterobacteriaceae*.
- This review reported effect measures in both relative and absolute terms, providing a complete picture of the effect of carbapenem resistance on mortality among patients infected with *Enterobacteriaceae*.
- > Publication bias may exist due to a lack of studies from low-income countries and other regions.

INTRODUCTION

The Enterobacteriaceae species, mainly Klebsiella pneumoniae and Escherichia coli, can cause infections such as bloodstream infections, ventilator-associated pneumonia, intra-abdominal infections and urinary tract infections both in healthcare and community settings. ¹ The treatment of these infections is becoming increasingly challenging because of the increasing prevalence of multi-drug-resistant *Enterobacteriaceae*, such as extended-spectrum β-lactamases (ESBLs)-producing *Enterobacteriaceae*. To counter this, carbapenems were introduced in the 1980s² and proved efficacious in the clinical treatment of infections ESBLs-producing *Enterobacteriaceae*.³ However, since the carbapenem-resistant Enterobacteriaceae (CRE) emerged in the early 1990s, 4 CRE has been increasingly reported worldwide. 5,6 The prevalence of CRE is mostly driven by the spread of carbapenemases, a group of β-lactamases hydrolyzing carbapenems.⁷ The CRE strains producing diverse types of carbapenemases are endemic in different areas of the world.⁸ Some countries have high overall rates of CRE, including Greece, Italy, Brazil, China, the United States, and Colombia.⁷ For example, the rate of carbapenem resistance in Klebsiella pneumoniae isolates was as high as 63.9% in Greece in 2018.9 The increasing prevalence of CRE has posed a serious threat to public health due to reduced efficacy of carbapenem and limited available therapy options, it was therefore categorized as the most critical group of multidrug-resistant pathogens with the highest urgency of the need for new antibiotics.¹⁰

The mortality of CRE infections is a research hotspot. Recently, some systematic reviews have conducted meta-analyses to assess the association between CRE infections and mortality by comparing with the mortality outcome of patients infected with carbapenem-susceptible *Enterobacteriaceae*(CSE), and the results showed that CRE infections could lead to increased mortality. The latest systematic review on this topic included studies published until 2017. ¹³ However, nearly 20 relevant articles have

been published since 2018. A timely and comprehensive summary of the results in published articles will be helpful to understand the excess health burden attributable to carbapenem-resistant Enterobacteriaceae (CRE) infections. Moreover, although previous systematic reviews have identified heterogeneity between studies and discussed some confounding factors of mortality including patient-, infection-, organism-, and therapy-related factors, 13,14,16 few of them examined whether the effect of carbapenem resistance on mortality varies by these factors through a formal statistical approach or meta-regression analysis. Besides, the differences in economic status and geographic region were not considered in previous reviews. The development of antibiotic resistance resulted in decreasing effectiveness of first-line antibiotics, and more expensive second and third-line antibiotic treatments need to be used, but these treatments may be not obtained or afforded by patients in developing countries with a resistant infection, ¹⁸ which might result in worse prognostic outcomes. The effect of carbapenem resistance on mortality may exist regional differences because the CRE strains with different types of carbapenemases and virulence characteristics¹ are predominant in different regions worldwide. 8 Two previous reviews have shown that the mortality rate of patients with CRE infections differs by geographic region.^{11,15} However, without data from control groups, whether the impact of carbapenem resistance on mortality differs in the region is still unknown.

Therefore, we aim to provide a comprehensive systematic review of the impact of carbapenem resistance on mortality among patients infected with *Enterobacteriaceae* and explore the source of heterogeneity between studies in consideration of the differences in country income and geographic regions to help policy-makers to develop strategies and policies to combat CRE worldwide.

METHODS

This systematic review is conducted following the guidelines of Cochrane Guidance¹⁹ and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) (see Supplementary Material Appendix 1).²⁰ The protocol was registered with PROSPERO on July 5, 2020(CRD42020176808). The initial protocol was designed with a broad scope including many research contents, but in consideration of the limitation of maximum length, we decided to divide our work into two parts: the first (this study) focused on mortality, and the second will focus on morbidity and the economic outcomes.

Search strategy

We conducted a systematic literature search on the databases of PubMed, Embase, Web of Science, and the Cochrane Library to select relevant studies published between 1 January 1994, and 30 August 2020 to identify eligible studies. This period was chosen because carbapenem-resistant *Enterobacteriaceae* were first reported in the 1990s. Specifically, the strains producing Metallo-β-lactamase(MBL)IMP-1, which is a type of carbapenemase that can hydrolyze carbapenems, were first identified in Japan from a study published in 1994.⁴

The search strategy was designed by combining the terms of bacteria and carbapenem resistance (see Supplementary Material Appendix 2). The search terms for the bacteria include "Enterobacteriaceae" and also "Klebsiella pneumoniae" and "Escherichia coli", which are the two most clinically important pathogens within the Enterobacteriaceae family, to ensure comprehensive identification of relevant studies. The search terms for carbapenem resistance include "carbapenem-resistant" or "carbapenem resistance" or "carbapenem non-susceptible" or "carbapenemase-producing" because CRE can be generally divided into carbapenemase-producing CRE (CP-CRE) and non-carbapenemase-producing CRE (non-CP-CRE).²¹

Selection criteria

We included studies fulfilling the following criteria: (1) primary observational studies (i.e., case-control study, cohort studies); (2) published from 1 January 1994 to 30 August 2020; (3) published in English; (4) studies that assessed the mortality for hospitalized patients with confirmed infections due to CRE and the mortality of patients in control group infected with CSE.

Exclusion criteria were as follows: (1) studies that designed patients colonized with CRE or with unconfirmed CRE infection as exposed groups; (2) studies that mainly focused on the resistance of other antibiotics instead of carbapenem antibiotics; (3) studies without a control group, or with a control group not infected with *Enterobacteriaceae* pathogens; (4) studies including less than 10 patients in case or control group; (5) studies on animals; (6) publications such as editorials and letters. The list of excluded studies with reasons for exclusion is provided in Supplementary Material Appendix 3.

Two reviewers independently screened all titles and abstracts of identified studies and then reviewed the full text of studies satisfying the inclusion criteria. Disagreements were resolved through consensus or discussion with a third senior reviewer.

Data extraction

Data were extracted from each selected study into a data extraction form in Excel. The extracted data include first author, year of publication, study period, country, region, country income level classified by the World Bank,²² study design, infection type, specific pathogen, sample size, number of deaths in CRE and CSE groups. Notably, we will choose the income status of the country based on the period when the study was conducted because the income status of some countries may have changed between 1994 and 2020. For example, there are 15 studies conducted in China from 2006 to 2018 in this meta-analysis, but

two studies conducted between 2006 and 2009 were classified as lower middle income, and the other 13 studies conducted after 2010 were classified as upper middle income. All kinds of measurements of mortality outcomes in each included study were extracted including all-cause in-hospital mortality, all-cause mortality at 6-30 days (6 days, 7 days, 14 days, 21 days, 28 days, 30 days) after diagnosis, mortality in ICU, and mortality attributable to infection (usually defined as the death of a patient with clinical and laboratory evidence of ongoing infection in absence of other feasible reasons). If mortality outcomes at multiple time points were reported in one study, only one mortality outcome will be analyzed in the subsequent calculation of the pooled overall mortality, with a priority of in-hospital mortality and the latest time point of mortality.

Data extraction was conducted by two reviewers independently and disagreements were resolved through consensus or discussion with a third senior reviewer.

Data synthesis and analysis

We calculated the pooled relative risk (RR) and risk difference (RD) by comparing the mortality in patients with CRE infection with that in patients with CSE infection. The reason that we choose RR as the measure of relative risk rather than OR is that the latter was more difficult to interpret compared to RR^{23,24} and usually misinterpreted as a RR which may overestimate the intervention effect when it is more than 1.25 Besides, we also calculated RD to describe the absolute difference in the risk of mortality between the two groups because of the drawback of sole reporting the relative risk that it may conceal the underlying absolute risks and readers tend to overestimate the effect.²⁶ It was recommended that both relative risk and absolute risk should be reported to provide a complete picture of the effect.²⁷ The pooled estimates of RRs

and RDs with 95% confidence intervals were calculated using a random-effects model using the method of DerSimonian & Laird, 28 with the estimate of heterogeneity being taken from the Mantel-Haenszel model. An RR of 1 and RD of 0 indicate that the risk of mortality is identical regardless of carbapenem resistance. The heterogeneity across studies was assessed by Q-statistic and I² measures. The heterogeneity was considered statistically significant when I² values >50%. To identify the potential sources of heterogeneity, we conducted stratified analysis by bacterial species, different mortality endpoints, geographic region, economic status, source of infection, sample size, and resistance mechanism. F-test based on a one-way analysis of variance (ANOVA) was used to test the differences in the mean effect estimates between subgroups. We also conducted random-effects meta-regression based on restricted maximum likelihood using an iterative procedure to examine whether the effect estimates differ significantly by the above variables, and P < 0.05 was considered statistically significant. A sensitivity analysis was also conducted, in which the pooled RRs were recalculated using random-effects meta-analysis after removing one study at a time to evaluate the stability of the results. Finally, we conducted a funnel plot to assess the publication bias. All the statistical analyses were conducted using the Stata version 15 software.

Risk of bias assessment

Two reviewers independently assessed the risk of bias of each included study using the Newcastle-Ottawa quality assessment Scale (NOS) for observational studies,²⁹ and disagreements were resolved through consensus or discussion with a third senior reviewer.

Patient and public involvement

Patients and the public were not involved in the design, or conduct, or reporting, or dissemination plans of

this systematic review.

RESULTS

We identified 10304 studies from the literature search, and 50 studies³⁰⁻⁷⁹ were selected according to the inclusion and included in the final review (Figure 1). The characteristics of the included studies are provided in Table.1. The studies are conducted in 14 countries from four regions. Nearly half of the studies are conducted in Asia (n=24), followed by the region of America (n=15), Europe (n=9), and only one study was conducted in Africa. We also included a multi-region study including data from Asia, Africa and America.⁷⁹ The studies included are mainly conducted in high-income countries (n=27) and upper-middle-income countries (n=19), only three studies were conducted in lower-middle-income countries and no study in low-income countries was found that met the criteria. Most studies (n=39) reported mortality outcomes of infections due to Klebsiella pneumoniae pathogens, and two studies reported mortality outcomes of infections due to Escherichia coli and nine studies reported mortality outcomes of infections due to mixed Enterobacteriaceae pathogens. Half of the studies (n=24) evaluated infected patients regardless of specific infection type. Among the rest studies focused on specific sites of infection, bloodstream infection was the most frequent type (n=21), followed by urinary tract infection (n=3), and one study for neurosurgical infection and one for pneumonia. Among the 50 studies included, most were cohort studies(n=29). In the other 21 case-control studies, the mortality outcomes were measured using a cohort study design, therefore those studies were assessed as cohort studies in our quality appraisal. The NOS assessment for the risk of bias of all included studies was summarized in Supplementary Material Appendix 4. According to the NOS scores, 46 were categorized as low risk of bias (7 to 9) and only 4 studies were categorized as the moderate risk of bias (4 to 6).

					Table.1	Characteristic of	included studies						
First Author	Year	study period	Country	Region	Economic status	Study design	Infection type	Pathogen	Samp (1 CRE		Mortality measurements		tality %) CS
Alicino 30	2015	2007.01-2014.12	Italy	Europe	High income	retrospective cohort study	bloodstream infection	Klebsiella pneumoniae	349	162	30d mortality	36.1	23.
Balkhair ³¹	2019	2007.01-2016.12	Oman	Asia	High income	retrospective cohort study	bloodstream infection	Klebsiella pneumoniae	69	305	30d mortality	63.8	24.
Ben-David ³²	2012	2006.01-2006.12	Israel	Asia	High	retrospective	bloodstream	Klebsiella	42	85	inhospital mortality mortality	69	24
Deli-Daviu	2012	2000.01-2000.12	isiaci	Asia	income	cohort study	infection	pneumoniae(KPC)	42		attributable to infection	48	1′
Brizendine ³³	2015	2006-2012	USA	America	High income	retrospective cohort study	urinary tract infection	Klebsiella pneumoniae	22	64	inhospital mortality	18	2
					**		70 /.				28d mortality	50	14
Cl 34	2010	2014.01.2019.07	Chi.	A	Upper	retrospective	bloodstream	V1.1.1.11	46	220	7d mortality	37	10
Chang ³⁴	2019	2014.01-2018.07	China	Asia	middle income	cohort study	infection	Klebsiella pneumoniae	46	239 ·	inhospital mortality	58.7	15
					Lavvar			1			inhospital mortality	94.12	5(
Chang ³⁵	2011	2006.1-2008.12	China	Asia	Lower middle income	retrospective case control	bloodstream infection	Escherichia. coli	17	34	28d hospital mortality	70.59	47.
					meome						14d hospital mortality	47.06	38.
Chiotos ³⁶	2018	2011.1-2016.7	USA	America	High income	retrospective cohort study	mixed	Mixed Enterobacteriaceae	31	144	30d mortality	6.5	1.

Cienfuegos-Gallet ³⁷	2019	2014.02-03; 2014.10-2015.09	Colombia	America	Upper middle income	prospective cohort study	mixed	Klebsiella pneumoniae(KPC)	49	289	30d mortality	32.65	15.92
Correa ³⁸	2013	2006.1-2008.8	Brazil	America	Upper middle income	retrospective case control	mixed	Klebsiella pneumoniae	20	40	inhospital mortality	50	27.5
Cubero ³⁹	2015	2010.10-2012.12	Spain	Europe	High income	retrospective case control	mixed	Klebsiella pneumoniae(OXA)	20	9	inhospital mortality	35	11.1
Daikos ⁴⁰	2009	2004.2-2006.3	Greece	Europe	High income	preospective cohort study	bloodstream infection	Klebsiella pneumoniae(VIM)	14	148	14d mortality	42.9	16.9
Fraenkel-Wandel ⁴¹	2016	2006-2012	Israel	Asia	High income	retrospective case control	bloodstream infection	Klebsiella pneumoniae(KPC)	68	136	inhospital mortality	65	40
Gallagher ⁴²	2014	2005.6-2010.10	USA	America	High income	retrospective case control	bloodstream infection	Klebsiella pneumoniae	43	111	inhospital mortality	45	32
Garbati ⁴³	2016	2012.3-2013.12	Saudi Arabia	Asia	High income	prospective case control study	mixed	Mixed Enterobacteriaceae	29	58	inhospital mortality	31	12.1
Gomez Rueda ⁴⁴	2014	2008.1-2011.1	Colombia	America	Upper middle income	prospective case control study	mixed	Klebsiella pneumoniae	61	61	inhospital mortality	50.8	32.7
Hoxha ⁴⁵	2016	2012.11-2013.7	Italy	Europe	High income	prospective cohort study	mixed	Klebsiella pneumoniae	49	49	30d mortality 6d mortality	61	8
Huang ⁴⁶	2018	2017.01-2017.12	China	Asia	Upper middle income	retrospective cohort study	mixed	Klebsiella pneumoniae	267	1328	inhospital mortality	14.61	5.65
Hussein ⁴⁷	2013	2006.1-2008.12	Israel	Asia	High income	retrospective case control study	bloodstream infection	Klebsiella pneumoniae	103	214	30d mortality	43.7	29

	Kotb ⁴⁸	2020	2011-2017	Egypt	Africa	Lower middle income	retrospective cohort study	mixed	Mixed Enterobacteriaceae	871	727	mortality in ICU	61.1	51.7
	Lee ⁴⁹	2016	2013.1-2014.2	Korea	Asia	High income	retrospective case control	mixed	Mixed Enterobacteriaceae	37	37	inhospital mortality	10.8	10.8
							study					28d mortality	27	21.6
	Li ⁵⁰	2019	2014.1-2018.6	China	Asia	Upper middle income	retrospective case control study	mixed	Klebsiella pneumoniae	244	263	30d mortality in ICU	28.9	11
	Liu ⁵¹	2019	2014.1-2018.9	China	Asia	Upper middle income	retrospective cohort study	bloodstream infection	Klebsiella pneumoniae	20	69	30d mortality	55	15.9
	Liu ⁵²	2012	2007.1-2009.12	China	Asia	Lower middle	retrospective case control	bloodstream	Klebsiella pneumoniae	25	50	inhospital mortality	60	40
	Liu	2012	2007.1-2009.12	Cillia	Asia	incom	study	infection	Kieosiena pheumomae	23	30	28d mortality	52	30
						meom	study	101				14d mortality	44	22
	Mclaughlin ⁵³	2014	2010.3-2011.12	USA	America	High income	retrospective case control study	bloodstream infection	Klebsiella pneumoniae(KPC)	15	60	inhospital mortality	33.3	11.7
	Meng ⁵⁴	2017	2012.1-2015.12	China	Asia	Upper middle income	retrospective case control study	mixed	Escherichia. coli	49	96	inhospital mortality	12	1
	Mouloudi ⁵⁵	2010	2007.1-2008.12	Greece	Europe	High	retrospective case control	bloodstream	Klebsiella	37	22	inhospital mortality	67.8	41
	Mouloudiss	2010	2007.1-2000.12	Greece	Бигоре	income	study	infection	pneumoniae(KPC)	31	<i>LL</i>	mortality in ICU	27	14
	Ny^{56}	2015	2011.1-2013.12	USA	America	High	retrospective	mixed	Klebsiella pneumoniae	48	48	inhospital	14.6	10.4
_														

					income	cohort study					mortality		
Orsi ⁵⁷	2013	2008.7-2011.6	Italy	Europe	High income	retrospective case control study	mixed	Klebsiella pneumoniae(KPC)	36	43	inhospital mortality	38.9	27.9
Pan ⁵⁸	2019	2014	China	Asia	Upper middle	retrospective case control	mixed	Klebsiella	66	132	inhospital mortality	57.6	18.2
					income	study		pneumoniae(KPC)			28d mortality	18.18	11.36
				Jr,	TT:.1						inhospital mortality	48	20
Patel ⁵⁹	2008	2004.7-2006.6	USA	America	High	retrospective case control	mixed	Klebsiella pneumoniae	99	99	mortality attributable to infection	38	12
Pereira ⁶⁰	2015	2010.1-2013.1	USA	America	High income	retrospective cohort study	mixed	Klebsiella pneumoniae	20	36	inhospital mortality	45	28
Pouch ⁶¹	2015	2007.1-2010.12	USA	America	High income	retrospective case control study	urinary tract infection	Mixed Enterobacteriaceae	20	80	inhospital mortality	30	10
Qureshi ⁶²	2012	2011.1-2014.12	USA	America	High income	retrospective case control	bloodstream infection	Klebsiella pneumoniae	19	51	28d mortality	47.4	27.5
Sánchez-Romero ⁶³	2011	2009.1-2009.12	Spain	Europe	High income	retrospective case control	mixed	Klebsiella pneumoniae(VIM)	28	55	14d mortality	46.4	30.9
Schwaber ⁶⁴	2008	2003.9-2006.12	Israel	Asia	High income	retrospective cohort study	mixed	Klebsiella pneumoniae	48	56	inhospital mortality	44	12.5
Shilo ⁶⁵	2013	2006.1-2009.12	Israel	Asia	High income	retrospective case control study	urinary tract infection	Klebsiella pneumoniae	135	127	inhospital mortality	29	25

Simkins ⁶⁶	2014	2006.1-2010.12	USA	America	High income	retrospective case control study	mixed	Klebsiella pneumoniae	13	39	inhospital mortality	46	8
					Llana						inhospital mortality	42.4	19.8
Tian ⁶⁷	2016	2011.1-2015.12	China	Asia	Upper middle income	retrospective cohort study	bloodstream infection	Klebsiella pneumoniae	33	81	mortality attributable to infection	42.4	24.6
				٧٢,							28d mortality	33.3	18.5
Torres-Gonzalez ⁶⁸	2016	2013.11-2015.7	Mexico	America	Upper middle income	retrospective case control study	mixed	Mixed Enterobacteriaceae(OXA)	27	108	mortality attributable to infection	11.1	7.4
Trecarichi ⁶⁹	2016	2010.1-2014.6	Italy	Europe	High income	prospective cohort study	bloodstream infection	Klebsiella pneumoniae	161	117	21d mortality	52.2	14.5
Ulu ⁷⁰	2015	2012.1-2012.12	Turkey	Asia	Upper middle income	retrospective cohort study	mixed	Klebsiella pneumoniae	47	51	mortality in ICU	44.7	51
Vardakas ⁷¹	2015	2006.1-2009.10	Greece	Europe	High income	retrospective cohort study	mixed	Klebsiella pneumoniae	80	24	mortality in ICU	72.5	58.3
Wang ⁷²	2018	2010.1-2014.12	China	Asia	Upper middle income	retrospective case control study	mixed	Klebsiella pneumoniae	48	48	inhospital mortality	47.9	4.2
Xiao ⁷³	2018	2013.1-2015.12	China	Asia	Upper middle income	retrospective cohort study	bloodstream infection	Klebsiella pneumoniae	135	293	30d mortality	58.5	15.4
Zhang ⁷⁴	2018	2011.1-2014.12	China	Asia	Upper middle	retrospective case control	bloodstream infection	Klebsiella pneumoniae	54	84	inhospital mortality	18.5	8.3

					income	study					7d mortality	16.7	1.2
											28d mortality	18.5	2.4
Zheng ⁷⁵	2018	2014.1-2016.12	China	Asia	Upper middle income	retrospective cohort study	bloodstream infection	Klebsiella pneumoniae	59	230	28d mortality	54.2	19.6
Zheng ⁷⁶	2020	2012-2017	China	Asia	Upper middle income	retrospective cohort study	neurosurgical infection	Mixed Enterobacteriaceae	26	107	mortality attributable to infection	69.2	12.1
					Upper	retrospectivecase					inhospital mortality	35.1	20.3
Zuo ⁷⁷	2020	2015-2017	China	Asia	middle income	control	pneumonia	Klebsiella pneumoniae	74	74	mortality attributable to infection	25.7	9.5
			7 countries		Upper	retrospective	bloodstream	Mixed			inhospital mortality	64	30
Villegas ⁷⁸	2016	2013.7-2014.11	in Latin America	America	middle income	cohort study	infection	Enterobacteriaceae	53	202	mortality attributable to infection	85	43
Stewardson ⁷⁹	2019	2014.8-2015.6	10 countries	Asia, Africa, America	low and middle income countries	prospective cohort study	bloodstream infection	Mixed Enterobacteriaceae	123	174	inhospital mortality	35	20

Meta-analysis results

In the 50 studies identified, a total of 11190 patients were analyzed, 4031 patients infected with resistant pathogens, and 7159 patients infected with susceptible pathogens. Most studies reported higher mortality in patients infected with CRE than in patients with CSE infections, however, the difference is not statistically significant (p>0.1) in 12 studies, one study⁴⁹ reported the same in-hospital mortality outcome between the two groups and one study⁷⁰ observed lower mortality in patients infected with CRE. The reported mortality rates ranged from 6.5%³⁶ to 94.12%³⁵ in patients with CRE infections and ranged from 1%⁵⁴ to 58.3%⁷¹ in patients with CSE infections. The unweighted means of the mortality of CRE patients and CSE patients reported in each study were 43.99% and 21.33% (Table.2). The result of the meta-analysis based on the outcome measure of risk ratio (RR) suggested that carbapenem resistance has doubled the risk of death (RR, 2.16; 95%CI, 1.85-2.52) in patients infected with Enterobacteriaceae. However, high heterogeneity was detected (I²=80.6%; P<0.001, Figure 2). In terms of the absolute risk, the meta-analysis results base on the outcome measure of risk difference (RD, 0.22, 95%CI, 0.18-0.26) suggested that CRE infection contributed 22% excess risk of overall mortality compared with CSE infection, but the heterogeneity between studies was also high ($I^2=78.0\%$; P<0.001, Figure.3).

Stratified analysis

To explore the heterogeneity between studies and assess the robustness of our findings, we conducted the stratified analysis to evaluate the potential sources of heterogeneity including pathogens, geographic region, economic status of the country, source of infection, resistance mechanism type, sample size, and publication year. One study⁷⁹ was not included in our subgroup analysis by geographic region and country income level, because it was conducted in 10 countries with different economic status from three

continents. As seen in Table.2, the carbapenem resistance has a significant positive effect on the mortality for patients infected with *Enterobacteriaceae* in most subgroups, however, it was not significantly different in mortality between CRE infection and CSE infection in studies focusing on patients infected with *Escherichia. coli* pathogens (RR, 3.83, 95%CI, 0.46-31.78, p=0.214; RD, 0.27, 95%CI, -0.06-0.59, p=0.115) as well as studies focusing on patients infected with OXA-producing *Enterobacteriaceae* (RR, 1.87, 95%CI, 0.65-5.37, p=0.246; RD, 0.09, 95%CI, -0.09-0.28, p=0.306) in both relative and absolute terms. In the subgroup analysis by infection type, no significant difference in pooled RR of mortality was observed for studies focusing on patients with urinary tract infections (RR, 2.40, 95%CI, 0.82-7.03, p=0.110).

The results of the statistical test based on RD showed that the effect of carbapenem resistance on mortality is significantly different for patients with different infection types (p=0.006). For patients with neurosurgical infection, carbapenem resistance had a greater effect on mortality compared to other types of infection (Table.2).

Meta-regression

To further explore whether the effect of carbapenem resistance on mortality differs by the above variables, we conducted a univariate meta-regression. In the case of RR (Table.3), the meta-regression results showed that infection type, publication year might contribute to the heterogeneity between included studies. Specifically, carbapenem resistance had a significantly greater effect on mortality in studies focusing on patients with neurosurgical infection compared to studies focusing on bloodstream infection (coefficient=-0.95, p=0.042), urinary tract infection (coefficient=-1.16, p=0.039), and studies without focusing on a specific type of infection (coefficient=-1.065, p=0.024). Meta-regression using the year of

publication range as a categorical variable showed that compared to studies published between 2017-2020, the influence of carbapenem resistance on mortality is significantly smaller in studies published between 2011 to 2013 (coefficient=-0.476, p=0.007) and 2014 to 2016 (coefficient=-0.366, p=0.015). However, the results from statistical analysis (p-value between groups) showed no significant difference in risk ratio between groups of sub-categories. In the case of RD (Table.4), the meta-regression results showed geographic region and sample size might be the source of heterogeneity between studies. Compared to studies conducted in Asia, the effect of carbapenem resistance on mortality is significantly smaller in studies in Africa (coefficient=-0.187, p=0.005), but the effect has no difference between studies in other regions and Asia. Moreover, it was found the effect of carbapenem resistance trend to decrease with the increase of sample size (coefficient=-0.0001, p=0.006).

Sensitivity analysis

A sensitivity analysis was performed by removing one study at a time and recalculated the pooled RRs of remaining studies using random-effects meta-analysis to assess the influence of individual studies on the results. We found that the direction of the effect did not change when any one study was excluded, which means the stability of the results of the meta-analysis.

Publication bias

Publication bias was assessed by a funnel plot (Figure.4). Slight asymmetrical was observed in the funnel plots and the points were heavily distributed at the right top, implying a lack of smaller studies that show a negative association between carbapenem resistance and mortality.

Table.2 Subgroup analysis of the effect of carbapenem resistance on mortality in patients infected with Enterobacteriaceae

Sub-groups	No. of studies	mortality among CRE patients (unweight ed means)	mortality among CSE patients (unweight ed means)	RR(95%CI)	P-value (signific ance tests of RR=1)	I²(%)	P-value beteen groups	RD(95%CI)	P-value (significance tests of RD=0)	I ² (%)	<i>P</i> -value beteen groups
Pathogens											
Klebsiella pneumoniae	39	45.51%	22.05%	2.12(1.84, 2.45)	0.000	68.1		0.23(0.19, 0.28)	0.000	75.7	
Mixed Enterobacteriaceae pathogens	9	35.41%	17.28%	2.13(1.41, 3.22)	0.000	84.3	0.073	0.17(0.08, 0.25)	0.000	80.4	0.526
Escherichia. coli	2	53.06%	25.50%	3.83(0.46, 31.78)	0.214	76.2		0.27(-0.06, 0.59)	0.115	88.6	
Geographical region											
America	15	36.16%	17.63%	1.96(1.68, 2.28)	0.000	0.0		0.17(0.11, 0.23)	0.000	50.9	
Europe	9	50.38%	27.11%	1.89 (1.43, 2.51)	0.000	58.9	0.626	0.24(0.14, 0.33)	0.000	61.3	0.220
Asia	24	46.16%	20.25%	2.37(1.95,2.88)	0.000	76.2	0.636	0.25(0.19, 0.32)	0.000	85.5	0.338
Africa	1	61.10%	51.70%	1.18(1.08, 1.29)	0.000	NA		0.09(0.05, 0.14)	0.000	NA	
Economic status											
High income	27	42.35%	21.21%	1.97(1.68, 2.30)	0.000	52.5		0.21(0.15, 0.26)	0.000	68.4	
Upper middle income	19	42.41%	17.47%	2.52(2.03, 3.13)	0.000	71.8	0.329	0.25(0.17, 0.32)	0.000	85.7	0.662
Lower middle income	3	71.74%	47.23%	1.44(1.04, 1.98)	0.027	71.5		0.23(0.01, 0.45)	0.041	82.5	
Infection type											
Bloodstream infections	21	52.72%	24.72%	2.20(1.88, 2.57)	0.000	65.8		0.28(0.22, 0.34)	0.000	70.7	
Urinary tract infection	3	25.67%	12.33%	2.40(0.82, 7.03)	0.110	72.5		0.11(0.003, 0.21)	0.044	29.7	
pneumonia	1	35.10%	20.30%	1.73(1.00, 3.00)	0.049	NA	0.255	0.15(0.006, 0.29)	0.040	NA	0.006
Neurosurgical infection	1	69.20%	12.10%	5.70(3.22, 10.08)	0.000	NA		0.57(0.38, 0.76)	0.000	NA	
Mixed	24	37.96%	19.90%	2.02(1.60, 2.55)	0.000	78.0		0.17(0.12, 0.22)	0.000	70.2	

Total	50	43.99%	21.33%	2.14(1.85, 2.48)	0.000	80.0	-	0.22(0.18, 0.26)	0.000	78.0	-
2017-2020	17	41.72%	15.35%	2.83(2.06, 3.88)	0.000	91.3		0.25(0.18, 0.32)	0.000	88.5	
2014-2016	20	40.43%	21.67%	1.84(1.51, 2.24)	0.000	55.7	0.140	0.18(0.12, 0.24)	0.000	64.3	0.040
2011-2013	9	53.17%	31.31%	1.66(1.38, 2.00)	0.000	31.2	0.143	0.21(0.11, 0.32)	0.000	67.7	0.343
2008-2010	4	50.83%	22.58%	2.34(1.75, 3.14)	0.000	0.0		0.29(0.20, 0.38)	0.000	0.0	
year											
Range of publication											
>200	15	46.50%	22.76%	2.13(1.67, 2.72)	0.000	90.9		0.23(0.16, 0.30)	0.000	87.8	
100-200	16	40.91%	18.43%	2.33(1.82, 2.98)	0.000	61.1	0.521	0.22(0.14, 0.30)	0.000	76.9	0.942
<100	19	44.61%	22.63%	1.94(1.53, 2.46)	0.000	51.5		0.21(0.14, 0.29)	0.000	60.8	
Sample size				1 0							
resistance types											
cing strains or multiple	39	43.57%	21.00%	2.17(1.83, 2.58)	0.000	83.1		0.22(0.17, 0.26)	0.000	80.3	
non-carbapenemase-produ	39	42.570/	21.06%	2 17(1 92 2 59)	0.000	02.1		0.22(0.17, 0.26)	0.000	80.5	
include											
Enterobacteriaceae	2	44.65%	23.90%	1.87(1.12, 3.11)	0.016	24.6	0.766	0.20(0.03, 0.37)	0.023	0.0	0.717
VIM- producing	2	44.650/	22.000/	1.07(1.10.0.11)	0.016	24.6	0.=44	0.20(0.02.0.25)	0.022	0.0	0.717
Enterobacteriaceae	2	23.05%	9.25%	1.87(0.65, 5.37)	0.246	0.0		0.09(-0.09, 0.28)	0.306	36.4	
OXA-producing											
Enterobacteriaceae	7	52.12%	25.52%	2.12(1.64, 2.75)	0.000	49.9		0.28(0.18, 0.37)	0.000	52.0	
KPC-producing	7	52.12%	25.52%	2.12(1.64, 2.75)	0.000	49.9		0.28(0.18, 0.37)	0.000	52.0	

OXA, oxacillinase; KPC, Klebsiella pneumoniae carbapenemase; VIM, Verona integron-encoded MBL

Table.3 Univariate meta-regression and statistical analysis for the potential variables between studies (Outcome measure=risk ratio)

Variables	Sub-antogories	No. of	acofficient	standard	95% co	nfidence	P value from
Variables	Sub-categories	studies	coefficient	error	inte	rval	meta-regression
	Klebsiella pneumoniae	39	-0.087	0.389	-0.870	0.696	0.824
Dathagan tuna	Mixed Enterobacteriaceae	9	-0.109	0.418	0.050	0.731	0.795
Pathogen type	pathogens	9	-0.109	0.418	-0.950	0.731	0.793
	Escherichia. coli	2	reference	-	-	-	-
	America	15	-0.149	0.160	-0.471	0.173	0.357
Geographical region	Europe	9	-0.215	0.176	-0.570	0.139	0.228
Geographical region	Asia	24	reference	-	-	-	-
	Africa	1	-0.690	0.355	-1.405	0.024	0.058
	High income	27	reference	-	-	-	-
Economic status	Upper middle income	19	0.235	0.134	-0.034	0.504	0.085
	Lower middle income	3	-0.306	0.228	-0.765	0.153	0.186
	Bloodstream infections	21	-0.950	0.454	-1.865	-0.036	0.042
	Urinary tract infection	3	-1.160	0.545	-2.258	-0.063	0.039
Infection type	pneumonia	1	-1.190	0.624	-2.447	0.067	0.063
	Neurosurgical infection	1	reference	-	-	-	-
	Mixed	24	-1.065	0.456	-1.984	-0.146	0.024
	KPC-producing	7	-0.008	0.188	-0.387	0.372	0.968
	Enterobacteriaceae	/	-0.008	0.100	-0.367	0.372	0.908
	OXA-producing	2	-0.112	0.617	-1.354	1.130	0.857
	Enterobacteriaceae	2	-0.112	0.017	-1.554	1.130	0.837
Resistance type	VIM- producing	2	-0.118	0.354	-0.831	0.596	0.741
	Enterobacteriaceae	2	-0.110	0.554	-0.031	0.570	0.741
	include						
	non-carbapenemase-producing	39	reference		-	-	-
	strains or multiple resistance types	}					
	<100	19	-0.091	0.159	-0.412	0.230	0.571
Sample size group	100-200	16	0.090	0.160	-0.232	0.412	0.577
	>200	15	reference	-	-	-	-
	2008-2010	4	-0.114	0.243	-0.604	0.376	0.642
Year of publication							
range	2011-2013	9	-0.476	0.167	-0.813	-0.139	0.007
	2014-2016	20	-0.366	0.144	-0.657	-0.075	0.015
	2017-2020	17	reference	-	-	-	-
Sample size	-	50	-0.0001	0.0002	-0.0005	0.0003	0.554
Year of publication	-	50	0.034	0.020	-0.006	0.073	0.094

OXA, oxacillinase; KPC, Klebsiella pneumoniae carbapenemase; VIM, Verona integron-encoded MBL

Table.4 Univariate meta-regression and statistical analysis for the potential variables between studies (Outcome measure=risk difference)

Variables	Sub-categories	No. of	coefficient	standard	95% co	nfidence	P value from
variables	Sub categories	studies	Coefficient	error	inte	erval	meta-regression
	Klebsiella pneumoniae	39	-0.191	0.183	-0.559	0.178	0.303
Pathogen type	Mixed Enterobacteriaceae pathogens	9	-0.307	0.184	-0.677	0.063	0.102
	Escherichia. coli	2	reference	-	-	-	-
	America	15	-0.052	0.089	-0.232	0.128	0.566
	Europe	9	-0.075	0.096	-0.268	0.118	0.437
Geographical region	Asia	24	reference	-	-	-	-
	Africa	1	-0.187	0.063	-0.314	-0.059	0.005
	High income	27	reference	-	-	-	-
Economic status	Upper middle income	19	0.045	0.073	-0.102	0.192	0.541
	Lower middle income	3	-0.114	0.065	-0.245	0.017	0.086
	Bloodstream infections	21	-0.275	0.294	-0.867	0.318	0.355
	Urinary tract infection	3	-0.506	0.345	-1.200	0.189	0.149
Infection type	pneumonia	1	-0.422	0.403	-1.235	0.390	0.301
	Neurosurgical infection	1	reference	_	-	-	-
	Mixed	24	-0.448	0.293	-1.039	0.143	0.134
	KPC-producing Enterobacteriaceae	7	0.073	0.097	-0.122	0.268	0.46
	OXA-producing Enterobacteriaceae	2	-0.116	0.542	-1.206	0.975	0.832
Resistance type	VIM- producing Enterobacteriaceae	2	-0.017	0.230	-0.480	0.447	0.943
	include non-carbapenemase-producing strains or multiple resistance	39	reference	0,	_	-	-
	types <100	19	0.019	0.089	-0.160	0.198	0.831
Sample size group	100-200	16	0.019	0.089	-0.119	0.198	0.551
Sample Size group	>200	15	reference	-	-0.119	-	-
	2008-2010	4	0.048	0.161	-0.275	0.372	0.765
Year of publication	2011-2013	9	-0.003	0.094	-0.192	0.186	0.974
range	2014-2016	20	-0.031	0.078	-0.189	0.127	0.693
	2017-2020	17	reference	-	-	-	-
Sample size	-	50	-0.0001	0.00004	-0.0002	-0.00003	0.006
Year of publication	-	50	-0.005	0.010	-0.025	0.015	0.648

OXA, oxacillinase; KPC, Klebsiella pneumoniae carbapenemase; VIM, Verona integron-encoded MBL

DISCUSSION

This study systematically reviewed 50 studies and provided a comprehensive analysis of the impact of carbapenem resistance on mortality among patients infected with *Enterobacteriaceae*. Our analysis suggests that carbapenem resistance has doubled the mortality rate of patients infected with CRE compared to patients infected with CSE, and CRE infection can increase the risk of mortality by 22%. The results were consistent with the direction of the previous meta-analysis of the association between carbapenem resistance and mortality among patients infected with *Enterobacteriaceae*. ^{13,14}

It is necessary to identify the risk factors for worse mortality outcomes in patients with CRE infections. In previous studies, higher mortality among patients with CRE infection was usually explained by patient-, infection-, treatment-, and organism-related factors. 13,14,16,80 Overall, 20 studies included in this review conducted the multivariable analysis to identify risk factors of mortality among patients infected with Enterobacteriaceae. After controlling patient-related factors such as age, sex, the severity of underlying illness and comorbidities, three studies^{47,51,67} found carbapenem resistance was not associated with increased mortality risk, however, 14 studies found that carbapenem resistance remained an independent predictor of mortality. Besides, therapeutic interventions were also considered as important risk factors for the explanation of the increased mortality in CRE infection. Patients with CRE infection are more likely to receive a delayed administration of initial antibiotic therapy with in-vitro activity^{32,33,40,59,62,67,74}, which might lead to a worse outcome. It has been suggested that the effect of carbapenem resistance was probably mediated by inappropriate initial therapy in several studies included in this meta-analysis. 40,51,37 This finding was supported by a recent review, in which a significant association between the differences in the proportion of the patients receiving appropriate initial antibiotic therapy and mortality was identified through a meta-regression analysis including 11 studies.¹⁶ However,

nine studies included in our review^{32,38,41,47,62,67,71,73,74} did not identify an association between early appropriate antibiotic therapy and mortality after adjustment for some confounding factors. Instead, other treatment methods were addressed as important risk factors of mortality in some studies. For example, a recent meta-analysis including seven studies showed that monotherapy treatment was associated with significantly higher mortality compared with combination therapy for patients with CRE infections¹⁴. Additionally, some studies^{72,73} suggested other therapies, such as adjunctive therapy, tigecycline therapy and the use of aminoglycoside may be associated with mortality among patients infected with Klebsiella pneumoniae. The increased mortality among patients with CRE infections might also be related to the increased virulence of carbapenemase-producing strains. Two studies included in this meta-analysis showed that isolation of KPC-positive strain was a predictor of mortality among patients infected with Klebsiella pneumoniae independent of the appropriateness of initial treatment and patient characteristics, 41,55 while another study 47 found KPC-positive status was not associated with mortality when the virulence score was included in the multivariate analysis. In our subgroup analysis, we identified an increased risk of mortality associated with KPC- and VIM-producing strains but not with OXA-producing strains, which may be explained by the different virulence characteristics of the carbapenem-resistant isolates with different types of carbapenemases. 17 As most of the included studies did not provide the mortality outcomes after adjustment for confounding factors, we did not calculate the pooled adjusted effect measures.

To investigate the heterogeneity between studies, stratified analysis and meta-regression were performed. We found that the effect of carbapenem resistance on mortality differs by infection type, geographic region, sample size and year of publication. The results of the statistical test and meta-regression analysis identified a significant difference in effect between different infection types. For

patients with neurosurgical infection, carbapenem resistance had a significantly greater effect on mortality compared to other types of infection. The possible explanation could be that CRE meningitis/encephalitis in neurosurgery can result in more severe morbidity and mortality because of difficulties in treatment.⁷⁴ In addition, we found that the effect of carbapenem resistance on mortality in Africa is significantly smaller compared with studies in Asia in the case of RD, but no significant difference was identified between studies in America, Europe and Asia. This could be due to both high mortality rates in patients (61.1%) and CSE patients (51.7%) reported in only one study in Africa, which might be related to the low level of medical care and poor hygiene. We also found that with the increase of sample size, the RD had a decreasing trend, indicating that the absolute risk difference of mortality between CRE and CSE infection tends to be stable with larger sample size. Moreover, it should be noted that the effect of carbapenem resistance on mortality is greater in studies published from 2017-2020 compared to previous studies in relative terms. On the one hand, the mortality of CRE infection remains high as it is a therapeutic challenge due to limited effective antibiotics. What's worse, carbapenem-resistant Enterobacteriaceae have started to develop resistance against some key antibiotics such as colistin, 81 resulting in increased difficulties for treatment for CRE infection. As shown in a previous study, 16 the proportion of CRKP patients receiving appropriate initial antibiotic therapy did not change over time. In addition, another study¹¹ observed higher mortality of CRE infection from studies published from 2014 to 2016 than those published from 2009 to 2013. On the other hand, the mortality of CSE infection tends to decrease in recent years and the unweighted mean of mortality among CSE patients in studies conducted from 2017-2020 is 15.35%, lower than that of other ranges of publication year (Table.2). This could be due to the increasing treatment success rate with the development of medical technology and medical treatment, which may enlarge the differences in mortality between CRE and CSE infections.

To our knowledge, this is the most comprehensive meta-analysis so far to assess the impact of carbapenem resistance on mortality among patients infected with *Enterobacteriaceae*. Nearly 20 new studies published in recent three years that have been included in our study. Although high heterogeneity was observed between studies, sensitivity analysis suggested that no single study influenced the pooled RR, indicating the stability of the results of the meta-analysis. This is the first review to explore the source of heterogeneity between studies through statistical tests and meta-regression analysis of potential variables in consideration of country economic status and geographic region.

Our study also has several limitations. Firstly, we only include two clinically important *Enterobacteriaceae* species, *Klebsiella pneumoniae* and *Escherichia coli*. and only included studies published in English. Secondly, we only calculated the unadjusted results, many confounding factors such as the health condition of patients, therapy options are not adjusted in the analysis because of data limitation. At last, minor publication bias was observed, possibly due to the lack of smaller studies from low-income countries. Therefore, more studies that quantifying the attributable mortality of CRE in low-income countries are needed to provide reliable data for the decision-makers about the great threat of CRE to promote interventions to reduce its consequences.

CONCLUSIONS

The results of this meta-analysis suggested that carbapenem resistance was associated with an increased risk of mortality for patients infected with *Enterobacteriaceae*. The subgroup analysis and meta-regression showed the effect of carbapenem resistance differs by infection type, geographic region, sample size and publication year. In further research, more studies need to be conducted in low-income countries to provide

sound evidence to draw resources to fight against CRE and suggest the way forward for alleviating the implications.

Contributors All authors were involved in the design and development of the study. The review was designed by XF, RZ, RZ, JL, JS, TRW, and YW. The literature search in electronic databases was conducted by JZ, SS, SC and XZ. RZ and JZ screened all studies for inclusion into the systematic review and performed the assessments of risk bias for all studies. RY and JZ performed data extraction. All authors contributed to data interpretation and data analysis. RZ drafted the manuscript and all authors revised it critically for content. All authors have reviewed the results and approved the final version of the manuscript and agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. The corresponding author (XF) attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted.

Competing interests None declared

Funding This work was supported by the National Natural Science Foundation of China (NSFC) (Grant numbers 81861138051, 81861138052 and 81861138053)

Data sharing No additional data available

REFERENCES

- 1. Center for Disease Control and Prevention(US). Clinicians: Information about CRE, 2019. Av ailable: https://www.cdc.gov/hai/organisms/cre/cre-clinicians.html[accessed 19 Dec 2020].
- 2. Birnbaum J, Kahan FM, Kropp H, *et al.* Carbapenems, a new class of beta-lactam antibiotics: discovery and development of imipenem/cilastatin. *Am J Med* 1985;78:3-21.
- 3. Paterson DL, Ko W-C, Von Gottberg A, *et al.* Antibiotic Therapy for Klebsiella pneumoniae Bacteremia: Implications of Production of Extended-Spectrum β-Lactamases. *Clin Infect Dis* 2004;39:31-7. doi: 10.1086/420816. [Epub ahead of print: 08 Jun 2004].
- 4. Osano E, Arakawa Y, Wacharotayankun R, *et al*. Molecular characterization of an enterobacterial metallo beta-lactamase found in a clinical isolate of Serratia marcescens that shows imipenem resistance. *Antimicrob Agents Chemother* 1994;38:71-8.
- 5. Lauretti L, Riccio ML, Mazzariol A, *et al*. Cloning and characterization of bla VIM, a new integron-borne metallo-β-lactamase gene from a Pseudomonas aeruginosa clinical isolate. *Antimicrob Agents Chemother* 1999;43:1584-90.
- 6. Yigit H, Queenan AM, Anderson GJ, *et al.* Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. *Antimicrob Agents Chemother* 2001;45:1151-61
- 7. Iovleva A, Doi Y. Carbapenem-Resistant Enterobacteriaceae. *Clin Lab Med* 2017;37:303-315. doi: 10.1016/j.cll.2017.01.005. [Epub ahead of print: 11 Mar 2017].
- 8. Logan LK, Weinstein RA. The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. *J Infect Dis* 2017;215(suppl 1):S28-S36
- 9. European Centre for Disease Control and Prevention. Antimicrobial resistance surveillance in Europe 2018, 2019. Available: https://www.ecdc.europa.eu/en/publications-data/surveillance-ant imicrobial-resistance-europe-2018[accessed 19 Dec 2020].
- 10. World Health Organization. Global priority list of antibiotic-resistant bacteria to guide researc h, discovery, and development of new antibiotics, 2017. Available: https://www.who.int/medic ines/publications/global-priority-list-antibiotic-resistant-bacteria/en/[accessed 19 Dec 2020].
- 11. Ramos-Castaneda JA, Ruano-Ravina A, Barbosa-Lorenzo R, *et al.* Mortality due to KPC carbapenemase-producing Klebsiella pneumoniae infections: Systematic review and meta-analysis: Mortality due to KPC Klebsiella pneumoniae infections. *J Infect* 2018;76:438-448. doi: 10.1016/j.jinf.2018.02.007. [Epub ahead of print: 01 Mar 2018].
- 12. Budhram DR, Mac S, Bielecki JM, *et al.* Health outcomes attributable to carbapenemase-producing Enterobacteriaceae infections: A systematic review and meta-analysis. *Infect Control Hosp Epidemiol* 2020;41:37-43. doi: 10.1017/ice.2019.282. [Epub ahead of print: 22 Oct 2019].
- 13. Soontaros S, Leelakanok N. Association between carbapenem-resistant Enterobacteriaceae and death: A systematic review and meta-analysis. *Am J Infect Control* 2019;47:1200-1212. doi: 10.1016/j.ajic.2019.03.020. [Epub ahead of print: 7 May 2019].
- 14. Martin A, Fahrbach K, Zhao Q, *et al.* Association Between Carbapenem Resistance and Mortality Among Adult, Hospitalized Patients With Serious Infections Due to Enterobacteriaceae: Results of a Systematic Literature Review and Meta-analysis. *Open Forum Infect Dis* 2018;5:ofy150.

- 15. Xu L, Sun X, Ma X. Systematic review and meta-analysis of mortality of patients infected with carbapenem-resistant Klebsiella pneumoniae. *Ann Clin Microbiol Antimicrob* 2017;16:18.
- 16. Kohler PP, Volling C, Green K, *et al.* Carbapenem Resistance, Initial Antibiotic Therapy, and Mortality in Klebsiella pneumoniae Bacteremia: A Systematic Review and Meta-Analysis. *Infect Control Hosp Epidemiol* 2017;38:1319-1328. doi: 10.1017/ice.2017.197. [Epub ahead of print: 27 Sep 2017].
- 17. Falagas ME, Tensarli GS, Karageorgopoulos DE, *et al.* Deaths Attributable to Carbapenem-Resistant Enterobacteriaceae Infections. *Emerg Infect Dis* 2014;20:1170-5.
- 18. Laxminarayan R, Heymann DL. Challenges of drug resistance in the developing world. *BMJ* 2012;344:e1567.
- 19. Higgins JPT, Green S. Cochrane handbook for systematic reviews of interventions. Version 5.1.0.
 [updated March 2011]. London: Cochrane Collaboration; 2011. Available: https:// handbook -5
 -1 .cochrane .org/[accessed 19 Dec 2020].
- 20. Moher D, Liberati A, Tetzlaff J, *et al.* Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. *BMJ* 2009;339:b2535.
- 21. Suay-Garcia B, Perez-Gracia MT. Present and Future of Carbapenem-resistant Enterobacteriaceae (CRE) Infections. *Antibiotics (Basel)* 2019;8:122.
- 22. World Bank. World bank country and lending groups[Internet]. Data, 2019. Available: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups [Accessed 20 Jun 2020].
- 23. Sinclair JC, Bracken MB. Clinically useful measures of effect in binary analyses of randomized trials. *J Clin Epidemiol* 1994;47(8):881-9.
- 24. Sackett DL, Deeks JJ, Altman DG. Down with odds ratios! *BMJ Evid Based Med* 1996; 1: 164-166.
- 25. Schmidt CO, Kohlmann T. When to use the odds ratio or the relative risk? *Int J Public Health* 2008;53:165-7.
- Noordzij M, van Diepen M, Caskey FC, et al. Relative risk versus absolute risk: one cannot be interpreted without the other. Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association European Renal Association. 2017 Apr;32(suppl_2).
- 27. Schulz KF, Altman DG, Moher D; CONSORT Group. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. Int J Surg. 2011;9(8):672-7. doi: 10.1016/j.ijsu.2011.09.004. Epub 2011 Oct 13.
- 28. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986 Sep;7(3):177-88. doi: 10.1016/0197-2456(86)90046-2.
- 29. Wells GA, Shea B, O'Connell D, *et al*. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa: Ottawa Hospital Research Institute; 2014
- 30. Alicino C, Giacobbe DR, Orsi A, *et al.* Trends in the annual incidence of carbapenem-resistant Klebsiella pneumoniae bloodstream infections: a 8-year retrospective study in a large teaching hospital in northern Italy. *BMC Infect Dis* 2015;15:415.
- 31. Balkhair A, Al-Muharrmi Z, Al'Adawi B, *et al.* Prevalence and 30-day all-cause mortality of carbapenem-and colistin-resistant bacteraemia caused by Acinetobacter baumannii, Pseudomonas

- aeruginosa, and Klebsiella pneumoniae: Description of a decade-long trend. *Int J Infect Dis* 2019;85:10-15. doi: 10.1016/j.ijid.2019.05.004. [Epub ahead of print: 14 May 2019].
- 32. Ben-David D, Kordevani R, Keller N, *et al.* Outcome of carbapenem resistant Klebsiella pneumoniae bloodstream infections. *Clin Microbiol Infect* 2012;18:54-60. doi: 10.1111/j.1469-0691.2011.03478.x. [Epub ahead of print: 01 Jul 2011].
- 33. Brizendine KD, Richter SS, Cober ED, *et al.* Carbapenem-resistant Klebsiella pneumoniae urinary tract infection following solid organ transplantation. *Antimicrob Agents Chemother* 2015;59:553-7. doi: 10.1128/AAC.04284-14. [Epub ahead of print: 10 Nov 2014].
- 34. Chang H, Wei J, Zhou W, *et al.* Risk factors and mortality for patients with Bloodstream infections of Klebsiella pneumoniae during 2014-2018: Clinical impact of carbapenem resistance in a large tertiary hospital of China. *J Infect Public Health* 2020;13:784-790. doi: 10.1016/j.jiph.2019.11.014. [Epub ahead of print: 13 Dec 2019].
- Chang HJ, Hsu PC, Yang CC, *et al*. Risk factors and outcomes of carbapenem-nonsusceptible Escherichia coli bacteremia: A matched case-control study. *J Microbiol Immunol Infect* 2011;44:125-30. doi: 10.1016/j.jmii.2010.06.001. [Epub ahead of print: 14 Jan 2011].
- 36. Chiotos K, Tamma PD, Flett KB, *et al.* Increased 30-day mortality associated with carbapenem-resistant Enterobacteriaceae in children. *Open Forum Infect Dis* 2018;5:ofy222.
- 37. Cienfuegos-Gallet AV, Ocampo de Los Rios AM, Sierra Viana P, *et al.* Risk factors and survival of patients infected with carbapenem-resistant Klebsiella pneumoniae in a KPC endemic setting: a case-control and cohort study. *BMC Infect Dis* 2019;19:830.
- 38. Correa L, Martino MD, Siqueira I, *et al.* A hospital-based matched case-control study to identify clinical outcome and risk factors associated with carbapenem-resistant Klebsiella pneumoniae infection. *BMC Infect Dis* 2013;13:80.
- 39. Cubero M, Cuervo G, Dominguez Mn, *et al.* Carbapenem-resistant and carbapenem-susceptible isogenic isolates of Klebsiella pneumoniae ST101 causing infection in a tertiary hospital. *BMC Microbiol* 2015;15:177.
- 40. Daikos GL, Petrikkos P, Psichogiou M, *et al.* Prospective observational study of the impact of VIM-1 metallo-β-lactamase on the outcome of patients with Klebsiella pneumoniae bloodstream infections. *Antimicrob Agents Chemother* 2009;53:1868-73. doi: 10.1128/AAC.00782-08. [Epub ahead of print: 17 Feb 2009].
- 41. Fraenkel-Wandel Y, Raveh-Brawer D, Wiener-Well Y, *et al.* Mortality due to blaKPCKlebsiella pneumoniae bacteraemia. *J Antimicrob Chemother* 2016;71:1083-7. doi: 10.1093/jac/dkv414. [Epub ahead of print: 11 Dec 2015].
- 42. Gallagher JC, Kuriakose S, Haynes K, *et al.* Case-Case-Control Study of Patients with Carbapenem-Resistant and Third-Generation-Cephalosporin-Resistant Klebsiella pneumoniae Bloodstream Infections. *Antimicrob Agents Chemother* 2014;58:5732-5. doi: 10.1128/AAC.03564-14. [Epub ahead of print: 14 Jul 2014].
- 43. Garbati MA, Sakkijha H, Abushaheen A. Infections due to Carbapenem Resistant Enterobacteriaceae among Saudi Arabian Hospitalized Patients: A Matched Case-Control Study. *Biomed Res Int* 2016;2016:3961684. doi: 10.1155/2016/3961684. [Epub ahead of print: 06 Apr 2016].
- 44. Gomez Rueda V, Zuleta Tobon JJ. Risk factors for infection with carbapenem-resistant Klebsiella pneumoniae: a case-case-control study. *Colomb Med (Cali)* 2014;45:54-60.

- 45. Hoxha A, Karki T, Giambi C, *et al.* Attributable mortality of carbapenem-resistant Klebsiella pneumoniae infections in a prospective matched cohort study in Italy, 2012-2013. *J Hosp Infect* 2016;92:61-6. doi: 10.1016/j.jhin.2015.06.018. [Epub ahead of print: 29 Jul 2015].
- 46. Huang W, Qiao F, Zhang Y, *et al.* In-hospital Medical Costs of Infections Caused by Carbapenem-resistant Klebsiella pneumoniae. *Clin Infect Dis* 2018;67(suppl 2):S225-S230.
- 47. Hussein K, Raz-Pasteur A, Finkelstein R, *et al.* Impact of carbapenem resistance on the outcome of patients' hospital-acquired bacteraemia caused by Klebsiella pneumoniae. *J Hosp Infect* 2013;83:307-13. doi: 10.1016/j.jhin.2012.10.012. [Epub ahead of print: 10 Jan 2013].
- 48. Kotb S, Lyman M, Ismail G, *et al.* Epidemiology of Carbapenem-resistant Enterobacteriaceae in Egyptian intensive care units using National Healthcare-associated Infections Surveillance Data, 2011-2017. *Antimicrob Resist Infect Control* 2020;9:2.
- 49. Lee HJ, Choi JK, Cho SY, *et al.* Carbapenem-resistant Enterobacteriaceae: Prevalence and Risk Factors in a Single Community-Based Hospital in Korea. *Infect Chemother* 2016;48:166-173. doi: 10.3947/ic.2016.48.3.166. [Epub ahead of print: 08 Sep 2016].
- 50. Li Y, Shen H, Zhu C, *et al.* Carbapenem-resistant klebsiella pneumoniae infections among ICU admission patients in Central China: prevalence and prediction model. *Biomed Res Int* 2019;2019:9767313.
- 51. Liu J, Wang H, Huang Z, *et al.* Risk factors and outcomes for carbapenem-resistant Klebsiella pneumoniae bacteremia in onco-hematological patients. *J Infect Dev Ctries* 2019;13:357-364.
- 52. Liu SW, Chang HJ, Chia JH, *et al.* Outcomes and characteristics of ertapenem-nonsusceptible Klebsiella pneumoniae bacteremia at a university hospital in Northern Taiwan: a matched case-control study. *J Microbiol Immunol Infect* 2012;45:113-9. doi: 10.1016/j.jmii.2011.09.026. [Epub ahead of print: 11 Dec 2011].
- 53. McLaughlin MM, Advincula MR, Malczynski M, *et al.* Quantifying the clinical virulence of Klebsiella pneumoniae producing carbapenemase Klebsiella pneumoniae with a Galleria mellonella model and a pilot study to translate to patient outcomes. *BMC Infect Dis* 2014;14:31.
- 54. Meng X, Liu S, Duan J, *et al*. Risk factors and medical costs for healthcare-associated carbapenem-resistant Escherichia coli infection among hospitalized patients in a Chinese teaching hospital. *BMC Infect Dis* 2017;17:82.
- Mouloudi E, Protonotariou E, Zagorianou A, et al. Bloodstream Infections Caused by Metallo-beta-Lactamase/Klebsiella pneumoniae Carbapenemase-Producing K. pneumoniae among Intensive Care Unit Patients in Greece: Risk Factors for Infection and Impact of Type of Resistance on Outcomes. *Infect Control Hosp Epidemiol* 2010;31:1250-6. doi: 10.1086/657135. [Epub ahead of print: 25 Oct 2010].
- 56. Ny P, Nieberg P, Wong-Beringer A. Impact of carbapenem resistance on epidemiology and outcomes of nonbacteremic Klebsiella pneumoniae infections. *Am J Infect Control* 2015;43:1076-80. doi: 10.1016/j.ajic.2015.06.008. [Epub ahead of print: 17 Jul 2015].
- 57. Orsi GB, Bencardino A, Vena A, *et al.* Patient risk factors for outer membrane permeability and KPC-producing carbapenem-resistant Klebsiella pneumoniae isolation: results of a double case—control study. *Infection*. 2013 Feb;41(1):61-7. doi: 10.1007/s15010-012-0354-2. [Epub ahead of print: 16 Oct 2012].
- 58. Pan H, Lou Y, Zeng L, *et al.* Infections caused by carbapenemase-producing klebsiella pneumoniae: Microbiological characteristics and risk factors. *Microb Drug Resist* 2019;25:287-296. doi: 10.1089/mdr.2018.0339. [Epub ahead of print: 27 Feb 2019].

- 59. Patel G, Huprikar S, Factor SH, *et al.* Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. *Infect Control Hosp Epidemiol* 2008;29:1099-106.
- 60. Pereira MR, Scully BF, Pouch SM, *et al*. Risk factors and outcomes of carbapenem-resistant Klebsiella pneumoniae infections in liver transplant recipients. *Liver Transpl* 2015;21:1511-9.
- 61. Pouch SM, Kubin CJ, Satlin MJ, *et al.* Epidemiology and outcomes of carbapenem-resistant Klebsiella pneumoniae bacteriuria in kidney transplant recipients. *Transpl Infect Dis* 2015;17:800-9. doi: 10.1111/tid.12450. [Epub ahead of print: 05 Nov 2015].
- 62. Qureshi ZA, Paterson DL, Peleg AY, *et al.* Clinical characteristics of bacteraemia caused by extended-spectrum β-lactamase-producing Enterobacteriaceae in the era of CTX-M-type and KPC-type β-lactamases. *Clin Microbiol Infect* 2012;18:887-93. doi: 10.1111/j.1469-0691.2011.03658.x. [Epub ahead of print: 26 Sep 2011].
- 63. Sánchez-Romero I, Asensio Á, Oteo J, *et al.* Nosocomial outbreak of VIM-1-producing Klebsiella pneumoniae isolates of multilocus sequence type 15: molecular basis, clinical risk factors, and outcome. *Antimicrob Agents Chemother* 2012;56:420-7. doi: 10.1128/AAC.05036-11. [Epub ahead of print: 17 Oct 2011].
- 64. Schwaber MJ, Klarfeld-Lidji S, Navon-Venezia S, *et al.* Predictors of carbapenem-resistant Klebsiella pneumoniae acquisition among hospitalized adults and effect of acquisition on mortality. *Antimicrob Agents Chemother* 2008;52:1028-33. doi: 10.1128/AAC.01020-07. [Epub ahead of print: 17 Dec 2007].
- 65. Shilo S, Assous MV, Lachish T, *et al.* Risk factors for bacteriuria with carbapenem-resistant Klebsiella pneumoniae and its impact on mortality: a case-control study. *Infection* 2013;41:503-9. doi: 10.1007/s15010-012-0380-0. [Epub ahead of print: 28 Dec 2012].
- 66. Simkins J, Muggia V, Cohen HW, *et al.* Carbapenem-resistant Klebsiella pneumoniae infections in kidney transplant recipients: a case-control study. *Transpl Infect Dis* 2014;16:775-82. doi: 10.1111/tid.12276. [Epub ahead of print: 05 Aug 2014].
- 67. Tian L, Tan R, Chen Y, *et al.* Epidemiology of Klebsiella pneumoniae bloodstream infections in a teaching hospital: factors related to the carbapenem resistance and patient mortality. *Antimicrob Resist Infect Control* 2016;5:48.
- 68. Torres-Gonzalez P, Ortiz-Brizuela E, Cervera-Hernandez ME, *et al.* Associated factors and outcomes for OXA-232 Carbapenem-resistant Enterobacteriaceae infections in a tertiary care centre in Mexico City: A case-control-control study. *Diagn Microbiol Infect Dis* 2016;86:243-8. doi: 10.1016/j.diagmicrobio.2016.07.002. [Epub ahead of print: 07 Jul 2016].
- 69. Trecarichi EM, Pagano L, Martino B, *et al.* Bloodstream infections caused by Klebsiella pneumoniae in onco-hematological patients: clinical impact of carbapenem resistance in a multicentre prospective survey. *Am J Hematol* 2016;91:1076-1081. doi: 10.1002/ajh.24489. [Epub ahead of print: 29 Jul 2016].
- 70. Ulu AC, Kurtaran B, Inal AS, *et al*. Risk factors of carbapenem-resistant Klebsiella pneumoniae infection: a serious threat in ICUs. *Med Sci Monit* 2015;21:219-24.
- 71. Vardakas KZ, Matthaiou DK, Falagas ME, *et al.* Characteristics, risk factors and outcomes of carbapenem-resistant Klebsiella pneumoniae infections in the intensive care unit. *J Infect* 2015;70:592-9. doi: 10.1016/j.jinf.2014.11.003. [Epub ahead of print: 15 Nov 2014].
- Wang Z, Qin RR, Huang L, *et al*. Risk Factors for Carbapenem-resistant Klebsiella pneumoniae Infection and Mortality of Klebsiella pneumoniae Infection. *Chin Med J (Engl)* 2018;131:56-62.

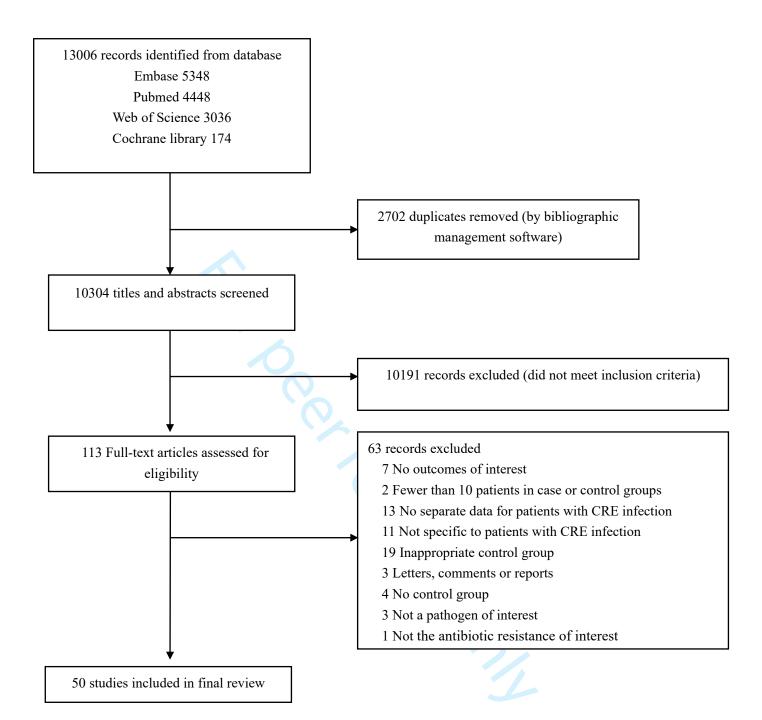
- 73. Xiao T, Yu W, Niu T, *et al.* A retrospective, comparative analysis of risk factors and outcomes in carbapenem-susceptible and carbapenem-nonsusceptible Klebsiella pneumoniae bloodstream infections: tigecycline significantly increases the mortality. *Infect Drug Resist* 2018;11:595-606.
- 74. Zhang Y, Guo LY, Song WQ, *et al*. Risk factors for carbapenem-resistant K. pneumoniae bloodstream infection and predictors of mortality in Chinese paediatric patients. *BMC Infect Dis* 2018;18:248.
- 75. Zheng S-H, Cao S-J, Xu H, *et al*. Risk factors, outcomes and genotypes of carbapenem-nonsusceptible Klebsiella pneumoniae bloodstream infection: a three-year retrospective study in a large tertiary hospital in Northern China. *Infect Dis (Lond)* 2018;50:443-451. doi: 10.1080/23744235.2017.1421772. [Epub ahead of print: 05 Jan 2018].
- 76. Zheng G, Jing L, Guojun Z, *et al*. Epidemiology and risk factors of neurosurgical bacterial meningitis/encephalitis induced by carbapenem resistant Enterobacteriaceae. *J Infect Chemother* 2020;26:101-106. doi: 10.1016/j.jiac.2019.07.023. [Epub ahead of print: 21 Aug 2019].
- 77. Zuo Y, Zhao D, Song G, et al. Risk Factors, Molecular Epidemiology, and Outcomes of Carbapenem-Resistant Klebsiella pneumoniae Infection for Hospital-Acquired Pneumonia: A Matched Case-Control Study in Eastern China During 2015–2017. Microb Drug Resist 2020. doi: 10.1089/mdr.2020.0162. [Epub ahead of print: 02 Jul 2020].
- 78. Villegas MV, Pallares CJ, Escandón-Vargas K, *et al.* Characterization and Clinical Impact of Bloodstream Infection Caused by Carbapenemase-Producing Enterobacteriaceae in Seven Latin American Countries. PLoS One. 2016 Apr 22;11(4):e0154092.
- 79. Stewardson AJ, Marimuthu K, Sengupta S, *et al*. Effect of carbapenem resistance on outcomes of bloodstream infection caused by Enterobacteriaceae in low-income and middle-income countries (PANORAMA): a multinational prospective cohort study. Lancet Infect Dis. 2019 Jun;19(6):601-610. Epub 2019 Apr 29.
- 80. Paño Pardo JR, Serrano Villar S, Ramos Ramos JC, *et al.* Infections caused by carbapenemase-producing Enterobacteriaceae: risk factors, clinical features and prognosis. Enferm Infece Microbiol Clin. 2014 Dec;32 Suppl 4:41-8.
- 81. Sader HS, Castanheira M, Duncan LR, *et al.* Antimicrobial Susceptibility of Enterobacteriaceae and Pseudomonas aeruginosa Isolates from United States Medical Centers Stratified by Infection Type: Results from the International Network for Optimal Resistance Monitoring (INFORM) Surveillance Program, 2015-2016. Diagn Microbiol Infect Dis. 2018 Sep;92(1):69-74.

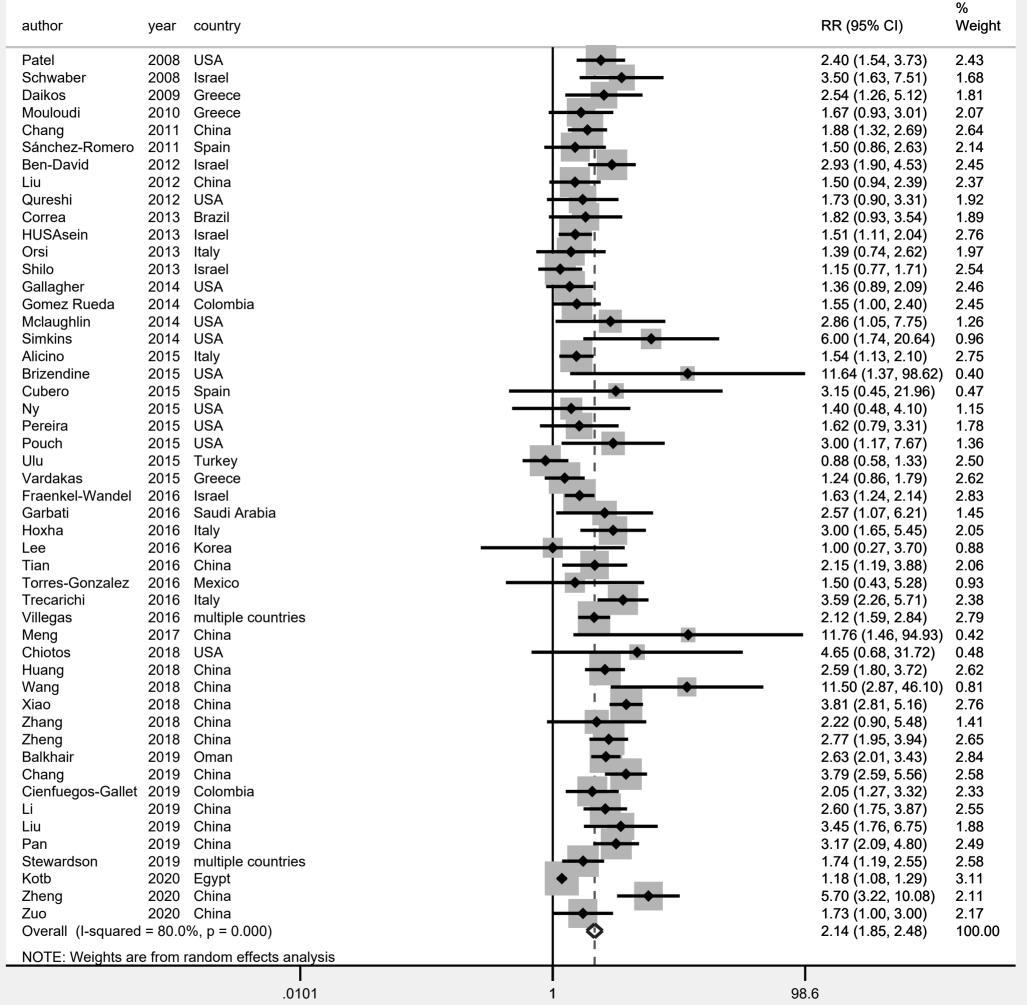
Figure legends

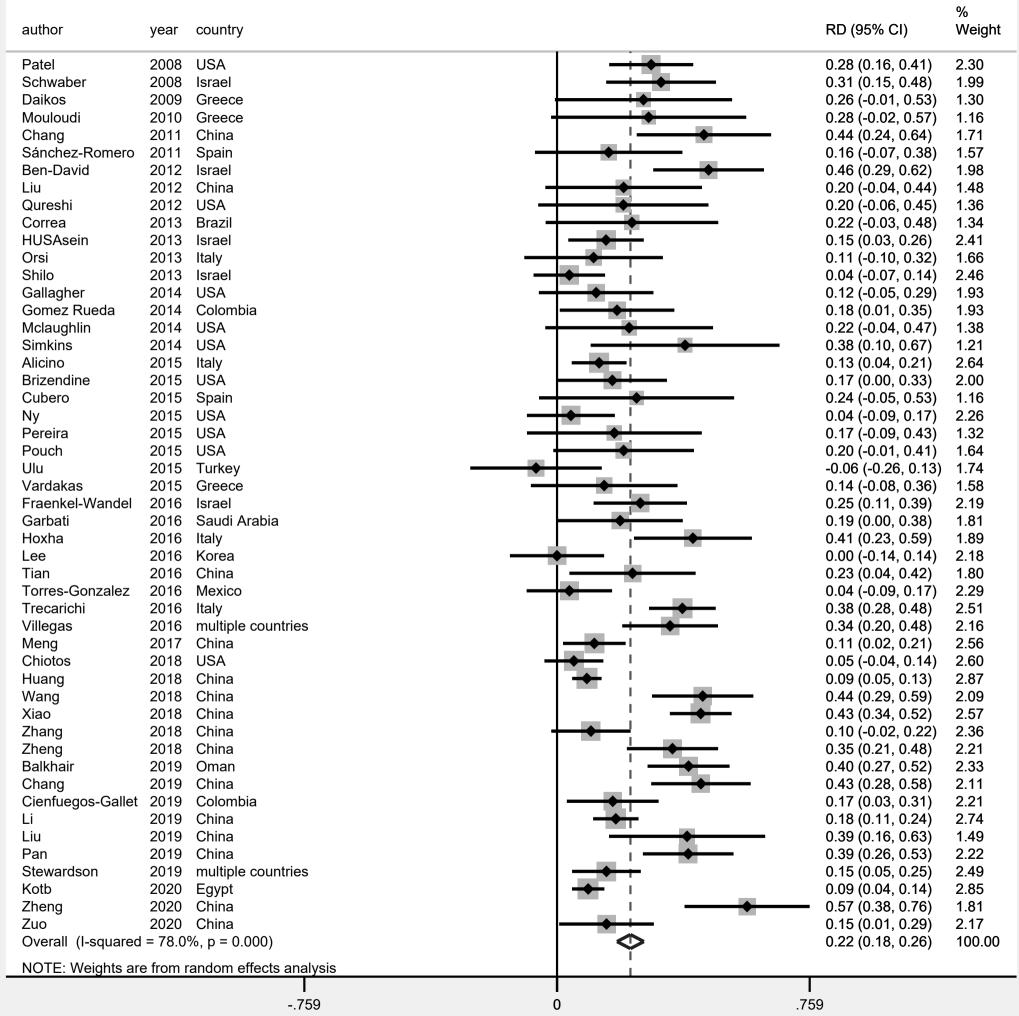
Figure.1 Flow chart of the study selection process for the meta-analysis

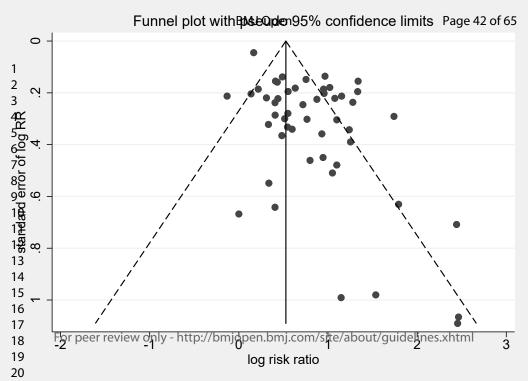
Figure.2 Forest plot of overall mortality in patients with carbapenem-resistant Enterobacteriaceae (CRE) versus carbapenem-susceptible Enterobacteriaceae (CSE) infections (outcome measure = relative risk).

Figure.3 Forest plot of overall mortality in patients with carbapenem-resistant Enterobacteriaceae (CRE) versus carbapenem-susceptible Enterobacteriaceae (CSE) infections (outcome measure = risk difference).

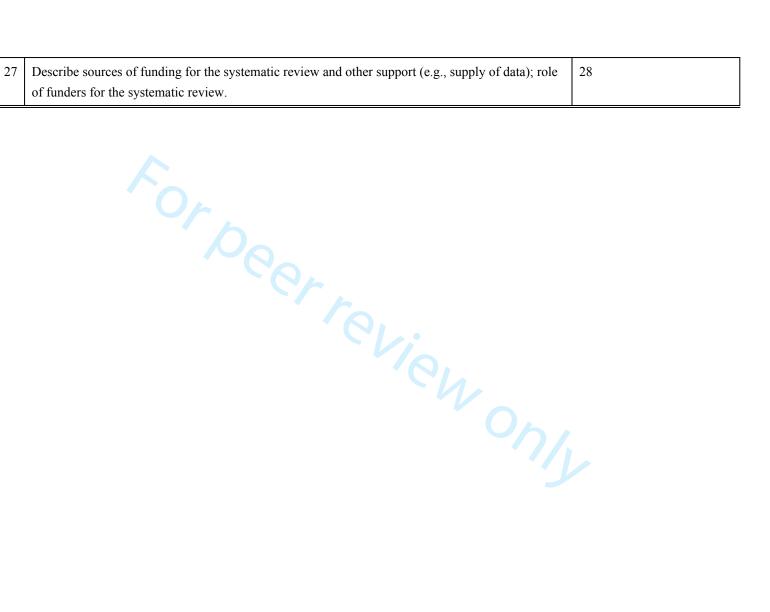

Figure.4 Funnel plot of studies evaluating mortality of patients with infections due to carbapenem-resistant compared to carbapenem-susceptible *Enterobacteriaceae*.


Licence statement


I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in BMJ Open and any other BMJ products and to exploit all rights, as set out in our licence.


The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Supplementary Materials


Appendix 1. PRISMA Checklist

Section/topic	#	Checklist item	Reported on page #					
TITLE								
Title	1	Identify the report as a systematic review, meta-analysis, or both.	Title page					
ABSTRACT								
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2					
INTRODUCTIO	INTRODUCTION							
Rationale	3	Describe the rationale for the review in the context of what is already known.	4-5					
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	5					
METHODS								
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	6					
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	7					
Information	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors	6					

sources		to identify additional studies) in the search and date last searched.	
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	6
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	7
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	7-8
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	7-8
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	9
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	8-9
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I²) for each meta-analysis.	8-9
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	9
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	9
RESULTS			

Study selection							
		for exclusions at each stage, ideally with a flow diagram.					
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	10,Table.1				
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	10, Appendix.4				
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	10,Table.1,Figure.2,Figure.3				
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	17, Figure.2, Figure.3				
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	19, Figure.4				
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	18-19				
DISCUSSION							
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	24-27				
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	27				
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	27-28				
FUNDING							

Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role	28
		of funders for the systematic review.	

Appendix 2. Search terms and search strategies

1.Pubmed (4448)

	1.1 dollied (111-0)	Items
Search	Query	found
#1	Search: ((enterobacteriaceae[MeSH Terms]) OR klebsiella pneumoniae[MeSH Terms]) OR escherichia coli[MeSH Terms]	399348
#2	Search: (((carbapenem resistant) OR (carbapenem resistance)) OR (carbapenem nonsusceptible)) OR (carbapenemase producing)	15576
#3	Search: (((enterobacteriaceae[MeSH Terms]) OR (klebsiella pneumoniae[MeSH Terms])) OR (escherichia coli[MeSH Terms])) AND ((((carbapenem resistant) OR (carbapenem resistance)) OR (carbapenem nonsusceptible)) OR (carbapenemase producing))	5776
#4	Search: (((enterobacteriaceae[MeSH Terms]) OR (klebsiella pneumoniae[MeSH Terms])) OR (escherichia coli[MeSH Terms])) AND ((((carbapenem resistant) OR (carbapenem resistance)) OR (carbapenem nonsusceptible)) OR (carbapenemase producing)) Filters: Humans	4761
#5	Search: (((enterobacteriaceae[MeSH Terms]) OR (klebsiella pneumoniae[MeSH Terms])) OR (escherichia coli[MeSH Terms])) AND ((((carbapenem resistant) OR (carbapenem resistance)) OR (carbapenem nonsusceptible)) OR (carbapenemase producing)) Filters: Humans, from 1994 - 2020	4716
#6	Search: (((enterobacteriaceae[MeSH Terms]) OR (klebsiella pneumoniae[MeSH Terms])) OR (escherichia coli[MeSH Terms])) AND ((((carbapenem resistant) OR (carbapenem resistance)) OR (carbapenem nonsusceptible)) OR (carbapenemase producing)) Filters: Humans, English, from 1994 - 2020	4448

2.Embase(5348)

#	searches	results
1	Enterobacteriaceae.af.	38034
2	Klebsiella pneumoniae.af.	47767
3	Escherichia coli.af.	425764
4	1 or 2 or 3	470290
5	carbapenem resistant.af.	7442
6	carbapenem resistance.af.	3418
7	carbapenem nonsusceptible.af.	139
8	carbapenemase producing.af.	3413
9	5 or 6 or 7 or 8	11419
10	4 and 9	8235
11	limit 10 to (human and english language and yr="1994 -Current")	5348

3. Web of Science(3036)

#	searches	results
	TI=(Enterobacteriaceae)	
1	Databases= WOS, BCI, BIOSIS, CABI, CSCD, DIIDW, INSPEC, KJD, MEDLINE,	6685
1	RSCI, SCIELO, ZOOREC Timespan=1994-2020	0083
	Search language=English	
	TI=(Klebsiella pneumoniae)	
2	Databases= WOS, BCI, BIOSIS, CABI, CSCD, DIIDW, INSPEC, KJD, MEDLINE,	10759
2	RSCI, SCIELO, ZOOREC Timespan=1994-2020	10/39
	Search language=English	
	TI=(Escherichia coli)	
3	Databases= WOS, BCI, BIOSIS, CABI, CSCD, DIIDW, INSPEC, KJD, MEDLINE,	102497
3	RSCI, SCIELO, ZOOREC Timespan=1994-2020	102497
	Search language=English	
	#3 OR #2 OR #1	
4	Databases= WOS, BCI, BIOSIS, CABI, CSCD, DIIDW, INSPEC, KJD, MEDLINE,	118551
4	RSCI, SCIELO, ZOOREC Timespan=1994-2020	110331
	Search language=English	
	TI=(carbapenem resistance OR carbapenem resistant OR carbapenem nonsusceptible	
	OR carbapenemase producing)	
5	Databases= WOS, BCI, BIOSIS, CABI, CSCD, DIIDW, INSPEC, KJD, MEDLINE,	5926
	RSCI, SCIELO, ZOOREC Timespan=1994-2020	
	Search language=English	
	#5 AND #4	
6	Databases= WOS, BCI, BIOSIS, CABI, CSCD, DIIDW, INSPEC, KJD, MEDLINE,	3036
O	RSCI, SCIELO, ZOOREC Timespan=1994-2020	3030
	Search language=English	

4. Cochrane library

ID	Search	Hits
#1	(carbapenem) AND (Enterobacteriaceae) (Limits:	137
#1	Word variations have been searched)	137
#2	(carbapenem) AND (Klebsiella pneumoniae)	71
#2	(Limits: Word variations have been searched)	71
#3	(carbapenem) AND (Escherichia coli) (Limits: Word	67
#3	variations have been searched)	07
#4	#1 OR #2 OR #3 with Cochrane Library publication	174
#4	date Between Jan 1994 and Sep 2020	1/4

Appendix 3. List of excluded studies with reason for exclusion

First author	Year	Reason for exclusion
Adams ¹	2019	inappropriate control group
Ahn ²	2014	Not specific to patients with CRE infection
Akgul ³	2016	Not specific to patients with CRE infection
Balkan ⁴	2014	inappropriate control group
Biehle ⁵	2015	not a pathogen of interest
Bleumin ⁶	2012	No separate data for patients with CRE infection
Bogan ⁷	2014	No separate data for patients with CRE infection
Chang ⁸	2015	no control group
Cristina ⁹	2016	no control group
Dautzenberg ¹⁰	2015	Not specific to patients with CRE infection
de Maio Carrilho ¹¹	2016	no control group
Debby ¹²	2012	Not specific to patients with CRE infection
Diaz ¹³	2016	Not specific to patients with CRE infection
Dizbay ¹⁴	2014	not a pathogen of interest
Eser ¹⁵	2019	Not specific to patients with CRE infection
Falcone ¹⁶	2009	not a pathogen of interest
Fang ¹⁷	2019	No separate data for patients with CRE infection
Forde ¹⁸	2017	No separate data for patients with CRE infection
Freire ¹⁹	2015	inappropriate control group
Gao ²⁰	2019	inappropriate control group
Gasink ²¹	2009	No separate data for patients with CRE infection
Gaviria ²²	2011	Letters, comments or reports
Giacobbe ²³	2015	Not the antibiotic resistance of interest
Giannella ²⁴	2014	Not specific to patients with CRE infection
Girmenia ²⁵	2015	inappropriate control group
Girometti ²⁶	2014	no outcomes of interest
Gowda ²⁷	2014	no outcomes of interest
Grabowsk ²⁸	2017	No separate data for patients with CRE infection
Hauck ²⁹	2016	inappropriate control group
Hu^{30}	2016	Not specific to patients with CRE infection
Jiao ³¹	2015	No separate data for patients with CRE infection
Kang ³²	2019	Not specific to patients with CRE infection
Kofteridis ³³	2014	No separate data for patients with CRE infection
Lai ³⁴	2013	inappropriate control group
Lee ³⁵	2013	no outcomes of interest
Lee ³⁶	2012	inappropriate control group
López-González ³⁷	2017	inappropriate control group
Lubbert ³⁸	2014	No separate data for patients with CRE infection
Mantzarlis ³⁹	2013	inappropriate control group
Marimuthu ⁴⁰		

Mazza ⁴¹	2017	Fewer than 10 patients in case or control groups
Miller ⁴²	2016	no outcomes of interest
Mouloudi ⁴³	2014	inappropriate control group
Muggeo ⁴⁴	2017	No separate data for patients with CRE infection
Nouvenne ⁴⁵	2014	No separate data for patients with CRE infection
Orsi ⁴⁶	2011	Fewer than 10 patients in case or control groups
Papadimitriou-Olivgeris ⁴⁷	2013	Not specific to patients with CRE infection
Patel ⁴⁸	2015	inappropriate control group
Porwal ⁴⁹	2014	Letters, comments or reports
Qureshi ⁵⁰	2014	inappropriate control group
Rodrigues ⁵¹	2016	inappropriate control group
Salsano ⁵²	2016	inappropriate control group
Segagni Lusignani ⁵³	2020	No separate data for patients with CRE infection
Shankar ⁵⁴	2018	no control group
Taminato ⁵⁵	2019	inappropriate control group
Tamma ⁵⁶	2017	inappropriate control group
Tascini ⁵⁷	2015	Not specific to patients with CRE infection
Tsereteli ⁵⁸	2018	no outcomes of interest
Tumbarello ⁵⁹	2015	inappropriate control group
Tumbarello ⁶⁰	2014	inappropriate control group
Tuon ⁶¹	2017	no outcomes of interest
Jamal ⁶²	2016	no outcomes of interest
Wang ⁶³	2016	No separate data for patients with CRE infection

References of studies excluded

- 1. Adams DJ, Susi A, Nylund CM. Clinical characteristics, risk factors, and outcomes of patients hospitalized in the US military health system with carbapenem-resistant Enterobacteriaceae infection. *Am J Infect Control* 2020;48:644-649. doi: 10.1016/j.ajic.2019.10.006. [Epub ahead of print: 20 Nov 2019].
- 2. Ahn JY, Song JE, Kim MH, *et al*. Risk factors for the acquisition of carbapenem-resistant Escherichia coli at a tertiary care center in South Korea: A matched case-control study. *Am J Infect Control* 2014;42:621-5.
- 3. Akgul F, Bozkurt I, Sunbul M, Esen S, Leblebicioglu H. Risk factors and mortality in the Carbapenem-resistant Klebsiella pneumoniae infection: case control study. *Pathog Glob Health* 2016;110:321-325. doi: 10.1080/20477724.2016.1254976. [Epub ahead of print: 01 Dec 2016].
- 4. Balkan II, Aygun G, Aydin S, Mutcali SI, Kara Z, Kuskucu M, et al. Blood stream infections due to OXA-48-like carbapenemase-producing Enterobacteriaceae: Treatment and survival. *Int J Infect Dis* 2014;26:51-6. doi: 10.1016/j.ijid.2014.05.012. [Epub ahead of print: 03 Jul 2014].
- 5. Biehle LR, Cottreau JM, Thompson DJ, Filipek RL, O'Donnell JN, Lasco TM, et al. Outcomes and risk factors for mortality among patients treated with carbapenems for klebsiella spp. Bacteremia. *PLoS One* 2015;10:e0143845.
- 6. Bleumin D, Cohen MJ, Moranne O, Esnault VLM, Benenson S, Paltiel O, et al. Carbapenem-resistant Klebsiella pneumoniae is associated with poor outcome in hemodialysis patients. *J Infect* 2012;65:318-25. doi: 10.1016/j.jinf.2012.06.005. [Epub ahead of print: 18 Jun 2012].
- 7. Bogan C, Kaye KS, Chopra T, Hayakawa K, Pogue JM, Lephart PR, et al. Outcomes of carbapenem-resistant Enterobacteriaceae isolation: Matched analysis. *Am J Infect Control* 2014;42:612-20.
- 8. Chang YY, Chuang YC, Siu LK, Wu TL, Lin JC, Lu PL, et al. Clinical features of patients with carbapenem nonsusceptible Klebsiella pneumoniae and Escherichia coli in intensive care units: a nationwide multicenter study in Taiwan. *J Microbiol Immunol Infect* 2015;48:219-25. doi: 10.1016/j.jmii.2014.05.010. [Epub ahead of print: 26 Jul 2014].
- 9. Cristina ML, Sartini M, Ottria G, Schinca E, Cenderello N, Crisalli MP, et al. Epidemiology and biomolecular characterization of carbapenem-resistant klebsiella pneumoniae in an Italian hospital. *J Prev Med Hyg* 2016;57:E149-E156.
- Dautzenberg MJ, Wekesa AN, Gniadkowski M, Antoniadou A, Giamarellou H, Petrikkos GL, et al. The Association between Colonization with Carbapenemase-Producing Enterobacteriaceae and Overall ICU Mortality: An Observational Cohort Study. *Crit Care Med* 2015;43:1170-7.
- de Maio Carrilho CM, de Oliveira LM, Gaudereto J, Perozin JS, Urbano MR, Camargo CH, et al. A prospective study of treatment of carbapenem-resistant Enterobacteriaceae infections and risk factors associated with outcome. *BMC Infect Dis* 2016;16:629.
- 12. Debby BD, Ganor O, Yasmin M, David L, Nathan K, Ilana T, et al. Epidemiology of carbapenem resistant Klebsiella pneumoniae colonization in an intensive care unit. *Eur J*

- *Clin Microbiol Infect Dis* 2012;31:1811-7. doi: 10.1007/s10096-011-1506-5. [Epub ahead of print: 14 Jan 2012].
- 13. Diaz A, Ortiz DC, Trujillo M, Garces C, Jaimes F, Restrepo AV. Clinical Characteristics of Carbapenem-resistant Klebsiella pneumoniae Infections in Ill and Colonized Children in Colombia. *Pediatr Infect Dis J* 2016;35:237-41.
- 14. Dizbay M, Tunccan OG, Karasahin O, Aktas F. Emergence of carbapenem-resistant Klebsiella spp. infections in a Turkish university hospital: epidemiology and risk factors. *J Infect Dev Ctries* 2014;8:44-9.
- 15. Eser F, Yilmaz GR, Guner R, Hasanoglu I, Urkmez Korkmaz FY, Acikgoz ZC, et al. Risk factors for rectal colonization of carbapenem-resistant Enterobacteriaceae in a tertiary care hospital: a case-control study from Turkey. *Turk J Med Sci* 2019;49:341-346.
- 16. Falcone M, Mezzatesta ML, Perilli M, Forcella C, Venditti M. Infections with VIM-1 metallo-{beta}-lactamase-producing enterobacter cloacae and their correlation with clinical outcome. *J Clin Microbiol* 2009;47:3514-9. doi: 10.1128/JCM.01193-09. [Epub ahead of print: 09 Sep 2009].
- 17. Fang L, Lu X, Xu H, Ma X, Chen Y, Liu Y, et al. Epidemiology and risk factors for carbapenem-resistant Enterobacteriaceae colonisation and infections: case-controlled study from an academic medical center in a southern area of China. *Pathog Dis* 2019;77:ftz034.
- 18. Forde C, Stierman B, Ramon-Pardo P, Dos Santos T, Singh N. Carbapenem-resistant Klebsiella pneumoniae in Barbados: Driving change in practice at the national level. *PLoS One* 2017;12:e0176779.
- 19. Freire MP, Pierrotti LC, Filho HHC, Ibrahim KY, Magri ASGK, Bonazzi PR, et al. Infection with Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae in cancer patients. *Eur J Clin Microbiol Infect Dis* 2015;34:277-86. doi: 10.1007/s10096-014-2233-5. [Epub ahead of print: 30 Aug 2014].
- 20. Gao B, Li X, Yang F, Chen W, Zhao Y, Bai G, et al. Molecular Epidemiology and Risk Factors of Ventilator-Associated Pneumonia Infection Caused by Carbapenem-Resistant Enterobacteriaceae. *Front Pharmacol* 2019;10:262.
- 21. Gasink LB, Edelstein PH, Lautenbach E, Synnestvedt M, Fishman NO. Risk Factors and Clinical Impact of Klebsiella pneumoniae Carbapenemase–Producing K. pneumoniae. *Infect Control Hosp Epidemiol* 2009;30:1180-5.
- 22. Centers for Disease Control and Prevention (CDC). Carbapenem-resistant Klebsiella pneumoniae associated with a long-term--care facility --- West Virginia, 2009-2011. MMWR Morb Mortal Wkly Rep 2011;60:1418-20.
- 23. Giacobbe DR, Del Bono V, Trecarichi EM, De Rosa FG, Giannella M, Bassetti M, et al. Risk factors for bloodstream infections due to colistin-resistant KPC-producing Klebsiella pneumoniae: results from a multicenter case-control-control study. *Clin Microbiol Infect* 2015;21:1106.e1-8. doi: 10.1016/j.cmi.2015.08.001. [Epub ahead of print: 14 Aug 2015].
- 24. Giannella M, Morelli MC, Cristini F, Ercolani G, Cescon M, Bartoletti M, et al. Carbapenem-resistant Klebsiella pneumoniae colonization at liver transplantation: A management challenge. *Liver Transpl* 2014;20:631-3.
- 25. Girmenia C, Rossolini GM, Piciocchi A, Bertaina A, Pisapia G, Pastore D, et al. Infections by carbapenem-resistant Klebsiella pneumoniae in SCT recipients: a

- nationwide retrospective survey from Italy. *Bone Marrow Transplant* 2015;50:282-8. doi: 10.1038/bmt.2014.231. [Epub ahead of print: 13 Oct 2014].
- 26. Girometti N, Lewis RE, Giannella M, Ambretti S, Viale P. Klebsiella pneumoniae Bloodstream Infection: Epidemiology and Impact of Inappropriate Empirical Therapy. *Medicine (Baltimore)* 2014;93:298-309.
- Gowda LK, Marie MAM. Epidemiology of carbapenem-resistant and noncarbapenem-resistant enterobacteriaceae and issues related to susceptibility testing, treatment options, and clinical outcome. *Rev Medi Microbiol* 2014;25:53-65.
- 28. Grabowski ME, Kang H, Wells KM, Sifri CD, Mathers AJ, Lobo JM. Provider Role in Transmission of Carbapenem-Resistant Enterobacteriaceae. *Infect Control Hosp Epidemiol* 2017;38:1329-1334. doi: 10.1017/ice.2017.216. [Epub ahead of print: 24 Oct 2017].
- 29. Hauck C, Cober E, Richter SS, Perez F, Salata RA, Kalayjian RC, et al. Spectrum of excess mortality due to carbapenem-resistant Klebsiella pneumoniae infections. *Clin Microbiol Infect* 2016;22:513-9. doi: 10.1016/j.cmi.2016.01.023. [Epub ahead of print: 03 Feb 2016].
- 30. Hu Y, Ping Y, Li L, Xu H, Yan X, Dai H. A retrospective study of risk factors for carbapenem-resistant Klebsiella pneumoniae acquisition among ICU patients. *J Infect Dev Ctries* 2016;10:208-13.
- Jiao Y, Qin Y, Liu J, Li Q, Dong Y, Shang Y, et al. Risk factors for carbapenem-resistant Klebsiella pneumoniae infection/colonization and predictors of mortality: a retrospective study. *Pathog Glob Health* 2015;109:68-74. doi: 10.1179/2047773215Y.00000000004. [Epub ahead of print: 24 Feb 2015].
- 32. Kang JS, Yi J, Ko MK, Lee SO, Lee JE, Kim K-H. Prevalence and Risk Factors of Carbapenem-resistant Enterobacteriaceae Acquisition in an Emergency Intensive Care Unit in a Tertiary Hospital in Korea: a Case-Control Study. *J Korean Med Sci* 2019;34:e140.
- 33. Kofteridis DP, Valachis A, Dimopoulou D, Maraki S, Christidou A, Mantadakis E, et al. Risk factors for carbapenem-resistant Klebsiella pneumoniae infection/colonization: a case-case-control study. *J Infect Chemother* 2014;20:293-7. doi: 10.1016/j.jiac.2013.11.007. [Epub ahead of print: 03 Apr 2014]
- 34. Lai CC, Wu UI, Wang JT, Chang SC. Prevalence of carbapenemase-producing Enterobacteriaceae and its impact on clinical outcomes at a teaching hospital in Taiwan. *J Formos Med Assoc* 2013;112:492-6. doi: 10.1016/j.jfma.2012.09.021. [Epub ahead of print: 22 Nov 2012].
- 35. Lee GC, Lawson KA, Burgess DS. Clinical epidemiology of carbapenem- resistant enterobacteriaceae in community hospitals: A case-case-control study. *Ann Pharmacother* 2013;47:1115-21.
- 36. Lee NY, Wu JJ, Lin SH, Ko WC, Tsai LH, Yan JJ. Characterization of carbapenem-nonsusceptible Klebsiella pneumoniae bloodstream isolates at a Taiwanese hospital: clinical impacts of lowered breakpoints for carbapenems. *Eur J Clin Microbiol Infect Dis* 2012;31:1941-50. doi: 10.1007/s10096-011-1525-2. [Epub ahead of print: 18 Jan 2012].

- 37. Lopez-Gonzalez L, Candel FJ, Vinuela-Prieto JM, Gonzalez-Del Castillo J, Garcia AB, Pena I, et al. Useful independent factors for distinguish infection and colonization in patients with urinary carbapenemase-producing Enterobacteriaceae isolation. *Rev Esp Ouimioter* 2017;30:450-457. [Epub ahead of print: 07 Nov 2017].
- 38. Lubbert C, Becker-Rux D, Rodloff AC, Laudi S, Busch T, Bartels M, et al. Colonization of liver transplant recipients with KPC-producing Klebsiella pneumoniae is associated with high infection rates and excess mortality: a case-control analysis. *Infection* 2014;42:309-16. doi: 10.1007/s15010-013-0547-3. [Epub ahead of print: 12 Nov 2013].
- 39. Mantzarlis K, Makris D, Manoulakas E, Karvouniaris M, Zakynthinos E. Risk factors for the first episode of Klebsiella pneumoniae resistant to carbapenems infection in critically ill patients: a prospective study. *Biomed Res Int* 2013;2013:850547. doi: 10.1155/2013/850547. [Epub ahead of print: 18 Dec 2013].
- 40. Marimuthu K, Ng TM, Teng C, Lim TP, Koh TH, Tan TY, et al. Risk factors and treatment outcome of ertapenem non-susceptible enterobacteriaceae bacteraemia. *J Infect* 2013;66:294-6. doi: 10.1016/j.jinf.2012.11.010. [Epub ahead of print: 28 Nov 2012].
- Mazza E, Prosperi M, Panzeri MF, Limuti R, Nichelatti M, De Gasperi A.
 Carbapenem-Resistant Klebsiella Pneumoniae Infections Early After Liver
 Transplantation: A Single-Center Experience. *Transplant Proc* 2017;49:677-681.
- 42. Miller BM, Johnson SW. Demographic and infection characteristics of patients with carbapenem-resistant Enterobacteriaceae in a community hospital: Development of a bedside clinical score for risk assessment. *Am J Infect Control* 2016;44:134-7. doi: 10.1016/j.ajic.2015.09.006. [Epub ahead of print: 20 Oct 2015].
- 43. Mouloudi E, Massa E, Papadopoulos S, Iosifidis E, Roilides I, Theodoridou T, et al. Bloodstream infections caused by carbapenemase-producing Klebsiella pneumoniae among intensive care unit patients after orthotopic liver transplantation: risk factors for infection and impact of resistance on outcomes. *Transplant Proc* 2014;46:3216-8.
- 44. Muggeo A, Guillard T, Barbe C, Thierry A, Bajolet O, Vernet-Garnier V, et al. Factors associated with carriage of carbapenem-non-susceptible Enterobacteriaceaein North-Eastern France and outcomes of infected patients. *J Antimicrob Chemother* 2017;72:1496-1501.
- 45. Nouvenne A, Ticinesi A, Lauretani F, Maggio M, Lippi G, Guida L, et al. Comorbidities and disease severity as risk factors for carbapenem-resistant Klebsiella pneumoniae colonization: report of an experience in an internal medicine unit. *PLoS One* 2014;9:e110001.
- 46. Orsi GB, Garcia-Fernandez A, Giordano A. Risk factors and clinical significance of ertapenem-resistant Klebsiella pneumoniae in hospitalised patients. *J Hosp Infect* 2011;78:54-8. doi: 10.1016/j.jhin.2011.014. [Epub ahead of print: 30 Mar 2011].
- 47. Papadimitriou-Olivgeris M, Marangos M, Fligou F, Christofidou M, Sklavou C, Vamvakopoulou S, et al. KPC-producing Klebsiella pneumoniae enteric colonization acquired during intensive care unit stay: the significance of risk factors for its development and its impact on mortality. *Diagn Microbiol Infect Dis* 2013;77:169-73. doi: 10.1016/j.diagmicrobio.2013.06.007. [Epub ahead of print: 23 Jul 2013].

- 48. Patel TS, Nagel JL. Clinical outcomes of Enterobacteriaceae infections stratified by carbapenem MICs. *J Clin Microbiol* 2015;53:201-5. doi: 10.1128/JCM.03057-14. [Epub ahead of print: 05 Nov 2014].
- 49. Porwal R, Gopalakrishnan R, Rajesh NJ, Ramasubramanian V. Carbapenem resistant Gram-negative bacteremia in an Indian intensive care unit: A review of the clinical profile and treatment outcome of 50 patients. *Indian J Crit Care Med* 2014;18:750-3.
- 50. Qureshi ZA, Syed A, Clarke LG, Doi Y, Shields RK. Epidemiology and clinical outcomes of patients with carbapenem-resistant Klebsiella pneumoniae bacteriuria. *Antimicrob Agents Chemother* 2014;58:3100-4. doi: 10.1128/AAC.02445-13. [Epub ahead of print: 17 Mar 2014].
- 51. Rodrigues Dos Santos BG, Amaral ES, Jr., Fernandes PF, Oliveira CM, Rodrigues JL, Perdigao Neto LV, et al. Urinary Tract Infections and Surgical Site Infections due to Carbapenem-Resistant Enterobacteriaceae in Renal Transplant. *Transplant Proc* 2016;48:2050-5.
- 52. Salsano A, Giacobbe DR, Sportelli E, Olivieri GM, Brega C, Di Biase C, et al. Risk factors for infections due to carbapenem-resistant Klebsiella pneumoniae after open heart surgery. *Interact Cardiovasc Thorac Surg* 2016;23:762-768. doi: 10.1093/icvts/ivw228. [Epub ahead of print: 01 Jul 2016].
- 53. Segagni Lusignani L, Presterl E, Zatorska B, Van Den Nest M, Diab-Elschahawi M. Infection control and risk factors for acquisition of carbapenemase-producing enterobacteriaceae. A 5 year (2011-2016) case-control study. *Antimicrob Resist Infect Control* 2020;9:18.
- 54. Shankar C, Kumar M, Baskaran A, Paul MM, Ponmudi N, Santhanam S, et al. Molecular characterisation for clonality and transmission dynamics of an outbreak of Klebsiella pneumoniae amongst neonates in a tertiary care centre in South India. *Indian J Med Microbiol* 2018;36:54-60.
- Taminato M, Fram D, Pereira RRF, Sesso R, Belasco AGS, Pignatari AC, et al. Infection related to Klebsiella pneumoniae producing carbapenemase in renal transplant patients. *Rev Bras Enferm* 2019;72:760-766.
- Tamma PD, Goodman KE, Harris AD, Tekle T, Roberts A, Taiwo A, et al. Comparing the Outcomes of Patients With Carbapenemase-Producing and Non-Carbapenemase-Producing Carbapenem-Resistant Enterobacteriaceae Bacteremia. Clin Infect Dis 2017;64:257-264. doi: 10.1093/cid/ciw741. [Epub ahead of print: 09 Nov 2016].
- 57. Tascini C, Lipsky BA, Iacopi E, Ripoli A, Sbrana F, Coppelli A, et al. KPC-producing Klebsiella pneumoniae rectal colonization is a risk factor for mortality in patients with diabetic foot infections. *Clin Microbiol Infect* 2015;21:790.e1-3. doi: 10.1016/j.cmi.2015.04.010. [Epub ahead of print: 22 Apr 2015].
- 58. Tsereteli M, Sidamonidze K, Tsereteli D, Malania L, Vashakidze E. EPIDEMIOLOGY OF CARBAPENEM-RESISTANT KLEBSIELLA PNEUMONIAE IN INTENSIVE CARE UNITS OF MULTIPROFILE HOSPITALS IN TBILISI, GEORGIA. *Georgian Med News* 2018;(280-281):164-168.
- 59. Tumbarello M, Trecarichi EM, De Rosa FG, Giannella M, Giacobbe DR, Bassetti M, et al. Infections caused by KPC-producing Klebsiella pneumoniae: differences in therapy and

- mortality in a multicentre study. *J Antimicrob Chemother* 2015;70:2133-43. doi: 10.1093/jac/dkv086. [Epub ahead of print: 21 Apr 2015].
- 60. Tumbarello M, Trecarichi EM, Tumietto F, Del Bono V, De Rosa FG, Bassetti M, et al. Predictive models for identification of hospitalized patients harboring KPC-producing Klebsiella pneumoniae. *Antimicrob Agents Chemother* 2014;58:3514-20. doi: 10.1128/AAC.02373-13. [Epub ahead of print: 14 Apr 2014].
- 61. Tuon FF, Graf ME, Merlini A, Rocha JL, Stallbaum S, Arend LN, et al. Risk factors for mortality in patients with ventilator-associated pneumonia caused by carbapenem-resistant Enterobacteriaceae. *Braz J Infect Dis* 2017;21:1-6. doi: 10.1016/j.bjid.2016.09.008. [Epub ahead of print: 04 Nov 2014].
- 62. Jamal WY, Albert MJ, Rotimi VO. High Prevalence of New Delhi Metallo-beta-Lactamase-1 (NDM-1) Producers among Carbapenem-Resistant Enterobacteriaceae in Kuwait. *PLoS One* 2016;11:e0152638.
- 63. Wang Q, Zhang Y, Yao X, Xian H, Liu Y, Li H, et al. Risk factors and clinical outcomes for carbapenem-resistant Enterobacteriaceae nosocomial infections. Eur J Clin Microbiol Infect Dis 2016;35:1679-89. doi: 10.1007/s10096-016-2710-0. [Epub ahead of print: 11 Jul 2016].

Appendix 4. Risk of bias assessed with the Newcastle-Ottawa Assessment Scale.

NEWCASTLE - OTTAWA QUALITY ASSESSMENT SCALE COHORT STUDIES

<u>Note</u>: A study can be awarded a maximum of one star for each numbered item within the Selection and Outcome categories. A maximum of two stars can be given for Comparability. In this version of NOS, we define the exposure as carbapenem resistance and the outcome as death in hospital and the target population is patients infected with *Enterobacteriaceae*.

Selection: (Maximum 4 stars)

- 1) Representativeness of the exposed cohort
 - a) truly representative of the average carbapenem resistance in patients infected with *Enterobacteriaceae*.
 - b) somewhat representative of the average carbapenem resistance in patients infected with *Enterobacteriaceae* **
 - c) selected group of users (e.g. organ transplant recipients, onco-hematological patients)
 - d) no description of the derivation of the cohort
- 2) Selection of the non exposed cohort
 - a) drawn from the same community as the exposed cohort *
 - b) drawn from a different source
 - c) no description of the derivation of the non exposed cohort
- 3) Ascertainment of exposure
 - a) secure record (e.g. medical records) *
 - b) structured interview **★**
 - c) written self report
 - d) no description
- 4) Demonstration that outcome of interest was not present at start of study

- a) yes 🟶
- b) no

Comparability: (Maximum 2 stars)

- 1) Comparability of cohorts on the basis of the design or analysis
 - a) study controls for age ₩
 - b) study controls for comorbidity₩

Outcome: (Maximum 3 stars)

- 1) Assessment of outcome
 - a) independent blind assessment *
 - b) record linkage *
 - c) self report
 - d) no description
- 2) Was follow-up long enough for outcomes to occur
 - a) yes (adequate if >14 days) ₩
 - b) no
- 3) Adequacy of follow up of cohorts
 - a) complete follow up all subjects accounted for *
 - b) subjects lost to follow up unlikely to introduce bias small number lost -> 80 % follow up, or description provided of those lost *
 - c) follow up rate < 80% and no description of those lost
 - d) no statement

First Author	Year	selection(1)	selection(2)	selection(3)	selection(4)	comparability(1)	outcome(1)	outcome(2)	outcome(3)	Total score	Risk of bias
Alicino,C	2015	1	1	1	1	0	1	1	1	7	Low
Balkhair, A.	2019	1	1	1	1	0	1	1	1	7	Low
Ben-David, D.	2012	1	1	1	1	1	1	1	1	8	Low
Brizendine, K. D	2015	0	1)/	1	1	1	1	1	1	7	Low
Chang, H	2019	1	1	1	1	0	1	1	1	7	Low
Chang, H. J	2011	1	1		1	1	1	1	1	8	Low
Chiotos, K.	2018	0	1	1	1	1	1	1	1	7	Low
Cienfuegos-Gallet, A. V.	2019	1	1	1	1,	1	1	1	1	8	Low
Correa, L.	2013	1	1	1	1	1	1	1	1	8	Low
Cubero,M	2015	1	1	1	1	0	1	1	1	7	Low
Daikos	2009	1	1	1	1	0	1	0	1	6	Moderate
Fraenkel-Wandel, Y.	2016	1	1	1	1	1	1	1	1	8	Low
Gallagher	2014	1	1	1	1	0	1	1	1	7	Low
Garbati, M. A.	2016	1	1	1	1	0	JA,	1	1	7	Low
Gomez Rueda, V.	2014	1	1	1	1	0	1/1	1	1	7	Low
Hoxha, A.	2016	1	1	1	1	1	1	1	0	7	Low
Huang, W.	2018	1	1	1	1	2	1	1	1	9	Low
Hussein, K.	2013	1	1	1	1	1	1	1	1	8	Low
Kotb, Sara	2020	1	1	1	1	0	1	1	1	7	Low
Lee, H. J.	2016	1	1	1	1	1	1	1	1	8	Low
Li, Yi	2019	0	1	1	1	1	1	1	1	7	Low
Liu, Jianling	2019	0	1	1	1	1	1	1	1	7	Low

BMJ Open

Liu, S. W.	2012	1	1	1	1	1	1	1	1	8	Low
Mclaughlin	2014	1	1	1	1	1	1	1	1	8	Low
Meng, Xiujuan	2017	1	1	1	1	1	1	1	1	8	Low
Mouloudi, Eleni	2010	0	1	1	1	1	1	1	1	7	Low
Ny, P.	2015	1	1	1	1	1	1	1	1	8	Low
Orsi,G.B.	2013	1	1	1	1	1	1	1	1	8	Low
Pan, H.	2019	1	1	1	1	1	1	1	1	8	Low
Patel	2008	1	1	1	1	1	1	1	1	8	Low
Pereira, M. R.	2015	0	1		1	1	1	1	1	7	Low
Pouch, S. M.	2015	0	1	1	1	1	1	1	1	7	Low
Qureshi	2012	1	1	1	1	0	1	1	1	7	Low
Sánchez-Romero	2011	1	1	1	1	0	1	0	1	6	Moderate
Schwaber	2008	1	1	1	1	0	1	1	1	7	Low
Shilo, S.	2013	1	1	1	1	1	1	1	1	8	Low
Simkins, J.	2014	0	1	1	1	1	1	1	1	7	Low
Stewardson	2019	1	1	1	1	2	1	1	1	9	Low
Tian, Lijun	2016	1	1	1	1	1		1	1	8	Low
Torres-Gonzalez, P.	2016	1	1	1	1	0	1	1	1	7	Low
Trecarichi, Enrico Maria	2016	0	1	1	1	0	1	1	1	6	Moderate
Ulu, Aslıhan Candevir	2015	0	1	1	1	1	1	1	1	7	Low
Vardakas, Konstantinos Z.	2015	0	1	1	1	1	1	1	1	7	Low
Villegas	2016	1	1	1	1	1	1	1	1	8	Low
Wang, Z.	2018	1	1	1	1	1	1	1	1	8	Low
Xiao, Tingting	2018	1	1	1	1	1	1	1	1	8	Low

Page 60 of 65

P	a
1	
2	
3	
4	
5	
6	
7	
8	
9	
1	0
1	1
_	_
1 1 1	3
1	4
1	5
1	6
1	7
1	6 7 8
1	9
2	0
2	1
2	2
2	3
2	4
2	5
2	6
2	7
2	8
2	9
3	0
3	1
3	2
3	3
3	4
3	5
3	6
_	_

Zhang, Y.	2018	0	1	1	1	0	1	1	1	6	Mod
Zheng, Si-Han	2018	1	1	1	1	1	1	1	1	8	Low
Zheng,Guanghui	2020	0	1	1	1	1	1	1	1	7	Low
Zuo	2020	1	1	1	1	1	1	1	1	8	Low
						104					

PRISMA Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	Title page
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2
INTRODUCTIO	N		
Rationale	3	Describe the rationale for the review in the context of what is already known.	4-5
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	5
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	6
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	7
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	6

Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	6
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	7
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	7-8
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	7-8
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	9
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	8-9
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I²) for each meta-analysis.	8-9
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	9
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	9
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	10, Figure.1

Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	10,Table.1
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	10, Appendix.4
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	10,Table.1,Figure.2,Figure.3
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	17, Figure.2, Figure.3
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	19, Figure.4
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	18-19
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	24-27
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	27
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	27-28
FUNDING			
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	28

BMJ Open

The impact of carbapenem resistance on mortality in patients infected with Enterobacteriaceae: a systematic review and meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-054971.R1
Article Type:	Original research
Date Submitted by the Author:	29-Oct-2021
Complete List of Authors:	Zhou, Ruyin; China Agricultural University, College of Economics and Management Fang, Xiangming; China Agricultural University, College of Economics and Management; Georgia State University, School of Public Health Zhang, Jinjin; China Agricultural University, College of Economics and Management Zheng, Xiaodong; Zhejiang Gongshang University, School of Economics Shangguan, Shuangyue; China Agricultural University, College of Economics and Management Chen, Shibo; China Agricultural University, College of Veterinary Medicine Shen, Yingbo; Chinese Academy of Sciences, CAS Key Laboratory of Pathogenic Microbiology and Immunology Liu, Zhihai; Qingdao Agricultural University, College of Chemistry and Pharmaceutical Sciences Li, Juan; Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease Zhang, Rong; Zhejiang University, The Second Affiliated Hospital of Zhejiang University Shen, Jianzhong; China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine Walsh, Timothy R; University of Oxford, Department of Zoology Wang, Yang; China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine
Primary Subject Heading :	Global health
Secondary Subject Heading:	Epidemiology, Global health, Public health
Keywords:	EPIDEMIOLOGY, Public health < INFECTIOUS DISEASES, Health policy < HEALTH SERVICES ADMINISTRATION & MANAGEMENT

SCHOLARONE™ Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

The impact of carbapenem resistance on mortality in patients infected with

Enterobacteriaceae: a systematic review and meta-analysis

Ruyin Zhou¹, Xiangming Fang^{1,2}, Jinjin Zhang¹, Xiaodong Zheng³, Shuangyue Shangguan¹, Shibo

Chen⁴, Yingbo Shen⁵, Zhihai Liu⁶, Juan Li⁷, Rong Zhang⁸, Jianzhong Shen⁹, Timothy R Walsh¹⁰,

Yang Wang⁹

¹College of Economics and Management, China Agricultural University, Beijing, China;

²School of Public Health, Georgia State University, Atlanta, USA;

³School of Economics, Zhejiang Gongshang University, Hangzhou, China;

⁴College of Veterinary Medicine, China Agricultural University, Beijing, China;

⁵CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China;

⁶College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China;

⁷State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, China;

⁸The Second Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou, China;

⁹ Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China;

Corresponding author:

Xiangming Fang, PhD

College of Economics and Management

China Agricultural University

Address: No.17, Qinghuadong Road, Haidian District, Beijing, 100083, China E-mail address: xmfang@cau.edu.cn

Word count: 4437

¹⁰Department of Zoology, University of Oxford, Oxford, UK.

ABSTRACT

Objectives To provide a comprehensive assessment of the impact of carbapenem resistance on mortality among patients infected with *Enterobacteriaceae* and to explore the source of heterogeneity across studies. **Design** This systematic review was conducted following the guidelines of Cochrane Guidance and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA).

Data sources We conducted a systematic literature search of the PubMed, Embase, Web of Science, and Cochrane Library databases to identify relevant studies published between 1 January 1994 and 30 August 2020.

Eligibility criteria We included primary observational studies published in English that reported the

mortality outcomes for hospitalized patients with confirmed infections due to carbapenem-resistant *Enterobacteriaceae* (CRE) and carbapenem-susceptible *Enterobacteriaceae* (CSE). Studies with no comparison group or with a comparison group of patients infected with unconfirmed CSE were excluded. **Data extraction and synthesis** Data extraction and assessment of risk bias were conducted independently by two reviewers. The pooled relative risk (RR) and risk difference (RD) were calculated as effect measures with 95% confidence intervals using a random-effects model. The heterogeneity across studies

Results Of 10,304 studies initially identified, 50 studies were included in the meta-analyses. The results of the meta-analyses showed that carbapenem resistance has a significant positive effect on the probability of death for patients infected with *Enterobacteriaceae* for any type of mortality outcome. The results of the stratified analysis and meta-regression suggested that the effect of carbapenem resistance on the risk of death varied by infection type, sample size, and year of publication.

was assessed by Q-statistic and I² measures.

Conclusions Our results suggested that patients with CRE infection still face a greater risk of death than

patients with CSE infection do, and an urgent need to develop new antibiotics and appropriate treatments to reduce the risk of death.

Strengths and limitations of this study

- This study provided a comprehensive meta-analysis to assess the impact of carbapenem resistance on mortality among patients infected with *Enterobacteriaceae*, including nearly 20 new published studies in the last three years that were not included in previous relevant reviews.
- The statistical test and meta-regression analysis in this study was conducted for different groups of mortality outcome type, which may help to address the potential heterogeneity caused by the factor of mortality measurements.
- This review is the first to explore the source of heterogeneity across studies through meta-regression analysis and to consider the country's economic status and geographical region in assessing the association between carbapenem resistance and mortality among patients infected with *Enterobacteriaceae*.
- This review includes effect measures in both relative and absolute terms, thus providing a complete picture of the effect of carbapenem resistance on mortality among patients infected with *Enterobacteriaceae*.
- The comparison in our research is currently limited to high-income and upper-middle-income countries from the Americas, Asia, and Europe due to insufficient data from elsewhere; more studies from different countries, especially low-income countries and other regions, are needed to provide comprehensive data for further analysis stratified by geographical region and economic status.

INTRODUCTION

The Enterobacteriaceae species, mainly Klebsiella pneumoniae and Escherichia coli, can cause infections like bloodstream infections, ventilator-associated pneumonia, intra-abdominal infections, and urinary tract infections in both healthcare and community settings. 1 The treatment of these infections is becoming increasingly challenging because of the increasing prevalence of multi-drug-resistant *Enterobacteriaceae*, such as extended-spectrum β-lactamases (ESBLs)-producing *Enterobacteriaceae*. To counter this challenge, carbapenems were introduced in the 1980s² and proved efficacious in the clinical treatment of infections caused by ESBLs-producing Enterobacteriaceae.3 However, since the carbapenem-resistant Enterobacteriaceae (CRE) emerged in the early 1990s, 4 CRE has been increasingly reported worldwide. 5,6 The prevalence of CRE is driven primarily by the spread of carbapenemases, a group of β-lactamases hydrolyzing carbapenems.⁷ The CRE strains that produce diverse types of carbapenemases are endemic in different areas of the world. 8 Countries that have high overall rates of CRE include Greece, Italy, Brazil, China, the United States, and Colombia. For example, the rate of carbapenem resistance in Klebsiella pneumoniae isolates was as high as 63.9% in Greece in 2018.9 The increasing prevalence of CRE has posed a serious threat to public health because of the reduced efficacy of carbapenem and limited available therapy options, so CRE has been categorized as the most critical group of multidrug-resistant pathogens with the most urgent need for new antibiotics.¹⁰

The mortality of CRE infections is a research hotspot. Recently, some systematic reviews have included meta-analyses to assess the association between CRE infections and mortality by comparing with the mortality outcome of patients infected with carbapenem-susceptible *Enterobacteriaceae*(CSE). ¹¹⁻¹⁶ The results showed that CRE infections could lead to increased mortality. The latest systematic review on this topic included studies published until 2017, ¹²but nearly 20 relevant articles have been published since

then. A timely and comprehensive summary of the results of these articles can help explain the excess health burden that is attributable to carbapenem-resistant *Enterobacteriaceae* (CRE) infections. Moreover, although previous systematic reviews have identified heterogeneity across studies and discussed some confounding factors of mortality, including patient-, infection-, organism-, and therapy-related factors, 12,13,15 few used a formal statistical approach or meta-regression analysis to examine whether the effect of carbapenem resistance on mortality varies by these factors. In addition, these earlier reviews have not considered differences in economic status and geographical region. The development of antibiotic resistance has resulted in decreasing effectiveness of first-line antibiotics, such that more expensive second- and third-line antibiotic treatments must be used. However, these treatments may be unobtainable or unaffordable for patients with resistant infections in developing countries, ¹⁷ which would result in worse prognostic outcomes. The effect of carbapenem resistance on mortality may have regional differences because the CRE strains with different types of carbapenemases and virulence characteristics¹ are predominant in different regions worldwide. 8 Two previous reviews have shown that the mortality rate of patients with CRE infections differs by geographical region. 14,18 However, without data from control groups, whether the impact of carbapenem resistance on mortality differs between the region will remain unknown.

Therefore, we aim to provide a comprehensive systematic review of the impact of carbapenem resistance on mortality among patients infected with *Enterobacteriaceae* and explore the source of heterogeneity among studies to help policymakers to develop strategies and policies to combat CRE worldwide.

METHODS

This systematic review was conducted following the guidelines of Cochrane Guidance¹⁹ and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA).²⁰ The protocol was registered with PROSPERO on July 5, 2020(CRD42020176808). The initial protocol was designed with a broad scope, but we divided our work into two parts to limit its length: the first (this study) focuses on mortality, and the second will focus on morbidity and the economic outcomes.

Search strategy

We conducted a systematic literature search of the databases of PubMed, Embase, Web of Science, and the Cochrane Library for relevant studies published between 1 January 1994, and 30 August 2020 to identify eligible studies. This period was chosen because carbapenem-resistant *Enterobacteriaceae* were first reported in the 1990s. Specifically, the strains producing Metallo-β-lactamase(MBL)IMP-1, which is a type of carbapenemase that can hydrolyze carbapenems, were first identified in Japan in a study published in 1994.⁴

The search strategy was designed by combining the terms for bacteria and carbapenem resistance (See Supplementary Material Appendix 1). The search terms for the bacteria were "Enterobacteriaceae," along with "Klebsiella pneumoniae" and "Escherichia coli," (the two most clinically important pathogens within the Enterobacteriaceae family). The search terms for carbapenem resistance were "carbapenem-resistant," "carbapenem resistance," "carbapenem non-susceptible," and "carbapenemase-producing" because CRE can be generally divided into carbapenemase-producing CRE (CP-CRE) and non-carbapenemase-producing CRE (non-CP-CRE).²¹

Selection criteria

We included studies that fulfilled all of the following criteria: (1) primary observational studies (i.e., case-control study, cohort study); (2) studies published between 1 January 1994 and 30 August 2020; (3) studies published in English; and (4) studies that assessed the mortality of hospitalized patients with confirmed infections due to CRE and CSE.

Studies that met any of the following criteria were excluded: (1) studies that could not provide the mortality data for patients with confirmed CRE infection; (2) studies that focused on the resistance of other antibiotics instead of carbapenem antibiotics; (3) Studies with no comparison group or with a comparison group of patients infected with unconfirmed CSE; (4) studies on animals; or (5) publications like editorials and letters. The list of excluded studies with reasons for exclusion is provided in Supplementary Material Appendix 2.

Two reviewers independently screened all titles and abstracts of the initially identified studies and then reviewed the full text of studies that met all of the inclusion criteria and none of the exclusion criteria.

Disagreements were resolved through consensus or discussion with a third senior reviewer.

Data extraction

Data were extracted from each selected study into a data extraction form in Excel. The extracted data included the first author, year of publication, study period, country, region, country income level classified by the World Bank,²² study design, infection type, specific pathogen, sample size, and the number of deaths in CRE and CSE groups. Notably, we assigned the income status of the country based on the period when the study was conducted because the income status of some countries may have changed between

1994 and 2020. For example, there were 15 studies conducted in China between 2006 and 2018 included in this meta-analysis, but since the income status of China changed from the lower-income level to the upper-income level in 2010, the two studies conducted between 2006 and 2009 were classified as lower middle income, and the other 13 studies conducted after 2010 were classified as upper middle income. The kinds of measurements of mortality outcomes that were extracted from included studies were all-cause in-hospital mortality, all-cause mortality at 6-30 days (6 days, 7 days, 14 days, 21 days, 28 days, 30 days) after diagnosis, mortality in ICU, 30d mortality in ICU, and mortality attributable to infection, which is usually defined as the death of a patient with clinical and laboratory evidence of ongoing infection in the absence of other feasible reasons.

Data extraction was conducted by two reviewers independently and disagreements were resolved through consensus or discussion with a third senior reviewer.

Data synthesis and analysis

We calculated the pooled relative risk (RR) and risk difference (RD) by comparing the mortality of patients with CRE infection with that of patients with CSE infection. We choose RR as the relative measure rather than the odds ratio (OR) because the latter was more difficult to interpret than RR^{23,24} and is usually misinterpreted as RR, which may overestimate the intervention effect when RR is more than 1.²⁵ We also calculated RD to describe the absolute difference in the risk of mortality between the two groups because reporting only the relative risk may conceal the underlying absolute risks, resulting in readers' overestimating the effect.²⁶ It has been recommended that both relative risk and absolute risk should be reported to provide a complete picture of the effect.²⁷ We calculated the pooled estimates of RRs and RDs with 95% confidence intervals were calculated using a random-effects model based on the method of

DerSimonian & Laird,²⁸ with the estimate of heterogeneity being taken from the Mantel-Haenszel model. An RR of 1 and an RD of 0 indicate that the risk of mortality is identical regardless of carbapenem resistance. When RR>1 or RD>0, it means carbapenem resistance has a positive effect on the risk of death for patients infected with *Enterobacteriaceae*; in other words, the risk of death from CRE infection is higher than that from CSE infection. The heterogeneity across studies was assessed by Q-statistic and I² measures. The heterogeneity was considered substantial when I²>50%.

In the primary analysis, we calculated the pooled estimates of the overall mortality using one mortality outcome in each study with a priority given to in-hospital mortality and the latest time point of mortality if mortality outcomes at multiple time points were reported in a study. Then we categorized the mortality measurements into eight groups and conducted meta-analysis for each type of mortality outcome. In further analysis, to identify the potential sources of heterogeneity, we conducted stratified analysis by bacterial species, geographical region, economic status, source of infection, sample size, and resistance mechanism in the mortality outcome groups in which substantial heterogeneity was detected. An F-test based on a one-way analysis of variance (ANOVA) was used to test the differences in the mean effect estimates between subgroups. We also conducted a random-effects meta-regression analysis in the group of mortality outcome type with more than then studies. The meta-regression analysis was based on restricted maximum likelihood using an iterative procedure to determine whether the effect estimates differ significantly by the above variables, and P < 0.1 was considered statistically significant. A sensitivity analysis was conducted for the overall mortality, with the pooled RRs recalculated using random-effects meta-analysis after removing one study at a time to evaluate the stability of the results. Finally, we conducted a funnel plot for the overall mortality to assess the publication bias. All the statistical analyses were conducted using the Stata version 15 software.

Risk of bias assessment

Two reviewers independently assessed the risk of bias for each included study using the Newcastle-Ottawa quality assessment scale (NOS) for observational studies,²⁹ and disagreements were resolved through consensus or discussion with a third senior reviewer.

Patient and public involvement

Patients and the public were not involved in the design, or conduct, or reporting, or dissemination plans of this systematic review.

RESULTS

We identified 10,304 studies from the literature search, among which 50 studies³⁰⁻⁷⁹ were selected for final review based on the inclusion and exclusion criteria (Figure 1). The basic characteristics of the included studies are provided in Table 1, and Table S1 in Supplementary Material Appendix 3 shows the details of the studies. The studies were conducted in 14 countries from four regions. Nearly half of the studies were conducted in Asia (n=24), followed by the Americas (n=15) and Europe (n=9), with only one study conducted in Africa. We also included a multi-region study that contained data from Asia, Africa, and South America.⁷⁹ Most of the studies were conducted in high-income countries (n=27) and upper-middle-income countries (n=19), only three studies were conducted in lower-middle-income countries and no study conducted in a low-income country met the criteria. Most studies (n=39) reported mortality outcomes of infections that were due to *Klebsiella pneumoniae* pathogens, while two studies reported mortality outcomes of infections that were due to *Escherichia coli*, and nine studies reported

mortality outcomes regardless of the specific species of Enterobacteriaceae. Nearly half of the studies (n=24) evaluated infected patients regardless of specific infection type. Among the studies that focused on specific sites of infection, bloodstream infection was the most frequent type (n=21), followed by urinary tract infection (n=3), and one study each for neurosurgical infection and pneumonia. Among the 50 studies included, most were cohort studies (n=29). In the other 21 case-control studies, the mortality outcomes were measured using a cohort study design, so these studies were assessed as cohort studies in our quality appraisal. The NOS assessment for the risk of bias of all included studies is summarized in Supplementary Material Appendix 4. According to the NOS scores, 46 were categorized as having a low risk of bias (scoring 7 to 9) and only 4 studies were categorized as having the moderate risk of bias (scoring 4 to 6).

Table 1 Characteristics of included studies

First Author (Year)	Study period	Country	Infection type	Pathogen	Mortality outcomes
Alicino (2015) 30	2007.01-2014.12	Italy	BSI	K. pneumoniae	30d mortality
Balkhair (2019) ³¹	2007.01-2016.12	Oman	BSI	K. pneumoniae	30d mortality
Ben-David (2012) ³²	2006.01-2006.12	Israel	BSI	K. pneumoniae	in-hospital mortality , mortality attributable to infection
Brizendine (2015) ³³	2006-2012	USA	UTI	K. pneumoniae	in-hospital mortality
CI (2010)34	2014 01 2010 07	CI.:	Dat		7d mortality, 28d mortality,
Chang (2019) ³⁴	2014.01-2018.07	China	BSI	K. pneumoniae	in-hospital mortality
Chang (2011) ³⁵	2006.1-2008.12	China	BSI	E. coli	14d hospital mortality, 28d hospital mortality, in-hospital mortality
Chiotos (2018) ³⁶	2011.1-2016.7	USA	Mixed	Enterobacteriaceae	30d mortality
Cienfuegos-Gallet (2019) ³⁷	2014.02-03; 2014.10-2015.09	Colombia	Mixed	K. pneumoniae	30d mortality
Correa (2013) ³⁸	2006.1-2008.8	Brazil	Mixed	K. pneumoniae	in-hospital mortality
Cubero (2015) ³⁹	2010.10-2012.12	Spain	Mixed	K. pneumoniae	in-hospital mortality
Daikos (2009) ⁴⁰	2004.2-2006.3	Greece	BSI	K. pneumoniae	14d mortality
Fraenkel-Wandel (2016) ⁴¹	2006-2012	Israel	BSI	K. pneumoniae	in-hospital mortality
Gallagher (2014) ⁴²	2005.6-2010.10	USA	BSI	K. pneumoniae	in-hospital mortality
Garbati (2016) ⁴³	2012.3-2013.12	Saudi Arabia	Mixed	Enterobacteriaceae	in-hospital mortality
Gomez Rueda (2014)44	2008.1-2011.1	Colombia	Mixed	K. pneumoniae	in-hospital mortality
Hoxha (2016) ⁴⁵	2012.11-2013.7	Italy	Mixed	K. pneumoniae	6d mortality, 30d mortality
Huang (2018) ⁴⁶	2017.01-2017.12	China	Mixed	K. pneumoniae	in-hospital mortality
Hussein (2013) ⁴⁷	2006.1-2008.12	Israel	BSI	K. pneumoniae	30d mortality
Kotb (2020) ⁴⁸	2011-2017	Egypt	Mixed	Enterobacteriaceae	mortality in ICU
Lee (2016) ⁴⁹	2013.1-2014.2	Korea	Mixed	Enterobacteriaceae	28d mortality, in-hospital mortalit
Li (2019) ⁵⁰	2014.1-2018.6	China	Mixed	K. pneumoniae	30d mortality in ICU
Liu (2019) ⁵¹	2014.1-2018.9	China	BSI	K. pneumoniae	30d mortality
Liu (2012) ⁵²	2007.1-2009.12	China	BSI	K. pneumoniae	14d mortality, 28d mortality, in-hospital mortality
Mclaughlin (2014) ⁵³	2010.3-2011.12	USA	BSI	K. pneumoniae	in-hospital mortality
Meng (2017) ⁵⁴	2012.1-2015.12	China	Mixed	Escherichia. coli	in-hospital mortality
Mouloudi (2010) ⁵⁵	2007.1-2008.12	Greece	BSI	K. pneumoniae	in-hospital mortality , mortality in ICU, mortality attributable to infection
Ny (2015) ⁵⁶	2011.1-2013.12	USA	Mixed	K. pneumoniae	in-hospital mortality
Orsi (2013) ⁵⁷	2008.7-2011.6	Italy	Mixed	K. pneumoniae	in-hospital mortality
Pan (2019) ⁵⁸	2014	China	Mixed	K. pneumoniae	in-hospital mortality
Patel (2008) ⁵⁹	2004.7-2006.6	USA	Mixed	K. pneumoniae	in-hospital mortality, mortality attributable to infection
Pereira (2015) ⁶⁰	2010.1-2013.1	USA	Mixed	K. pneumoniae	in-hospital mortality
Pouch (2015) ⁶¹	2007.1-2010.12	USA	UTI	Enterobacteriaceae	in-hospital mortality
Qureshi (2012) ⁶²	2011.1-2014.12	USA	BSI	K. pneumoniae	28d mortality
Sánchez-Romero (2011) ⁶³	2009.1-2009.12	Spain	Mixed	K. pneumoniae	14d mortality
Schwaber (2008) ⁶⁴	2003.9-2006.12	Israel	Mixed	K. pneumoniae	in-hospital mortality
Shilo (2013) ⁶⁵	2006.1-2009.12	Israel	UTI	K. pneumoniae	in-hospital mortality
Simkins (2014) ⁶⁶	2006.1-2010.12	USA	Mixed	K. pneumoniae	in-hospital mortality
Tian (2016) ⁶⁷	2011.1-2015.12	China	BSI	K. pneumoniae	in-hospital mortality, mortality attributable to infection, 28d mortality
Torres-Gonzalez (2016) ⁶⁸	2013.11-2015.7	Mexico	Mixed	Enterobacteriaceae	mortality attributable to infection
Trecarich (2016)i ⁶⁹	2010.1-2014.6	Italy	BSI	K. pneumoniae	21d mortality
` /				*	<u> </u>
Ulu (2015) ⁷⁰	2012.1-2012.12	Turkey	Mixed	K. pneumoniae	mortality in ICU

Wang (2018) ⁷²	2010.1-2014.12	China	Mixed	K. pneumoniae	in-hospital mortality
Xiao (2018) ⁷³	2013.1-2015.12	China	BSI	K. pneumoniae	30d mortality
Zhang (2018) ⁷⁴	2011.1-2014.12	China	BSI	K. pneumoniae	7d mortality, 28d mortality, in-hospital mortality
Zheng (2018) ⁷⁵	2014.1-2016.12	China	BSI	K. pneumoniae	28d mortality
Zheng (2020) ⁷⁶	2012-2017	China	Neurosurgical infection	Enterobacteriaceae	mortality attributable to infection
Zuo (2020) ⁷⁷	2015-2017	China	Pneumonia	K. pneumoniae	in-hospital mortality , mortality attributable to infection
Villegas (2016) ⁷⁸	2013.7-2014.11	7 countries	BSI	Enterobacteriaceae	in-hospital mortality , mortality attributable to infection
Stewardson (2019) ⁷⁹	2014.8-2015.6	10 countries	BSI	Enterobacteriaceae	in-hospital mortality

BSI, bloodstream infection; UTI, urinary tract infection; K.pneumoniae, Klebsiella pneumoniae; E.coli, Escherichia. coli

Meta-analysis results

Among the 50 studies included, 10 different measures of mortality were reported. In-hospital mortality (n=31) was most frequently reported, followed by 28-day mortality (n=9), 30-day mortality (n=8), mortality attributable to infection (n=8), 14-day mortality (n=4), and mortality in ICU (n=4). The mortality rates that were not commonly reported were 7-day mortality (n=2), 6-day mortality (n=1), 21-day mortality (n=1), and 30-day mortality in the ICU (n=1). The meta-analysis result for the overall mortality based on the measure of relative risk (RR, 2.14, 95% CI, 1.85-2.48; I²=80.0%) (Figure 2) and risk difference (RD, 0.22, 95% CI, 0.18-0.26, I²=78.0%) (Figure 3) suggested that carbapenem resistance was associated with increased risk of overall mortality, although a high level of heterogeneity was detected in these results.

The results of meta-analyses for different mortality outcome types showed that the I² for the pooled RR and RD was 0 in the studies that reported 14-day mortality, 6-day or 7-day mortality, and mortality in ICU, demonstrating low heterogeneity (Table 2). Among these three groups, the lowest pooled RR (1.17, 95% CI, 1.08-1.28) and RD (0.09, 95% CI, 0.04-0.14) was from the studies that reported mortality in the ICU. Although the pooled RR for 6-day or 7-day mortality (RR, 3.68, 95% CI, 2.32-5.83) was higher than that for 14-day mortality (RR, 1.70, 95% CI, 1.24-2.35), the pooled RD for both groups was 0.18. However, substantial heterogeneity was detected in the groups of studies that reported in-hospital mortality, 28-day or 30-day mortality, or mortality that was attributable to infection, which suggests other sources of heterogeneity.

Stratified analysis

To explore the source of heterogeneity between studies, we conducted a stratified analysis for each type of mortality outcome that had substantial heterogeneity. The potential sources of heterogeneity we explored

were pathogens, geographical region, economic status of the country, source of infection, resistance mechanism type, sample size, and publication year. One study⁷⁹ was not included in our subgroup analysis by geographical region and country income level, because it was conducted in 10 countries with different economic status from three continents.

For in-hospital mortality, carbapenem resistance had a significant positive effect on the risk of death for patients infected with *Enterobacteriaceae* in most subgroups. However, in-hospital mortality was not significantly different in either relative or absolute terms between CRE infection and CSE infection in studies that focused on patients infected with *Escherichia. coli* pathogens (RR, 3.83, 95% CI, 0.46-31.78, p=0.214; RD, 0.27, 95% CI, -0.06-0.59, p=0.115) or OXA-producing *Enterobacteriaceae* (RR, 3.15, 95% CI, 0.45-21.96, p=0.247; RD, 0.24, 95% CI, -0.05-0.53, p=0.110). In addition, no significant difference in pooled RR for in-hospital mortality was observed in studies that focused on patients with urinary tract infections (RR, 2.40, 95% CI, 0.82-7.03, p=0.110). The statistical test based on RR and RD showed that the effect of carbapenem resistance on mortality was not significantly different between the subgroups (Table S2 in Supplementary Material Appendix 5).

For 28-day or 30-day mortality, the subgroup analysis showed no significant difference in the mortality for CRE and CSE infections that were due to mixed *Enterobacteriaceae* pathogens (RR, 1.78, 95% CI, 0.57-5.60, p=0.321; RD, 0.05, 95% CI, -0.03-0.13, p=0.213). The results of the statistical tests based on RR showed that the later studies, those that were published from 2017 to 2020, reported higher RR for 28-day or 30-day mortality for patients who were infected with CRE versus CSE patients (p=0.006) than did studies that were published earlier. The statistical test results for 28-day or 30-day mortality showed that the pooled RD in studies with fewer than 100 patients was higher than that in studies with 100-200 patients. Although the pooled RD in studies with more than 200 patients was highest, the

heterogeneity in this group was high and should be interpreted with caution (Table S3 in Supplementary Material Appendix 5).

For mortality attributable to infection, the one study conducted in Europe with a sample size of fewer than 100 has found no significant difference in the risk of death for CRE and CSE infection (RR, 1.98, 95% CI, 0.61-6.43, p=0.255; RD, 0.13, 95% CI, -0.07-0.34, p=0.195), nor the study that focused on patients infected with OXA-producing *Enterobacteriaceae* (RR, 1.50, 95% CI, 0.43-5.28, p=0.528; RD, 0.04, 95% CI, -0.09-0.17, p=0.572). The results of statistical tests based on RD indicate that the effect of carbapenem resistance on attributable mortality is varied by the type of infection (p=0.075). Patients with neurosurgical infection were at greater risk of attributable death that was due to CRE infection than other types of infection (Table S4 in Supplementary Material Appendix 5).

Meta-regression

To further explore whether the effect of carbapenem resistance on mortality differs by the variables of pathogens, geographical region, economic status of the country, source of infection, resistance mechanism type, sample size, and publication year, we conducted the univariate meta-regression in the groups of mortality outcome type with more than 10 studies. The meta-regression results based on RD showed that the effect of carbapenem resistance on mortality was not influenced significantly by all the variables(Table S5, S6 in Supplementary Material Appendix 5). However, in terms of relative risk, the meta-regression for in-hospital mortality suggested that the influence of carbapenem resistance on in-hospital mortality in studies published between 2017 and 2020 was significantly greater than that in studies published between 2011 and 2013 (coefficient=-0.447, p=0.027) and in studies published from 2014 to 2016 (coefficient=-0.343, p=0.061) (Table S7 in Supplementary Material Appendix 5). The results of the

meta-regression for 28-day or 30-day mortality based on RR were similar to the results for in-hospital mortality. Moreover, the effect of carbapenem resistance on mortality at 28-day or 30-day tends to increase with the year of publication (coefficient=-0.0001, p=0.006) (Table S8 in Supplementary Material Appendix 5).

Sensitivity analysis

To assess the influence of individual studies on the results, we performed a sensitivity analysis by removing one study at a time and recalculated the pooled RRs of the overall mortality among the remaining studies using random-effects meta-analysis. We found that the direction of the effect did not change when any one study was excluded, which indicates the stability of the results of the meta-analysis.

Publication bias

Publication bias was assessed by a funnel plot (Figure 4). Slight asymmetricity was observed in the funnel plots and the points were heavily distributed at the top right, implying a lack of smaller studies that showed a negative association between carbapenem resistance and mortality.

Table 2 Pooled estimated results for different type of mortality outcome

		No. of	No. of	Unweighted means of	Unweighte d means of		P value			<i>P</i> value	
Mortality outcome type	No. of studies	CRE	CSE	mortality	mortality	RR (95%CI)	(significance	I ² (%)	RD (95%CI)	(significance	I ² (%)
		patients	patients	among CRE patients	among CSE patients		tests of RR=1)			tests of RD=0)	
In-hospital mortality	31	1668	3753	42.30%	20.00%	2.09 (1.81, 2.42)	0.000	49.8	0.21 (0.17, 0.26)	0.000	71.0
28d or 30d mortality	17	1161	2463	42.85%	19.88%	2.23 (1.83, 2.72)	0.000	63.6	0.23 (0.15, 0.30)	0.000	79.1
21d mortality	1	161	117	52.20%	14.50%	3.59 (2.26, 5.71)	0.000	-	0.38 (0.28, 0.48)	0.000	-
14d mortality	4	84	287	45.09%	27.01%	1.70 (1.24, 2.35)	0.001	0.0	0.18 (0.06, 0.31)	0.003	0.0
6d or 7d mortality	3	149	372	25.90%	6.57%	3.68 (2.32, 5.83)	0.000	0.0	0.18 (0.11, 0.26)	0.000	0.0
Mortality attributable to infection	8	391	778	43.30%	17.45%	2.74 (1.97, 3.81)	0.000	58.3	0.27 (0.15, 0.38)	0.000	79.5
Mortality in ICU	4	1035	824	58.83%	50.50%	1.17 (1.08, 1.28)	0.000	0.0	0.09 (0.04, 0.14)	0.000	0.0
30d mortality in ICU	1	244	263	28.90%	11.00%	2.60 (1.75, 3.87)	0.000	-	0.18 (0.11, 0.25)	0.000	-

DISCUSSION

This study systematically reviewed 50 studies and provides a comprehensive analysis of the impact of carbapenem resistance on mortality among patients infected with *Enterobacteriaceae*. Our analysis suggests that, for any type of mortality outcome, carbapenem resistance was associated with a greater probability of death for patients infected with CRE than that for patients infected with CSE. The results are consistent with the direction of previous meta-analyses of the association between carbapenem resistance and mortality among patients infected with *Enterobacteriaceae*. 13,14

As for the risk factors for worse mortality outcomes in patients with CRE infections, previous studies usually explained higher mortality among patients with CRE infection as being due to patient-, infection-, treatment-, and organism-related factors. 13,14,16,80 Twenty studies included in this review conducted multivariate analyses to identify the risk factors for mortality among patients infected with Enterobacteriaceae. After controlling for patient-related factors like age, sex, the severity of underlying illness, and comorbidities, three studies^{47,51,67} found that carbapenem resistance was not associated with increased mortality risk; however, 14 studies found that carbapenem resistance remained an independent predictor of mortality. Previous studies also considered therapeutic interventions as important risk factors for increased mortality in CRE infection, as administration of initial antibiotic therapy with in-vitro activity is more likely to be delayed in patients with CRE infection. 32,33,40,59,62,67,74 Several studies included in this research have suggested that the effect of carbapenem resistance was probably mediated by inappropriate initial therapy. 40,51,37 This finding was supported by a recent review of 11 studies that used a meta-regression analysis to identify a significant association between the proportion of patients who received appropriate initial antibiotic therapy and mortality.¹⁶ However, nine studies included in our review^{32,38,41,47,62,67,71,73,74} did not identify an association between early appropriate antibiotic therapy and

mortality after adjustment for some confounding factors. Instead, some studies found that other treatment methods were important risk factors of mortality. For example, a recent meta-analysis including seven studies showed that monotherapy treatment was associated with significantly higher mortality than combination therapy for patients with CRE infections.¹⁴ In addition, some studies^{72,73} have suggested that other therapies, such as adjunctive therapy, tigecycline therapy, and the use of aminoglycoside, may be associated with mortality among patients infected with *Klebsiella pneumoniae*. The increased mortality among patients with CRE infections might also be related to the increased virulence of carbapenemase-producing strains. Two studies included in this meta-analysis showed that isolation of the KPC-positive strain was a predictor of mortality among patients infected with *Klebsiella pneumoniae* independent of the appropriateness of initial treatment and patient characteristics,^{41,55} while another study⁴⁷ found that KPC-positive status was not associated with mortality when the virulence score was included in the multivariate analysis. As most of the included studies we reviewed did not provide the mortality outcomes after adjusting for confounding factors, we did not calculate the pooled adjusted effect measures.

To investigate the heterogeneity across the studies, we performed stratified analysis and meta-regression based on the type of mortality outcome. In terms of RR, the meta-regression analysis for in-hospital mortality showed that the effect of carbapenem resistance on in-hospital mortality was greater in studies published in 2017-2020 than it was in studies published in 2011-2013 and 2014-2016. The statistical test and meta-regression analyses for 28-day and 30-day mortality showed similar results. The increasing effect of carbapenem resistance on mortality with the publication year could be explained by the increasingly limited availability of effective antibiotics and the development of carbapenem-resistant *Enterobacteriaceae* against some key antibiotics, such as colistin, 81 resulting in increasing difficulty in treating CRE infection. As one study showed, 16 the proportion of CRKP patients who received appropriate

initial antibiotic therapy did not change over time. In contrast, mortality from CSE infection has tended to decrease in recent years, and the unweighted mean of in-hospital mortality and 28-day and 30-day mortality among CSE patients in studies conducted from 2017-2020 is 11.69% and 13.43% respectively, the lowest of the studies we reviewed. This change could be due to the development of medical technology and medical treatment, which may enlarge the relative differences in mortality between CRE and CSE infections. In addition, the statistical test for mortality attributable to infection identified a significant difference between infection types, as carbapenem resistance in patients with neurosurgical infection had a significantly greater effect on mortality compared to other types of infection, perhaps because of difficulty in treating CRE meningitis/encephalitis in neurosurgery. In terms of the RR, the statistical test showed that, compared with studies with fewer than 100 patients, carbapenem resistance had a greater effect on 28-day and 30-day mortality in studies with 100-200 patients, indicating that the absolute risk difference of mortality between CRE and CSE infection tends to be more stable with larger sample size.

To our knowledge, this study offers the most comprehensive meta-analysis so far of the impact of carbapenem resistance on mortality among patients infected with *Enterobacteriaceae*. Nearly 20 new studies published in the last three years have been included in our study. In addition, the meta-analysis was conducted in different groups of mortality outcomes, which may help address the potential heterogeneity caused by mortality measurements. Moreover, this review is the first to explore the source of heterogeneity among studies using statistical tests and meta-regression analyses of variables related to countries' economic status and geographical region. Moreover, this is the first review to explore the source of heterogeneity across studies using statistical tests and meta-regression analysis of potential variables and to consider the country's economic status and geographical region in assessing the association between carbapenem resistance and mortality among patients infected with *Enterobacteriaceae*

Our study also has several limitations. Firstly, among studies focusing on specific pathogens, we only included studies that focused on two clinically important *Enterobacteriaceae* species, *Klebsiella pneumoniae* and *Escherichia coli*. Secondly, we only included studies published in English. Thirdly, we only calculated the unadjusted results, so many confounding factors, such as patients' health conditions and therapy options, were not adjusted in the analysis because of data limitations. In addition, we were unable to conduct the stratified analysis and meta-regression for all kinds of mortality measurements because of insufficient data. Finally, the comparison in our research is currently limited to high-income and upper-middle-income countries from the Americas, Asia, and Europe due to insufficient data. More studies from different countries, especially low-income countries and other regions, are needed to provide comprehensive data for further analysis stratified by geographical region and economic status.

Our findings reinforced previous results regarding the positive effect of carbapenem resistance on mortality for patients infected with *Enterobacteriaceae*. These findings implied that patients with CRE infection still face a greater risk of death compared with patients with CSE infection. Furthermore, this study has identified an increasing effect of carbapenem resistance on mortality over time especially for 28d-30d mortality, which may reflect the difficulty of the CRE infection treatment in clinical practice and emphasizes the urgent need to develop new antibiotics and appropriate treatment to reduce the death risk. Our results also suggested that patients with neurosurgical infection were at greater risk of attributable death that was due to CRE infection than other types of infection. Thus, more attention should be paid to CRE infection in patients with neurosurgery in clinical practice. In addition, no significant differences in the effect of carbapenem resistance on mortality for different geographical regions and economic status were observed in our study, which may result from the limited data. The comparison in our research is currently limited to high-income and upper-middle-income countries from the Americas, Asia, and Europe

due to insufficient data. More studies from different countries, especially low-income countries, are needed to provide comprehensive data for further analysis stratified by geographical region and economic status.

CONCLUSIONS

Our results indicate that patients with CRE infection still face a greater risk of death than patients with CSE infection do, and an urgent need to develop new antibiotics and appropriate treatment to reduce the death risk. Future studies should address additional countries to provide comprehensive data and sound evidence from which to draw resources to fight CRE-related mortality and suggest the way forward to alleviate its implications.

Contributors All authors were involved in the design and development of the study. The review was designed by XF, RZ (Rong Zhang), RZ (Ruyin Zhou), JL, JS, TRW, and YW. The literature search in electronic databases was conducted by JZ, SS, SC and XZ. RZ (Ruyin Zhou) and JZ screened all studies for inclusion into the systematic review and performed the assessments of risk bias for all studies with the assistance of XZ, SS, SC, and XF. RZ (Ruyin Zhou) and JZ performed data extraction. RZ (Ruyin Zhou) and JZ conducted data analysis and interpretation with assistance of XZ, SS, SC, and XF. RZ (Ruyin Zhou) drafted the manuscript and YS, ZL, JL, RZ (Rong Zhang), JS, TRW, YW, XF revised it critically for important intellectual content. All authors contributed to drafting and revision of the article and have reviewed the results and approved the final version of the manuscript.

Competing interests None declared.

Funding This work was supported by the National Natural Science Foundation of China (NSFC) (Grant numbers 81861138051, 81861138052 and 81861138053).

Data availability statement Data sharing not applicable because all data relevant to the study are included in the article or uploaded as supplementary information.

Ethics Statement This study does not involve human participants or animal subjects.

REFERENCES

- 1. Center for Disease Control and Prevention(US). Clinicians: Information about CRE, 2019. Av ailable: https://www.cdc.gov/hai/organisms/cre/cre-clinicians.html[accessed 19 Dec 2020].
- 2. Birnbaum J, Kahan FM, Kropp H, *et al.* Carbapenems, a new class of beta-lactam antibiotics: discovery and development of imipenem/cilastatin. *Am J Med* 1985;78:3-21.
- 3. Paterson DL, Ko W-C, Von Gottberg A, *et al.* Antibiotic Therapy for Klebsiella pneumoniae Bacteremia: Implications of Production of Extended-Spectrum β-Lactamases. *Clin Infect Dis* 2004;39:31-7. doi: 10.1086/420816. [Epub ahead of print: 08 Jun 2004].
- 4. Osano E, Arakawa Y, Wacharotayankun R, *et al*. Molecular characterization of an enterobacterial metallo beta-lactamase found in a clinical isolate of Serratia marcescens that shows imipenem resistance. *Antimicrob Agents Chemother* 1994;38:71-8.
- 5. Lauretti L, Riccio ML, Mazzariol A, *et al*. Cloning and characterization of bla VIM, a new integron-borne metallo-β-lactamase gene from a Pseudomonas aeruginosa clinical isolate. *Antimicrob Agents Chemother* 1999;43:1584-90.
- 6. Yigit H, Queenan AM, Anderson GJ, *et al.* Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. *Antimicrob Agents Chemother* 2001;45:1151-61
- 7. Iovleva A, Doi Y. Carbapenem-Resistant Enterobacteriaceae. *Clin Lab Med* 2017;37:303-315. doi: 10.1016/j.cll.2017.01.005. [Epub ahead of print: 11 Mar 2017].
- 8. Logan LK, Weinstein RA. The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. *J Infect Dis* 2017;215(suppl 1):S28-S36
- 9. European Centre for Disease Control and Prevention. Antimicrobial resistance surveillance in Europe 2018, 2019. Available: https://www.ecdc.europa.eu/en/publications-data/surveillance-ant imicrobial-resistance-europe-2018[accessed 19 Dec 2020].
- 10. World Health Organization. Global priority list of antibiotic-resistant bacteria to guide researc h, discovery, and development of new antibiotics, 2017. Available: https://www.who.int/medic ines/publications/global-priority-list-antibiotic-resistant-bacteria/en/[accessed 19 Dec 2020].
- 11. Budhram DR, Mac S, Bielecki JM, *et al*. Health outcomes attributable to carbapenemase-producing Enterobacteriaceae infections: A systematic review and meta-analysis. *Infect Control Hosp Epidemiol* 2020;41:37-43. doi: 10.1017/ice.2019.282. [Epub ahead of print: 22 Oct 2019].
- 12. Soontaros S, Leelakanok N. Association between carbapenem-resistant Enterobacteriaceae and death: A systematic review and meta-analysis. *Am J Infect Control* 2019;47:1200-1212. doi: 10.1016/j.ajic.2019.03.020. [Epub ahead of print: 7 May 2019].
- 13. Martin A, Fahrbach K, Zhao Q, *et al.* Association Between Carbapenem Resistance and Mortality Among Adult, Hospitalized Patients With Serious Infections Due to Enterobacteriaceae: Results of a Systematic Literature Review and Meta-analysis. *Open Forum Infect Dis* 2018;5:ofy150.
- 14. Xu L, Sun X, Ma X. Systematic review and meta-analysis of mortality of patients infected with carbapenem-resistant Klebsiella pneumoniae. *Ann Clin Microbiol Antimicrob* 2017;16:18.
- 15. Kohler PP, Volling C, Green K, *et al.* Carbapenem Resistance, Initial Antibiotic Therapy, and Mortality in Klebsiella pneumoniae Bacteremia: A Systematic Review and Meta-Analysis. *Infect*

- *Control Hosp Epidemiol* 2017;38:1319-1328. doi: 10.1017/ice.2017.197. [Epub ahead of print: 27 Sep 2017].
- 16. Falagas ME, Tensarli GS, Karageorgopoulos DE, *et al.* Deaths Attributable to Carbapenem-Resistant Enterobacteriaceae Infections. *Emerg Infect Dis* 2014;20:1170-5.
- 17. Laxminarayan R, Heymann DL. Challenges of drug resistance in the developing world. *BMJ* 2012;344:e1567.
- 18. Ramos-Castaneda JA, Ruano-Ravina A, Barbosa-Lorenzo R, *et al.* Mortality due to KPC carbapenemase-producing Klebsiella pneumoniae infections: Systematic review and meta-analysis: Mortality due to KPC Klebsiella pneumoniae infections. *J Infect* 2018;76:438-448. doi: 10.1016/j.jinf.2018.02.007. [Epub ahead of print: 01 Mar 2018].
- 19. Higgins JPT, Green S. Cochrane handbook for systematic reviews of interventions. Version 5.1.0.
 [updated March 2011]. London: Cochrane Collaboration; 2011. Available: https:// handbook -5
 -1 .cochrane .org/[accessed 19 Dec 2020].
- 20. Moher D, Liberati A, Tetzlaff J, *et al.* Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. *BMJ* 2009;339:b2535.
- 21. Suay-Garcia B, Perez-Gracia MT. Present and Future of Carbapenem-resistant Enterobacteriaceae (CRE) Infections. *Antibiotics (Basel)* 2019;8:122.
- 22. World Bank. World bank country and lending groups[Internet]. Data, 2019. Available: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups [Accessed 20 Jun 2020].
- 23. Sinclair JC, Bracken MB. Clinically useful measures of effect in binary analyses of randomized trials. *J Clin Epidemiol* 1994;47(8):881-9.
- 24. Sackett DL, Deeks JJ, Altman DG. Down with odds ratios! *BMJ Evid Based Med* 1996; 1: 164-166.
- 25. Schmidt CO, Kohlmann T. When to use the odds ratio or the relative risk? *Int J Public Health* 2008;53:165-7.
- 26. Noordzij M, van Diepen M, Caskey FC, *et al.* Relative risk versus absolute risk: one cannot be interpreted without the other. Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association European Renal Association. 2017 Apr;32(suppl 2).
- 27. Schulz KF, Altman DG, Moher D; CONSORT Group. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. Int J Surg. 2011;9(8):672-7. doi: 10.1016/j.ijsu.2011.09.004. Epub 2011 Oct 13.
- 28. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986 Sep;7(3):177-88. doi: 10.1016/0197-2456(86)90046-2.
- 29. Wells GA, Shea B, O'Connell D, *et al*. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa: Ottawa Hospital Research Institute; 2014.
- 30. Alicino C, Giacobbe DR, Orsi A, *et al*. Trends in the annual incidence of carbapenem-resistant Klebsiella pneumoniae bloodstream infections: a 8-year retrospective study in a large teaching hospital in northern Italy. *BMC Infect Dis* 2015;15:415.
- 31. Balkhair A, Al-Muharrmi Z, Al'Adawi B, *et al.* Prevalence and 30-day all-cause mortality of carbapenem-and colistin-resistant bacteraemia caused by Acinetobacter baumannii, Pseudomonas

- aeruginosa, and Klebsiella pneumoniae: Description of a decade-long trend. *Int J Infect Dis* 2019;85:10-15. doi: 10.1016/j.ijid.2019.05.004. [Epub ahead of print: 14 May 2019].
- 32. Ben-David D, Kordevani R, Keller N, *et al.* Outcome of carbapenem resistant Klebsiella pneumoniae bloodstream infections. *Clin Microbiol Infect* 2012;18:54-60. doi: 10.1111/j.1469-0691.2011.03478.x. [Epub ahead of print: 01 Jul 2011].
- 33. Brizendine KD, Richter SS, Cober ED, *et al.* Carbapenem-resistant Klebsiella pneumoniae urinary tract infection following solid organ transplantation. *Antimicrob Agents Chemother* 2015;59:553-7. doi: 10.1128/AAC.04284-14. [Epub ahead of print: 10 Nov 2014].
- 34. Chang H, Wei J, Zhou W, *et al.* Risk factors and mortality for patients with Bloodstream infections of Klebsiella pneumoniae during 2014-2018: Clinical impact of carbapenem resistance in a large tertiary hospital of China. *J Infect Public Health* 2020;13:784-790. doi: 10.1016/j.jiph.2019.11.014. [Epub ahead of print: 13 Dec 2019].
- Chang HJ, Hsu PC, Yang CC, *et al*. Risk factors and outcomes of carbapenem-nonsusceptible Escherichia coli bacteremia: A matched case-control study. *J Microbiol Immunol Infect* 2011;44:125-30. doi: 10.1016/j.jmii.2010.06.001. [Epub ahead of print: 14 Jan 2011].
- 36. Chiotos K, Tamma PD, Flett KB, *et al.* Increased 30-day mortality associated with carbapenem-resistant Enterobacteriaceae in children. *Open Forum Infect Dis* 2018;5:ofy222.
- 37. Cienfuegos-Gallet AV, Ocampo de Los Rios AM, Sierra Viana P, *et al.* Risk factors and survival of patients infected with carbapenem-resistant Klebsiella pneumoniae in a KPC endemic setting: a case-control and cohort study. *BMC Infect Dis* 2019;19:830.
- 38. Correa L, Martino MD, Siqueira I, *et al.* A hospital-based matched case-control study to identify clinical outcome and risk factors associated with carbapenem-resistant Klebsiella pneumoniae infection. *BMC Infect Dis* 2013;13:80.
- 39. Cubero M, Cuervo G, Dominguez Mn, *et al.* Carbapenem-resistant and carbapenem-susceptible isogenic isolates of Klebsiella pneumoniae ST101 causing infection in a tertiary hospital. *BMC Microbiol* 2015;15:177.
- 40. Daikos GL, Petrikkos P, Psichogiou M, *et al.* Prospective observational study of the impact of VIM-1 metallo-β-lactamase on the outcome of patients with Klebsiella pneumoniae bloodstream infections. *Antimicrob Agents Chemother* 2009;53:1868-73. doi: 10.1128/AAC.00782-08. [Epub ahead of print: 17 Feb 2009].
- 41. Fraenkel-Wandel Y, Raveh-Brawer D, Wiener-Well Y, *et al.* Mortality due to blaKPCKlebsiella pneumoniae bacteraemia. *J Antimicrob Chemother* 2016;71:1083-7. doi: 10.1093/jac/dkv414. [Epub ahead of print: 11 Dec 2015].
- 42. Gallagher JC, Kuriakose S, Haynes K, *et al.* Case-Case-Control Study of Patients with Carbapenem-Resistant and Third-Generation-Cephalosporin-Resistant Klebsiella pneumoniae Bloodstream Infections. *Antimicrob Agents Chemother* 2014;58:5732-5. doi: 10.1128/AAC.03564-14. [Epub ahead of print: 14 Jul 2014].
- 43. Garbati MA, Sakkijha H, Abushaheen A. Infections due to Carbapenem Resistant Enterobacteriaceae among Saudi Arabian Hospitalized Patients: A Matched Case-Control Study. *Biomed Res Int* 2016;2016:3961684. doi: 10.1155/2016/3961684. [Epub ahead of print: 06 Apr 2016].
- 44. Gomez Rueda V, Zuleta Tobon JJ. Risk factors for infection with carbapenem-resistant Klebsiella pneumoniae: a case-case-control study. *Colomb Med (Cali)* 2014;45:54-60.

- 45. Hoxha A, Karki T, Giambi C, *et al.* Attributable mortality of carbapenem-resistant Klebsiella pneumoniae infections in a prospective matched cohort study in Italy, 2012-2013. *J Hosp Infect* 2016;92:61-6. doi: 10.1016/j.jhin.2015.06.018. [Epub ahead of print: 29 Jul 2015].
- 46. Huang W, Qiao F, Zhang Y, *et al.* In-hospital Medical Costs of Infections Caused by Carbapenem-resistant Klebsiella pneumoniae. *Clin Infect Dis* 2018;67(suppl 2):S225-S230.
- 47. Hussein K, Raz-Pasteur A, Finkelstein R, *et al.* Impact of carbapenem resistance on the outcome of patients' hospital-acquired bacteraemia caused by Klebsiella pneumoniae. *J Hosp Infect* 2013;83:307-13. doi: 10.1016/j.jhin.2012.10.012. [Epub ahead of print: 10 Jan 2013].
- 48. Kotb S, Lyman M, Ismail G, *et al.* Epidemiology of Carbapenem-resistant Enterobacteriaceae in Egyptian intensive care units using National Healthcare-associated Infections Surveillance Data, 2011-2017. *Antimicrob Resist Infect Control* 2020;9:2.
- 49. Lee HJ, Choi JK, Cho SY, *et al.* Carbapenem-resistant Enterobacteriaceae: Prevalence and Risk Factors in a Single Community-Based Hospital in Korea. *Infect Chemother* 2016;48:166-173. doi: 10.3947/ic.2016.48.3.166. [Epub ahead of print: 08 Sep 2016].
- 50. Li Y, Shen H, Zhu C, *et al.* Carbapenem-resistant klebsiella pneumoniae infections among ICU admission patients in Central China: prevalence and prediction model. *Biomed Res Int* 2019;2019:9767313.
- 51. Liu J, Wang H, Huang Z, *et al.* Risk factors and outcomes for carbapenem-resistant Klebsiella pneumoniae bacteremia in onco-hematological patients. *J Infect Dev Ctries* 2019;13:357-364.
- 52. Liu SW, Chang HJ, Chia JH, *et al.* Outcomes and characteristics of ertapenem-nonsusceptible Klebsiella pneumoniae bacteremia at a university hospital in Northern Taiwan: a matched case-control study. *J Microbiol Immunol Infect* 2012;45:113-9. doi: 10.1016/j.jmii.2011.09.026. [Epub ahead of print: 11 Dec 2011].
- 53. McLaughlin MM, Advincula MR, Malczynski M, *et al.* Quantifying the clinical virulence of Klebsiella pneumoniae producing carbapenemase Klebsiella pneumoniae with a Galleria mellonella model and a pilot study to translate to patient outcomes. *BMC Infect Dis* 2014;14:31.
- 54. Meng X, Liu S, Duan J, *et al*. Risk factors and medical costs for healthcare-associated carbapenem-resistant Escherichia coli infection among hospitalized patients in a Chinese teaching hospital. *BMC Infect Dis* 2017;17:82.
- Mouloudi E, Protonotariou E, Zagorianou A, et al. Bloodstream Infections Caused by Metallo-beta-Lactamase/Klebsiella pneumoniae Carbapenemase-Producing K. pneumoniae among Intensive Care Unit Patients in Greece: Risk Factors for Infection and Impact of Type of Resistance on Outcomes. *Infect Control Hosp Epidemiol* 2010;31:1250-6. doi: 10.1086/657135. [Epub ahead of print: 25 Oct 2010].
- 56. Ny P, Nieberg P, Wong-Beringer A. Impact of carbapenem resistance on epidemiology and outcomes of nonbacteremic Klebsiella pneumoniae infections. *Am J Infect Control* 2015;43:1076-80. doi: 10.1016/j.ajic.2015.06.008. [Epub ahead of print: 17 Jul 2015].
- 57. Orsi GB, Bencardino A, Vena A, *et al.* Patient risk factors for outer membrane permeability and KPC-producing carbapenem-resistant Klebsiella pneumoniae isolation: results of a double case—control study. *Infection*. 2013 Feb;41(1):61-7. doi: 10.1007/s15010-012-0354-2. [Epub ahead of print: 16 Oct 2012].
- 58. Pan H, Lou Y, Zeng L, *et al*. Infections caused by carbapenemase-producing klebsiella pneumoniae: Microbiological characteristics and risk factors. *Microb Drug Resist* 2019;25:287-296. doi: 10.1089/mdr.2018.0339. [Epub ahead of print: 27 Feb 2019].

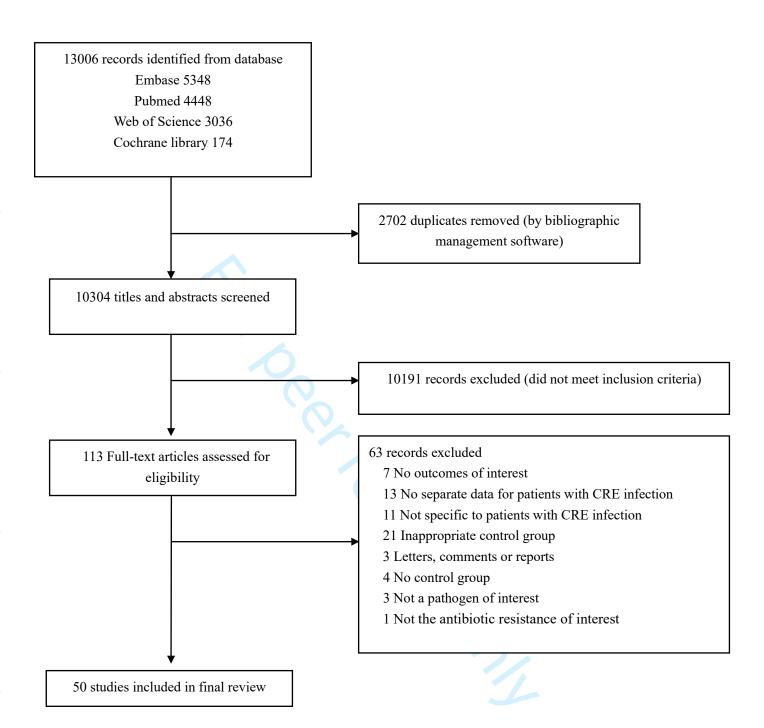
- 59. Patel G, Huprikar S, Factor SH, *et al.* Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. *Infect Control Hosp Epidemiol* 2008;29:1099-106.
- 60. Pereira MR, Scully BF, Pouch SM, *et al*. Risk factors and outcomes of carbapenem-resistant Klebsiella pneumoniae infections in liver transplant recipients. *Liver Transpl* 2015;21:1511-9.
- 61. Pouch SM, Kubin CJ, Satlin MJ, *et al.* Epidemiology and outcomes of carbapenem-resistant Klebsiella pneumoniae bacteriuria in kidney transplant recipients. *Transpl Infect Dis* 2015;17:800-9. doi: 10.1111/tid.12450. [Epub ahead of print: 05 Nov 2015].
- 62. Qureshi ZA, Paterson DL, Peleg AY, *et al.* Clinical characteristics of bacteraemia caused by extended-spectrum β-lactamase-producing Enterobacteriaceae in the era of CTX-M-type and KPC-type β-lactamases. *Clin Microbiol Infect* 2012;18:887-93. doi: 10.1111/j.1469-0691.2011.03658.x. [Epub ahead of print: 26 Sep 2011].
- 63. Sánchez-Romero I, Asensio Á, Oteo J, *et al.* Nosocomial outbreak of VIM-1-producing Klebsiella pneumoniae isolates of multilocus sequence type 15: molecular basis, clinical risk factors, and outcome. *Antimicrob Agents Chemother* 2012;56:420-7. doi: 10.1128/AAC.05036-11. [Epub ahead of print: 17 Oct 2011].
- 64. Schwaber MJ, Klarfeld-Lidji S, Navon-Venezia S, *et al.* Predictors of carbapenem-resistant Klebsiella pneumoniae acquisition among hospitalized adults and effect of acquisition on mortality. *Antimicrob Agents Chemother* 2008;52:1028-33. doi: 10.1128/AAC.01020-07. [Epub ahead of print: 17 Dec 2007].
- 65. Shilo S, Assous MV, Lachish T, *et al*. Risk factors for bacteriuria with carbapenem-resistant Klebsiella pneumoniae and its impact on mortality: a case-control study. *Infection* 2013;41:503-9. doi: 10.1007/s15010-012-0380-0. [Epub ahead of print: 28 Dec 2012].
- 66. Simkins J, Muggia V, Cohen HW, *et al.* Carbapenem-resistant Klebsiella pneumoniae infections in kidney transplant recipients: a case-control study. *Transpl Infect Dis* 2014;16:775-82. doi: 10.1111/tid.12276. [Epub ahead of print: 05 Aug 2014].
- 67. Tian L, Tan R, Chen Y, *et al.* Epidemiology of Klebsiella pneumoniae bloodstream infections in a teaching hospital: factors related to the carbapenem resistance and patient mortality. *Antimicrob Resist Infect Control* 2016;5:48.
- 68. Torres-Gonzalez P, Ortiz-Brizuela E, Cervera-Hernandez ME, *et al.* Associated factors and outcomes for OXA-232 Carbapenem-resistant Enterobacteriaceae infections in a tertiary care centre in Mexico City: A case-control-control study. *Diagn Microbiol Infect Dis* 2016;86:243-8. doi: 10.1016/j.diagmicrobio.2016.07.002. [Epub ahead of print: 07 Jul 2016].
- 69. Trecarichi EM, Pagano L, Martino B, *et al.* Bloodstream infections caused by Klebsiella pneumoniae in onco-hematological patients: clinical impact of carbapenem resistance in a multicentre prospective survey. *Am J Hematol* 2016;91:1076-1081. doi: 10.1002/ajh.24489. [Epub ahead of print: 29 Jul 2016].
- 70. Ulu AC, Kurtaran B, Inal AS, *et al.* Risk factors of carbapenem-resistant Klebsiella pneumoniae infection: a serious threat in ICUs. *Med Sci Monit* 2015;21:219-24.
- 71. Vardakas KZ, Matthaiou DK, Falagas ME, *et al.* Characteristics, risk factors and outcomes of carbapenem-resistant Klebsiella pneumoniae infections in the intensive care unit. *J Infect* 2015;70:592-9. doi: 10.1016/j.jinf.2014.11.003. [Epub ahead of print: 15 Nov 2014].
- Wang Z, Qin RR, Huang L, *et al*. Risk Factors for Carbapenem-resistant Klebsiella pneumoniae Infection and Mortality of Klebsiella pneumoniae Infection. *Chin Med J (Engl)* 2018;131:56-62.

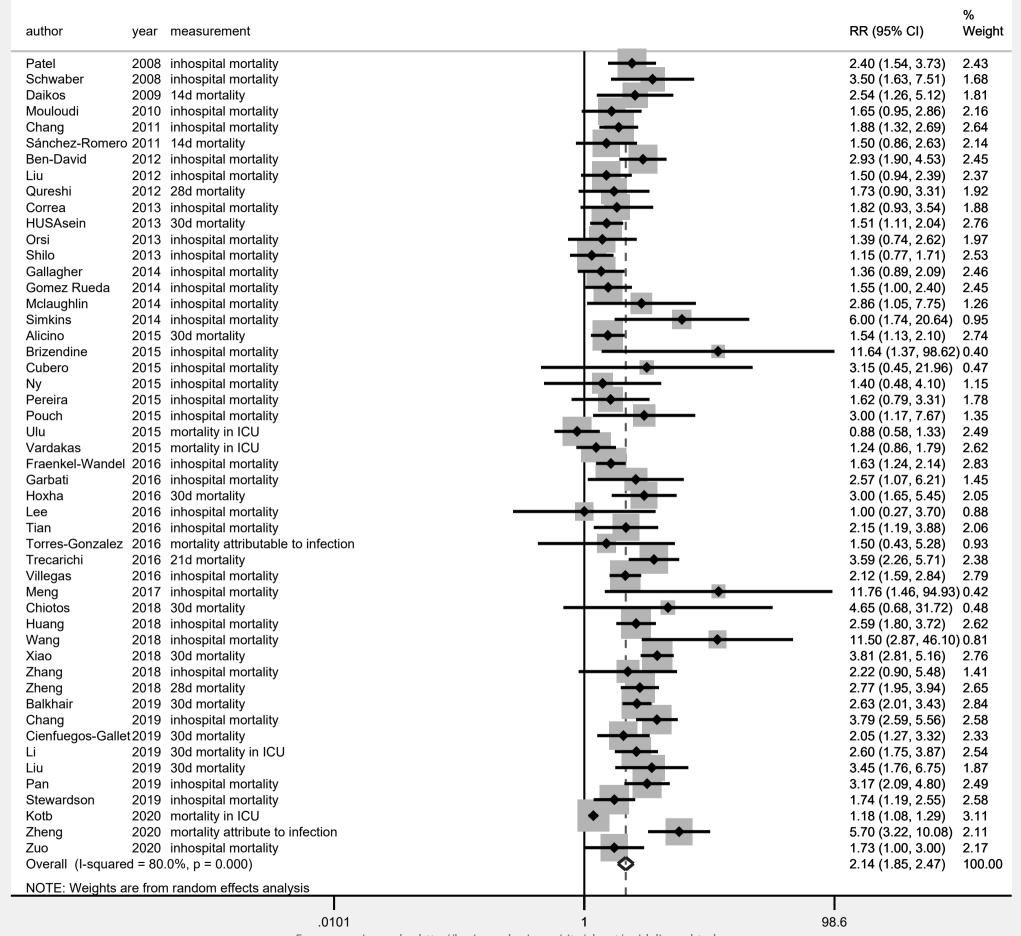
- 73. Xiao T, Yu W, Niu T, *et al.* A retrospective, comparative analysis of risk factors and outcomes in carbapenem-susceptible and carbapenem-nonsusceptible Klebsiella pneumoniae bloodstream infections: tigecycline significantly increases the mortality. *Infect Drug Resist* 2018;11:595-606.
- 74. Zhang Y, Guo LY, Song WQ, *et al*. Risk factors for carbapenem-resistant K. pneumoniae bloodstream infection and predictors of mortality in Chinese paediatric patients. *BMC Infect Dis* 2018;18:248.
- 75. Zheng S-H, Cao S-J, Xu H, *et al*. Risk factors, outcomes and genotypes of carbapenem-nonsusceptible Klebsiella pneumoniae bloodstream infection: a three-year retrospective study in a large tertiary hospital in Northern China. *Infect Dis (Lond)* 2018;50:443-451. doi: 10.1080/23744235.2017.1421772. [Epub ahead of print: 05 Jan 2018].
- 76. Zheng G, Jing L, Guojun Z, *et al*. Epidemiology and risk factors of neurosurgical bacterial meningitis/encephalitis induced by carbapenem resistant Enterobacteriaceae. *J Infect Chemother* 2020;26:101-106. doi: 10.1016/j.jiac.2019.07.023. [Epub ahead of print: 21 Aug 2019].
- 77. Zuo Y, Zhao D, Song G, et al. Risk Factors, Molecular Epidemiology, and Outcomes of Carbapenem-Resistant Klebsiella pneumoniae Infection for Hospital-Acquired Pneumonia: A Matched Case-Control Study in Eastern China During 2015–2017. Microb Drug Resist 2020. doi: 10.1089/mdr.2020.0162. [Epub ahead of print: 02 Jul 2020].
- 78. Villegas MV, Pallares CJ, Escandón-Vargas K, *et al.* Characterization and Clinical Impact of Bloodstream Infection Caused by Carbapenemase-Producing Enterobacteriaceae in Seven Latin American Countries. PLoS One. 2016 Apr 22;11(4):e0154092.
- 79. Stewardson AJ, Marimuthu K, Sengupta S, *et al*. Effect of carbapenem resistance on outcomes of bloodstream infection caused by Enterobacteriaceae in low-income and middle-income countries (PANORAMA): a multinational prospective cohort study. Lancet Infect Dis. 2019 Jun;19(6):601-610. Epub 2019 Apr 29.
- 80. Paño Pardo JR, Serrano Villar S, Ramos Ramos JC, *et al.* Infections caused by carbapenemase-producing Enterobacteriaceae: risk factors, clinical features and prognosis. Enferm Infece Microbiol Clin. 2014 Dec;32 Suppl 4:41-8.
- 81. Sader HS, Castanheira M, Duncan LR, *et al.* Antimicrobial Susceptibility of Enterobacteriaceae and Pseudomonas aeruginosa Isolates from United States Medical Centers Stratified by Infection Type: Results from the International Network for Optimal Resistance Monitoring (INFORM) Surveillance Program, 2015-2016. Diagn Microbiol Infect Dis. 2018 Sep;92(1):69-74.

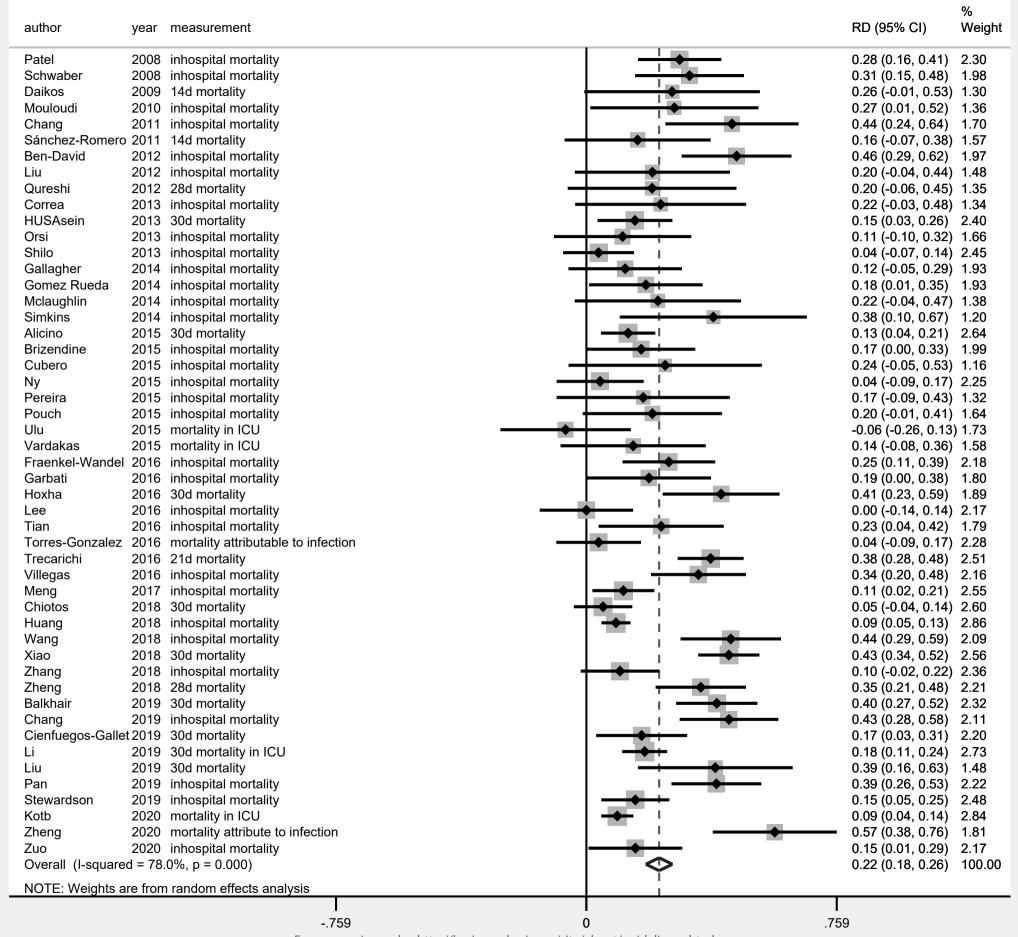
Figure legends

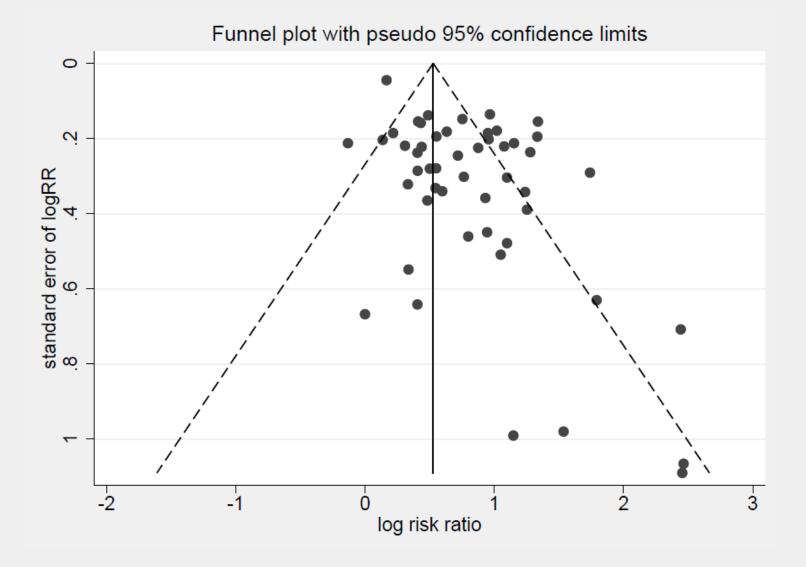
Figure 1. Flow chart of the study selection process for the meta-analysis

Figure 2. Forest plot of overall mortality in patients with carbapenem-resistant *Enterobacteriaceae* (CRE) versus carbapenem-susceptible *Enterobacteriaceae* (CSE) infections (outcome measure = relative risk).


Figure 3. Forest plot of overall mortality in patients with carbapenem-resistant *Enterobacteriaceae* (CRE) versus carbapenem-susceptible *Enterobacteriaceae* (CSE) infections (outcome measure = risk difference).


Figure 4. Funnel plot of studies evaluating mortality of patients with infections due to carbapenem-resistant compared to carbapenem-susceptible *Enterobacteriaceae*.


Licence statement


I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in BMJ Open and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Supplementary Materials

Appendix 1. Search terms and search strategies

1.Pubmed (4448)

	1.1 ublica (111 6)	Items
Search	Query	found
#1	Search: ((enterobacteriaceae[MeSH Terms]) OR klebsiella pneumoniae[MeSH Terms]) OR escherichia coli[MeSH Terms]	399348
#2	Search: (((carbapenem resistant) OR (carbapenem resistance)) OR (carbapenem nonsusceptible)) OR (carbapenemase producing)	15576
#3	Search: (((enterobacteriaceae[MeSH Terms]) OR (klebsiella pneumoniae[MeSH Terms])) OR (escherichia coli[MeSH Terms])) AND ((((carbapenem resistant) OR (carbapenem resistance)) OR (carbapenem nonsusceptible)) OR (carbapenemase producing))	5776
#4	Search: (((enterobacteriaceae[MeSH Terms]) OR (klebsiella pneumoniae[MeSH Terms])) OR (escherichia coli[MeSH Terms])) AND ((((carbapenem resistant) OR (carbapenem resistance)) OR (carbapenem nonsusceptible)) OR (carbapenemase producing)) Filters: Humans	4761
#5	Search: (((enterobacteriaceae[MeSH Terms]) OR (klebsiella pneumoniae[MeSH Terms])) OR (escherichia coli[MeSH Terms])) AND ((((carbapenem resistant) OR (carbapenem resistance)) OR (carbapenem nonsusceptible)) OR (carbapenemase producing)) Filters: Humans, from 1994 - 2020	4716
#6	Search: (((enterobacteriaceae[MeSH Terms]) OR (klebsiella pneumoniae[MeSH Terms])) OR (escherichia coli[MeSH Terms])) AND ((((carbapenem resistant) OR (carbapenem resistance)) OR (carbapenem nonsusceptible)) OR (carbapenemase producing)) Filters: Humans, English, from 1994 - 2020	4448

2.Embase(5348)

#	searches	results
1	Enterobacteriaceae.af.	38034
2	Klebsiella pneumoniae.af.	47767
3	Escherichia coli.af.	425764
4	1 or 2 or 3	470290
5	carbapenem resistant.af.	7442
6	carbapenem resistance.af.	3418
7	carbapenem nonsusceptible.af.	139
8	carbapenemase producing.af.	3413
9	5 or 6 or 7 or 8	11419
10	4 and 9	8235
11	limit 10 to (human and english language and yr="1994 -Current")	5348

3. Web of Science(3036)

#	searches	results
	TI=(Enterobacteriaceae)	
1	Databases= WOS, BCI, BIOSIS, CABI, CSCD, DIIDW, INSPEC, KJD, MEDLINE,	6685
1	RSCI, SCIELO, ZOOREC Timespan=1994-2020	0083
	Search language=English	
	TI=(Klebsiella pneumoniae)	
2	Databases= WOS, BCI, BIOSIS, CABI, CSCD, DIIDW, INSPEC, KJD, MEDLINE,	10750
2	RSCI, SCIELO, ZOOREC Timespan=1994-2020	10759
	Search language=English	
	TI=(Escherichia coli)	
3	Databases= WOS, BCI, BIOSIS, CABI, CSCD, DIIDW, INSPEC, KJD, MEDLINE,	102407
3	RSCI, SCIELO, ZOOREC Timespan=1994-2020	102497
	Search language=English	
	#3 OR #2 OR #1	
4	Databases= WOS, BCI, BIOSIS, CABI, CSCD, DIIDW, INSPEC, KJD, MEDLINE,	118551
4	RSCI, SCIELO, ZOOREC Timespan=1994-2020	118331
	Search language=English	
	TI=(carbapenem resistance OR carbapenem resistant OR carbapenem nonsusceptible	
	OR carbapenemase producing)	
5	Databases= WOS, BCI, BIOSIS, CABI, CSCD, DIIDW, INSPEC, KJD, MEDLINE,	5926
	RSCI, SCIELO, ZOOREC Timespan=1994-2020	
	Search language=English	
	#5 AND #4	
6	Databases= WOS, BCI, BIOSIS, CABI, CSCD, DIIDW, INSPEC, KJD, MEDLINE,	3036
O	RSCI, SCIELO, ZOOREC Timespan=1994-2020	3030
	Search language=English	

4. Cochrane library

ID	Search	Hits
#1	(carbapenem) AND (Enterobacteriaceae) (Limits: Word variations have been searched)	137
#2	(carbapenem) AND (Klebsiella pneumoniae) (Limits: Word variations have been searched)	71
#3	(carbapenem) AND (Escherichia coli) (Limits: Word variations have been searched)	67
#4	#1 OR #2 OR #3 with Cochrane Library publication date Between Jan 1994 and Sep 2020	174

Appendix 2. List of excluded studies with reason for exclusion

First author	Year	Reason for exclusion
Adams ¹	2019	inappropriate control group
Ahn ²	2014	Not specific to patients with CRE infection
Akgul ³	2016	Not specific to patients with CRE infection
Balkan ⁴	2014	inappropriate control group
Biehle ⁵	2015	not a pathogen of interest
Bleumin ⁶	2012	No separate data for patients with CRE infection
Bogan ⁷	2014	No separate data for patients with CRE infection
Chang ⁸	2015	no control group
Cristina ⁹	2016	no control group
Dautzenberg ¹⁰	2015	Not specific to patients with CRE infection
de Maio Carrilho ¹¹	2016	no control group
Debby ¹²	2012	Not specific to patients with CRE infection
Diaz ¹³	2016	Not specific to patients with CRE infection
Dizbay ¹⁴	2014	not a pathogen of interest
Eser ¹⁵	2019	Not specific to patients with CRE infection
Falcone ¹⁶	2009	not a pathogen of interest
Fang ¹⁷	2019	No separate data for patients with CRE infection
Forde ¹⁸	2017	No separate data for patients with CRE infection
Freire ¹⁹	2015	inappropriate control group
Gao ²⁰	2019	inappropriate control group
Gasink ²¹	2009	No separate data for patients with CRE infection
Gaviria ²²	2011	Letters, comments or reports
Giacobbe ²³	2015	Not the antibiotic resistance of interest
Giannella ²⁴	2014	Not specific to patients with CRE infection
Girmenia ²⁵	2015	inappropriate control group
Girometti ²⁶	2014	no outcomes of interest
Gowda ²⁷	2014	no outcomes of interest
Grabowsk ²⁸	2017	No separate data for patients with CRE infection
Hauck ²⁹	2016	inappropriate control group
Hu^{30}	2016	Not specific to patients with CRE infection
Jiao ³¹	2015	No separate data for patients with CRE infection
Kang ³²	2019	Not specific to patients with CRE infection
Kofteridis ³³	2014	No separate data for patients with CRE infection
Lai ³⁴	2013	inappropriate control group
Lee ³⁵	2013	no outcomes of interest
Lee ³⁶	2012	inappropriate control group
López-González37	2017	inappropriate control group
Lubbert ³⁸	2014	No separate data for patients with CRE infection
Mantzarlis ³⁹	2013	inappropriate control group

Marimuthu ⁴⁰	2013	Letters, comments or reports
Mazza ⁴¹	2017	inappropriate control group
Miller ⁴²	2016	no outcomes of interest
Mouloudi ⁴³	2014	inappropriate control group
Muggeo ⁴⁴	2017	No separate data for patients with CRE infection
Nouvenne ⁴⁵	2014	No separate data for patients with CRE infection
Orsi ⁴⁶	2011	inappropriate control group
Papadimitriou-Olivgeris ⁴⁷	2013	Not specific to patients with CRE infection
Patel ⁴⁸	2015	inappropriate control group
Porwal ⁴⁹	2014	Letters, comments or reports
Qureshi ⁵⁰	2014	inappropriate control group
Rodrigues ⁵¹	2016	inappropriate control group
Salsano ⁵²	2016	inappropriate control group
Segagni Lusignani ⁵³	2020	No separate data for patients with CRE infection
Shankar ⁵⁴	2018	no control group
Taminato ⁵⁵	2019	inappropriate control group
Tamma ⁵⁶	2017	inappropriate control group
Tascini ⁵⁷	2015	Not specific to patients with CRE infection
Tsereteli ⁵⁸	2018	no outcomes of interest
Tumbarello ⁵⁹	2015	inappropriate control group
Tumbarello ⁶⁰	2014	inappropriate control group
Tuon ⁶¹	2017	no outcomes of interest
Jamal ⁶²	2016	no outcomes of interest
Wang^{63}	2016	No separate data for patients with CRE infection

References of studies excluded

- 1. Adams DJ, Susi A, Nylund CM. Clinical characteristics, risk factors, and outcomes of patients hospitalized in the US military health system with carbapenem-resistant Enterobacteriaceae infection. *Am J Infect Control* 2020;48:644-649. doi: 10.1016/j.ajic.2019.10.006. [Epub ahead of print: 20 Nov 2019].
- 2. Ahn JY, Song JE, Kim MH, *et al*. Risk factors for the acquisition of carbapenem-resistant Escherichia coli at a tertiary care center in South Korea: A matched case-control study. *Am J Infect Control* 2014;42:621-5.
- 3. Akgul F, Bozkurt I, Sunbul M, Esen S, Leblebicioglu H. Risk factors and mortality in the Carbapenem-resistant Klebsiella pneumoniae infection: case control study. *Pathog Glob Health* 2016;110:321-325. doi: 10.1080/20477724.2016.1254976. [Epub ahead of print: 01 Dec 2016].
- 4. Balkan II, Aygun G, Aydin S, Mutcali SI, Kara Z, Kuskucu M, et al. Blood stream infections due to OXA-48-like carbapenemase-producing Enterobacteriaceae: Treatment and survival. *Int J Infect Dis* 2014;26:51-6. doi: 10.1016/j.ijid.2014.05.012. [Epub ahead of print: 03 Jul 2014].
- 5. Biehle LR, Cottreau JM, Thompson DJ, Filipek RL, O'Donnell JN, Lasco TM, et al. Outcomes and risk factors for mortality among patients treated with carbapenems for klebsiella spp. Bacteremia. *PLoS One* 2015;10:e0143845.
- 6. Bleumin D, Cohen MJ, Moranne O, Esnault VLM, Benenson S, Paltiel O, et al. Carbapenem-resistant Klebsiella pneumoniae is associated with poor outcome in hemodialysis patients. *J Infect* 2012;65:318-25. doi: 10.1016/j.jinf.2012.06.005. [Epub ahead of print: 18 Jun 2012].
- 7. Bogan C, Kaye KS, Chopra T, Hayakawa K, Pogue JM, Lephart PR, et al. Outcomes of carbapenem-resistant Enterobacteriaceae isolation: Matched analysis. *Am J Infect Control* 2014;42:612-20.
- 8. Chang YY, Chuang YC, Siu LK, Wu TL, Lin JC, Lu PL, et al. Clinical features of patients with carbapenem nonsusceptible Klebsiella pneumoniae and Escherichia coli in intensive care units: a nationwide multicenter study in Taiwan. *J Microbiol Immunol Infect* 2015;48:219-25. doi: 10.1016/j.jmii.2014.05.010. [Epub ahead of print: 26 Jul 2014].
- 9. Cristina ML, Sartini M, Ottria G, Schinca E, Cenderello N, Crisalli MP, et al. Epidemiology and biomolecular characterization of carbapenem-resistant klebsiella pneumoniae in an Italian hospital. *J Prev Med Hyg* 2016;57:E149-E156.
- Dautzenberg MJ, Wekesa AN, Gniadkowski M, Antoniadou A, Giamarellou H, Petrikkos GL, et al. The Association between Colonization with Carbapenemase-Producing Enterobacteriaceae and Overall ICU Mortality: An Observational Cohort Study. *Crit Care Med* 2015;43:1170-7.
- de Maio Carrilho CM, de Oliveira LM, Gaudereto J, Perozin JS, Urbano MR, Camargo CH, et al. A prospective study of treatment of carbapenem-resistant Enterobacteriaceae infections and risk factors associated with outcome. *BMC Infect Dis* 2016;16:629.
- 12. Debby BD, Ganor O, Yasmin M, David L, Nathan K, Ilana T, et al. Epidemiology of carbapenem resistant Klebsiella pneumoniae colonization in an intensive care unit. *Eur J*

- Clin Microbiol Infect Dis 2012;31:1811-7. doi: 10.1007/s10096-011-1506-5. [Epub ahead of print: 14 Jan 2012].
- 13. Diaz A, Ortiz DC, Trujillo M, Garces C, Jaimes F, Restrepo AV. Clinical Characteristics of Carbapenem-resistant Klebsiella pneumoniae Infections in Ill and Colonized Children in Colombia. *Pediatr Infect Dis J* 2016;35:237-41.
- 14. Dizbay M, Tunccan OG, Karasahin O, Aktas F. Emergence of carbapenem-resistant Klebsiella spp. infections in a Turkish university hospital: epidemiology and risk factors. *J Infect Dev Ctries* 2014;8:44-9.
- 15. Eser F, Yilmaz GR, Guner R, Hasanoglu I, Urkmez Korkmaz FY, Acikgoz ZC, et al. Risk factors for rectal colonization of carbapenem-resistant Enterobacteriaceae in a tertiary care hospital: a case-control study from Turkey. *Turk J Med Sci* 2019;49:341-346.
- 16. Falcone M, Mezzatesta ML, Perilli M, Forcella C, Venditti M. Infections with VIM-1 metallo-{beta}-lactamase-producing enterobacter cloacae and their correlation with clinical outcome. *J Clin Microbiol* 2009;47:3514-9. doi: 10.1128/JCM.01193-09. [Epub ahead of print: 09 Sep 2009].
- 17. Fang L, Lu X, Xu H, Ma X, Chen Y, Liu Y, et al. Epidemiology and risk factors for carbapenem-resistant Enterobacteriaceae colonisation and infections: case-controlled study from an academic medical center in a southern area of China. *Pathog Dis* 2019;77:ftz034.
- 18. Forde C, Stierman B, Ramon-Pardo P, Dos Santos T, Singh N. Carbapenem-resistant Klebsiella pneumoniae in Barbados: Driving change in practice at the national level. *PLoS One* 2017;12:e0176779.
- 19. Freire MP, Pierrotti LC, Filho HHC, Ibrahim KY, Magri ASGK, Bonazzi PR, et al. Infection with Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae in cancer patients. *Eur J Clin Microbiol Infect Dis* 2015;34:277-86. doi: 10.1007/s10096-014-2233-5. [Epub ahead of print: 30 Aug 2014].
- 20. Gao B, Li X, Yang F, Chen W, Zhao Y, Bai G, et al. Molecular Epidemiology and Risk Factors of Ventilator-Associated Pneumonia Infection Caused by Carbapenem-Resistant Enterobacteriaceae. *Front Pharmacol* 2019;10:262.
- 21. Gasink LB, Edelstein PH, Lautenbach E, Synnestvedt M, Fishman NO. Risk Factors and Clinical Impact of Klebsiella pneumoniae Carbapenemase–Producing K. pneumoniae. *Infect Control Hosp Epidemiol* 2009;30:1180-5.
- 22. Centers for Disease Control and Prevention (CDC). Carbapenem-resistant Klebsiella pneumoniae associated with a long-term--care facility --- West Virginia, 2009-2011. MMWR Morb Mortal Wkly Rep 2011;60:1418-20.
- 23. Giacobbe DR, Del Bono V, Trecarichi EM, De Rosa FG, Giannella M, Bassetti M, et al. Risk factors for bloodstream infections due to colistin-resistant KPC-producing Klebsiella pneumoniae: results from a multicenter case-control-control study. *Clin Microbiol Infect* 2015;21:1106.e1-8. doi: 10.1016/j.cmi.2015.08.001. [Epub ahead of print: 14 Aug 2015].
- 24. Giannella M, Morelli MC, Cristini F, Ercolani G, Cescon M, Bartoletti M, et al. Carbapenem-resistant Klebsiella pneumoniae colonization at liver transplantation: A management challenge. *Liver Transpl* 2014;20:631-3.
- 25. Girmenia C, Rossolini GM, Piciocchi A, Bertaina A, Pisapia G, Pastore D, et al. Infections by carbapenem-resistant Klebsiella pneumoniae in SCT recipients: a

- nationwide retrospective survey from Italy. *Bone Marrow Transplant* 2015;50:282-8. doi: 10.1038/bmt.2014.231. [Epub ahead of print: 13 Oct 2014].
- 26. Girometti N, Lewis RE, Giannella M, Ambretti S, Viale P. Klebsiella pneumoniae Bloodstream Infection: Epidemiology and Impact of Inappropriate Empirical Therapy. *Medicine (Baltimore)* 2014;93:298-309.
- Gowda LK, Marie MAM. Epidemiology of carbapenem-resistant and noncarbapenem-resistant enterobacteriaceae and issues related to susceptibility testing, treatment options, and clinical outcome. *Rev Medi Microbiol* 2014;25:53-65.
- 28. Grabowski ME, Kang H, Wells KM, Sifri CD, Mathers AJ, Lobo JM. Provider Role in Transmission of Carbapenem-Resistant Enterobacteriaceae. *Infect Control Hosp Epidemiol* 2017;38:1329-1334. doi: 10.1017/ice.2017.216. [Epub ahead of print: 24 Oct 2017].
- 29. Hauck C, Cober E, Richter SS, Perez F, Salata RA, Kalayjian RC, et al. Spectrum of excess mortality due to carbapenem-resistant Klebsiella pneumoniae infections. *Clin Microbiol Infect* 2016;22:513-9. doi: 10.1016/j.cmi.2016.01.023. [Epub ahead of print: 03 Feb 2016].
- 30. Hu Y, Ping Y, Li L, Xu H, Yan X, Dai H. A retrospective study of risk factors for carbapenem-resistant Klebsiella pneumoniae acquisition among ICU patients. *J Infect Dev Ctries* 2016;10:208-13.
- Jiao Y, Qin Y, Liu J, Li Q, Dong Y, Shang Y, et al. Risk factors for carbapenem-resistant Klebsiella pneumoniae infection/colonization and predictors of mortality: a retrospective study. *Pathog Glob Health* 2015;109:68-74. doi: 10.1179/2047773215Y.00000000004. [Epub ahead of print: 24 Feb 2015].
- 32. Kang JS, Yi J, Ko MK, Lee SO, Lee JE, Kim K-H. Prevalence and Risk Factors of Carbapenem-resistant Enterobacteriaceae Acquisition in an Emergency Intensive Care Unit in a Tertiary Hospital in Korea: a Case-Control Study. *J Korean Med Sci* 2019;34:e140.
- 33. Kofteridis DP, Valachis A, Dimopoulou D, Maraki S, Christidou A, Mantadakis E, et al. Risk factors for carbapenem-resistant Klebsiella pneumoniae infection/colonization: a case-case-control study. *J Infect Chemother* 2014;20:293-7. doi: 10.1016/j.jiac.2013.11.007. [Epub ahead of print: 03 Apr 2014]
- 34. Lai CC, Wu UI, Wang JT, Chang SC. Prevalence of carbapenemase-producing Enterobacteriaceae and its impact on clinical outcomes at a teaching hospital in Taiwan. *J Formos Med Assoc* 2013;112:492-6. doi: 10.1016/j.jfma.2012.09.021. [Epub ahead of print: 22 Nov 2012].
- 35. Lee GC, Lawson KA, Burgess DS. Clinical epidemiology of carbapenem- resistant enterobacteriaceae in community hospitals: A case-case-control study. *Ann Pharmacother* 2013;47:1115-21.
- 36. Lee NY, Wu JJ, Lin SH, Ko WC, Tsai LH, Yan JJ. Characterization of carbapenem-nonsusceptible Klebsiella pneumoniae bloodstream isolates at a Taiwanese hospital: clinical impacts of lowered breakpoints for carbapenems. *Eur J Clin Microbiol Infect Dis* 2012;31:1941-50. doi: 10.1007/s10096-011-1525-2. [Epub ahead of print: 18 Jan 2012].

- 37. Lopez-Gonzalez L, Candel FJ, Vinuela-Prieto JM, Gonzalez-Del Castillo J, Garcia AB, Pena I, et al. Useful independent factors for distinguish infection and colonization in patients with urinary carbapenemase-producing Enterobacteriaceae isolation. *Rev Esp Ouimioter* 2017;30:450-457. [Epub ahead of print: 07 Nov 2017].
- 38. Lubbert C, Becker-Rux D, Rodloff AC, Laudi S, Busch T, Bartels M, et al. Colonization of liver transplant recipients with KPC-producing Klebsiella pneumoniae is associated with high infection rates and excess mortality: a case-control analysis. *Infection* 2014;42:309-16. doi: 10.1007/s15010-013-0547-3. [Epub ahead of print: 12 Nov 2013].
- 39. Mantzarlis K, Makris D, Manoulakas E, Karvouniaris M, Zakynthinos E. Risk factors for the first episode of Klebsiella pneumoniae resistant to carbapenems infection in critically ill patients: a prospective study. *Biomed Res Int* 2013;2013:850547. doi: 10.1155/2013/850547. [Epub ahead of print: 18 Dec 2013].
- 40. Marimuthu K, Ng TM, Teng C, Lim TP, Koh TH, Tan TY, et al. Risk factors and treatment outcome of ertapenem non-susceptible enterobacteriaceae bacteraemia. *J Infect* 2013;66:294-6. doi: 10.1016/j.jinf.2012.11.010. [Epub ahead of print: 28 Nov 2012].
- 41. Mazza E, Prosperi M, Panzeri MF, Limuti R, Nichelatti M, De Gasperi A. Carbapenem-Resistant Klebsiella Pneumoniae Infections Early After Liver Transplantation: A Single-Center Experience. *Transplant Proc* 2017;49:677-681.
- 42. Miller BM, Johnson SW. Demographic and infection characteristics of patients with carbapenem-resistant Enterobacteriaceae in a community hospital: Development of a bedside clinical score for risk assessment. *Am J Infect Control* 2016;44:134-7. doi: 10.1016/j.ajic.2015.09.006. [Epub ahead of print: 20 Oct 2015].
- 43. Mouloudi E, Massa E, Papadopoulos S, Iosifidis E, Roilides I, Theodoridou T, et al. Bloodstream infections caused by carbapenemase-producing Klebsiella pneumoniae among intensive care unit patients after orthotopic liver transplantation: risk factors for infection and impact of resistance on outcomes. *Transplant Proc* 2014;46:3216-8.
- 44. Muggeo A, Guillard T, Barbe C, Thierry A, Bajolet O, Vernet-Garnier V, et al. Factors associated with carriage of carbapenem-non-susceptible Enterobacteriaceaein North-Eastern France and outcomes of infected patients. *J Antimicrob Chemother* 2017;72:1496-1501.
- 45. Nouvenne A, Ticinesi A, Lauretani F, Maggio M, Lippi G, Guida L, et al. Comorbidities and disease severity as risk factors for carbapenem-resistant Klebsiella pneumoniae colonization: report of an experience in an internal medicine unit. *PLoS One* 2014;9:e110001.
- 46. Orsi GB, Garcia-Fernandez A, Giordano A. Risk factors and clinical significance of ertapenem-resistant Klebsiella pneumoniae in hospitalised patients. *J Hosp Infect* 2011;78:54-8. doi: 10.1016/j.jhin.2011.01.014. [Epub ahead of print: 30 Mar 2011].
- 47. Papadimitriou-Olivgeris M, Marangos M, Fligou F, Christofidou M, Sklavou C, Vamvakopoulou S, et al. KPC-producing Klebsiella pneumoniae enteric colonization acquired during intensive care unit stay: the significance of risk factors for its development and its impact on mortality. *Diagn Microbiol Infect Dis* 2013;77:169-73. doi: 10.1016/j.diagmicrobio.2013.06.007. [Epub ahead of print: 23 Jul 2013].

- 48. Patel TS, Nagel JL. Clinical outcomes of Enterobacteriaceae infections stratified by carbapenem MICs. *J Clin Microbiol* 2015;53:201-5. doi: 10.1128/JCM.03057-14. [Epub ahead of print: 05 Nov 2014].
- 49. Porwal R, Gopalakrishnan R, Rajesh NJ, Ramasubramanian V. Carbapenem resistant Gram-negative bacteremia in an Indian intensive care unit: A review of the clinical profile and treatment outcome of 50 patients. *Indian J Crit Care Med* 2014;18:750-3.
- 50. Qureshi ZA, Syed A, Clarke LG, Doi Y, Shields RK. Epidemiology and clinical outcomes of patients with carbapenem-resistant Klebsiella pneumoniae bacteriuria. *Antimicrob Agents Chemother* 2014;58:3100-4. doi: 10.1128/AAC.02445-13. [Epub ahead of print: 17 Mar 2014].
- 51. Rodrigues Dos Santos BG, Amaral ES, Jr., Fernandes PF, Oliveira CM, Rodrigues JL, Perdigao Neto LV, et al. Urinary Tract Infections and Surgical Site Infections due to Carbapenem-Resistant Enterobacteriaceae in Renal Transplant. *Transplant Proc* 2016;48:2050-5.
- 52. Salsano A, Giacobbe DR, Sportelli E, Olivieri GM, Brega C, Di Biase C, et al. Risk factors for infections due to carbapenem-resistant Klebsiella pneumoniae after open heart surgery. *Interact Cardiovasc Thorac Surg* 2016;23:762-768. doi: 10.1093/icvts/ivw228. [Epub ahead of print: 01 Jul 2016].
- 53. Segagni Lusignani L, Presterl E, Zatorska B, Van Den Nest M, Diab-Elschahawi M. Infection control and risk factors for acquisition of carbapenemase-producing enterobacteriaceae. A 5 year (2011-2016) case-control study. *Antimicrob Resist Infect Control* 2020;9:18.
- 54. Shankar C, Kumar M, Baskaran A, Paul MM, Ponmudi N, Santhanam S, et al. Molecular characterisation for clonality and transmission dynamics of an outbreak of Klebsiella pneumoniae amongst neonates in a tertiary care centre in South India. *Indian J Med Microbiol* 2018;36:54-60.
- 55. Taminato M, Fram D, Pereira RRF, Sesso R, Belasco AGS, Pignatari AC, et al. Infection related to Klebsiella pneumoniae producing carbapenemase in renal transplant patients. *Rev Bras Enferm* 2019;72:760-766.
- Tamma PD, Goodman KE, Harris AD, Tekle T, Roberts A, Taiwo A, et al. Comparing the Outcomes of Patients With Carbapenemase-Producing and Non-Carbapenemase-Producing Carbapenem-Resistant Enterobacteriaceae Bacteremia. Clin Infect Dis 2017;64:257-264. doi: 10.1093/cid/ciw741. [Epub ahead of print: 09 Nov 2016].
- 57. Tascini C, Lipsky BA, Iacopi E, Ripoli A, Sbrana F, Coppelli A, et al. KPC-producing Klebsiella pneumoniae rectal colonization is a risk factor for mortality in patients with diabetic foot infections. *Clin Microbiol Infect* 2015;21:790.e1-3. doi: 10.1016/j.cmi.2015.04.010. [Epub ahead of print: 22 Apr 2015].
- 58. Tsereteli M, Sidamonidze K, Tsereteli D, Malania L, Vashakidze E. EPIDEMIOLOGY OF CARBAPENEM-RESISTANT KLEBSIELLA PNEUMONIAE IN INTENSIVE CARE UNITS OF MULTIPROFILE HOSPITALS IN TBILISI, GEORGIA. *Georgian Med News* 2018;(280-281):164-168.
- 59. Tumbarello M, Trecarichi EM, De Rosa FG, Giannella M, Giacobbe DR, Bassetti M, et al. Infections caused by KPC-producing Klebsiella pneumoniae: differences in therapy and

- mortality in a multicentre study. *J Antimicrob Chemother* 2015;70:2133-43. doi: 10.1093/jac/dkv086. [Epub ahead of print: 21 Apr 2015].
- 60. Tumbarello M, Trecarichi EM, Tumietto F, Del Bono V, De Rosa FG, Bassetti M, et al. Predictive models for identification of hospitalized patients harboring KPC-producing Klebsiella pneumoniae. *Antimicrob Agents Chemother* 2014;58:3514-20. doi: 10.1128/AAC.02373-13. [Epub ahead of print: 14 Apr 2014].
- 61. Tuon FF, Graf ME, Merlini A, Rocha JL, Stallbaum S, Arend LN, et al. Risk factors for mortality in patients with ventilator-associated pneumonia caused by carbapenem-resistant Enterobacteriaceae. *Braz J Infect Dis* 2017;21:1-6. doi: 10.1016/j.bjid.2016.09.008. [Epub ahead of print: 04 Nov 2014].
- 62. Jamal WY, Albert MJ, Rotimi VO. High Prevalence of New Delhi Metallo-beta-Lactamase-1 (NDM-1) Producers among Carbapenem-Resistant Enterobacteriaceae in Kuwait. *PLoS One* 2016;11:e0152638.
- 63. Wang Q, Zhang Y, Yao X, Xian H, Liu Y, Li H, et al. Risk factors and clinical outcomes for carbapenem-resistant Enterobacteriaceae nosocomial infections. Eur J Clin Microbiol Infect Dis 2016;35:1679-89. doi: 10.1007/s10096-016-2710-0. [Epub ahead of print: 11 Jul 2016].

Appendix 3. Descriptive details of the 50 included studies

Table S1 Descriptive details of the 50 included studies

First Author	Year	Country	Region	Economic	Infection	Pathogen	Resistance type	Sampl (r		Mortality		tality %)
				status	type	8	J 1	CRE	CSE	measurements	CRE	CSE
Alicino	2015	Italy	Europe	High income	bloodstream infection	Klebsiella pneumoniae	NA	349	162	30d mortality	36.1	23.5
Balkhair	2019	Oman	Asia	High income	bloodstream infection	Klebsiella pneumoniae	NA	69	305	30d mortality	63.8	24.3
				TT' 1	11 14	Z1.1				in-hospital mortality	69	24
Ben-David	2012	Israel	Asia	High income	bloodstream infection	n Klebsiella KPC-produ pneumoniae KPC-produ		42	85	mortality attributable to infection	48	17
Brizendine	2015	USA	America	High income	urinary tract	Klebsiella pneumoniae	NA	22	64	in-hospital mortality	18	2
				Upper					/.	28d mortality	50	14.6
Chang	2019	China	Asia	middle	bloodstream infection	Klebsiella pneumoniae	NA	46	239	7d mortality	37	10.5
				income	miection	pneumomae				in-hospital mortality	58.7	15.9
				Lower						in-hospital mortality	94.12	50
Chang	2011	China	Asia	middle	bloodstream infection	Escherichia. coli	NA	17	34	28d hospital mortality	70.59	47.06
				income	imection					14d hospital mortality	47.06	38.24
Chiotos	2018	USA	America	High income	mixed	Mixed Enterobacteriaceae	NA	31	144	30d mortality	6.5	1.4

Cienfuegos-Galle t	2019	Colombia	America	Upper middle income	mixed	Klebsiella pneumoniae	KPC-producing	49	289	30d mortality	32.65	15.92
Correa	2013	Brazil	America	Upper middle income	mixed	Klebsiella pneumoniae	NA	20	40	in-hospital mortality	50	27.5
Cubero	2015	Spain	Europe	High income	mixed	Klebsiella pneumoniae	OXA-producing	20	9	in-hospital mortality	35	11.1
Daikos	2009	Greece	Europe	High income	bloodstream infection	Klebsiella pneumoniae	VIM-producing	14	148	14d mortality	42.9	16.9
Fraenkel-Wandel	2016	Israel	Asia	High income	bloodstream infection	Klebsiella pneumoniae	KPC-producing	68	136	in-hospital mortality	65	40
Gallagher	2014	USA	America	High income	bloodstream infection	Klebsiella pneumoniae	NA	43	111	in-hospital mortality	45	32
Garbati	2016	Saudi Arabia	Asia	High income	mixed	Mixed Enterobacteriaceae	NA	29	58	in-hospital mortality	31	12.1
Gomez Rueda	2014	Colombia	America	Upper middle income	mixed	Klebsiella pneumoniae	NA	61	61	in-hospital mortality	50.8	32.7
Hoxha	2016	Italy	Europe	High	mixed	Klebsiella	NA	49	49	30d mortality	61	20
TIOAIIa	2010	itary	Бигоре	income	IIIACU	pneumoniae	1 1/1 7	1 /	7/	6d mortality	24	8
Huang	2018	China	Asia	Upper middle income	mixed	Klebsiella pneumoniae	NA	267	132 8	in-hospital mortality	14.61	5.65

Hussein	2013	Israel	Asia	High income	bloodstream infection	Klebsiella pneumoniae	NA	103	214	30d mortality	43.7	29
Kotb	2020	Egypt	Africa	Lower middle income	mixed	Mixed Enterobacteriaceae	NA	871	727	mortality in ICU	61.1	51.7
Lee	2016	Korea	Asia	High	mixed	Mixed	NA	37	37	in-hospital mortality	10.8	10.8
				income		Enterobacteriaceae				28d mortality	27	21.6
Li	2019	China	Asia	Upper middle income	mixed	Klebsiella pneumoniae	NA	244	263	30d mortality in ICU	28.9	11
Liu	2019	China	Asia	Upper middle income	bloodstream infection	Klebsiella pneumoniae	NA	20	69	30d mortality	55	15.9
				Lower						in-hospital mortality	60	40
Liu	2012	China	Asia	middle	bloodstream infection	Klebsiella pneumoniae	NA	25	50	28d mortality	52	30
_				incom	infection	pheumomae				14d mortality	44	22
Mclaughlin	2014	USA	America	High income	bloodstream infection	Klebsiella pneumoniae	KPC-producing	15	60	in-hospital mortality	33.3	11.7
Meng	2017	China	Asia	Upper middle income	mixed	Escherichia. coli	not focusing on a particular type of carbapenemase- producing strains	49	96	in-hospital mortality	12	1
				High	bloodstream	Klebsiella				in-hospital mortality	68	41
Mouloudi	2010	Greece	Europe	income	infection	pneumoniae	KPC-producing	37	22	mortality attributable to infection	27	14

										mortality in ICU	57	41
Ny	2015	USA	America	High income	mixed	Klebsiella pneumoniae	NA	48	48	in-hospital mortality	14.6	10.4
Orsi	2013	Italy	Europe	High income	mixed	Klebsiella pneumoniae	KPC-producing	36	43	in-hospital mortality	38.9	27.9
	2010	CI.		Upper		Klebsiella	WDG 1 '		122	in-hospital mortality	57.6	18.2
Pan	2019	China	Asia	middle income	mixed	pneumoniae	KPC-producing	66	132	28d mortality	18.18	11.36
				High		Klebsiella				in-hospital mortality	48	20
Patel	2008	USA	America	income	mixed	pneumoniae	NA	99	99	mortality attributable to infection	38	12
Pereira	2015	USA	America	High income	mixed	Klebsiella pneumoniae	NA	20	36	in-hospital mortality	45	28
Pouch	2015	USA	America	High income	urinary tract infection	Mixed Enterobacteriaceae	NA	20	80	in-hospital mortality	30	10
Qureshi	2012	USA	America	High income	bloodstream infection	Klebsiella pneumoniae	NA	19	51	28d mortality	47.4	27.5
Sánchez-Romero	2011	Spain	Europe	High income	mixed	Klebsiella pneumoniae	VIM-producing	28	55	14d mortality	46.4	30.9
Schwaber	2008	Israel	Asia	High income	mixed	Klebsiella pneumoniae	NA	48	56	in-hospital mortality	44	12.5

Shilo	2013	Israel	Asia	High income	urinary tract infection	Klebsiella pneumoniae	NA	135	127	in-hospital mortality	29	25
Simkins	2014	USA	America	High income	mixed	Klebsiella pneumoniae	NA	13	39	in-hospital mortality	46	8
				Upper						in-hospital mortality	42.4	19.8
Tian	2016	China	Asia	middle income	bloodstream infection	Klebsiella pneumoniae	NA	33	81	mortality attributable to infection	42.4	24.6
										28d mortality	33.3	18.5
Torres-Gonzalez	2016	Mexico	America	Upper middle income	mixed	Mixed Enterobacteriaceae	OXA-producing	27	108	mortality attributable to infection	11.1	7.4
Trecarichi	2016	Italy	Europe	High income	bloodstream infection	Klebsiella pneumoniae	NA	161	117	21d mortality	52.2	14.5
Ulu	2015	Turkey	Asia	Upper middle income	mixed	Klebsiella pneumoniae	NA	47	51	mortality in ICU	44.7	51
Vardakas	2015	Greece	Europe	High income	mixed	Klebsiella pneumoniae	NA	80	24	mortality in ICU	72.5	58.3
Wang	2018	China	Asia	Upper middle income	mixed	Klebsiella pneumoniae	NA	48	48	in-hospital mortality	47.9	4.2
Xiao	2018	China	Asia	Upper middle income	bloodstream infection	Klebsiella pneumoniae	NA	135	293	30d mortality	58.5	15.4

				Upper	11 1.	721 1 : 11				in-hospital mortality	18.5	8.3
Zhang	2018	China	Asia	middle	bloodstream infection	Klebsiella pneumoniae	NA	54	84	7d mortality	16.7	1.2
				income	micetion	pheamomae				28d mortality	18.5	2.4
Zheng	2018	China	Asia	Upper middle income	bloodstream infection	Klebsiella pneumoniae	NA	59	230	28d mortality	54.2	19.6
Zheng	2020	China	Asia	Upper middle income	neurosurgical infection	Mixed Enterobacteriaceae	NA	26	107	mortality attributable to infection	69.2	12.1
				Upper	70	Klebsiella				in-hospital mortality	35.1	20.3
Zuo	2020	China	Asia	middle income	pneumonia	pneumoniae	NA	74	74	mortality attributable to infection	25.7	9.5
		7		Upper						in-hospital mortality	64	30
Villegas	2016	countries in Latin America	America	middle income	bloodstream infection	Mixed Enterobacteriaceae	NA	53	202	mortality attributable to infection	85	43
Stewardson	2019	10 countries	Asia, Africa, America	low and middle income countries	bloodstream infection	Mixed Enterobacteriaceae	NA	123	174	in-hospital mortality	35	20
7.4 '11' 7	ZDG 171 1				3.6.37	1 11 001 114	37 . A 11 11 1					

OXA,oxacillinase; KPC, Klebsiella pneumoniae carbapenemase; VIM, Verona integron-encoded MBL; NA, Not Applicable i.e. include non-carbapenemase-producing strains or not focusing on a particular type of carbapenemase-producing strains

Appendix 4. Risk of bias assessed with the Newcastle-Ottawa Assessment Scale.

NEWCASTLE - OTTAWA QUALITY ASSESSMENT SCALE COHORT STUDIES

Note: A study can be awarded a maximum of one star for each numbered item within the Selection and Outcome categories. A maximum of two stars can be given for Comparability. In this version of NOS, we define the exposure as carbapenem resistance and the outcome as death in hospital and the target population is patients infected with *Enterobacteriaceae*.

Selection: (Maximum 4 stars)

- 1) Representativeness of the exposed cohort
 - a) truly representative of the average carbapenem resistance in patients infected with Enterobacteriaceae. **
 - b) somewhat representative of the average carbapenem resistance in patients infected with Enterobacteriaceae *
 - c) selected group of users (e.g. organ transplant recipients, onco-hematological patients)
 - d) no description of the derivation of the cohort
- 2) Selection of the non exposed cohort
 - a) drawn from the same community as the exposed cohort *
 - b) drawn from a different source
 - c) no description of the derivation of the non exposed cohort
- 3) Ascertainment of exposure
 - a) secure record (e.g. medical records) *
 - b) structured interview *
 - c) written self report
 - d) no description
- 4) Demonstration that outcome of interest was not present at start of study

- a) yes 🟶
- b) no

Comparability: (Maximum 2 stars)

- 1) Comparability of cohorts on the basis of the design or analysis
 - a) study controls for age∗
 - b) study controls for comorbidity*

Outcome: (Maximum 3 stars)

- 1) Assessment of outcome
 - a) independent blind assessment *
 - b) record linkage *
 - c) self report
 - d) no description
- 2) Was follow-up long enough for outcomes to occur
 - a) yes (adequate if >14 days) ₩
 - b) no
- 3) Adequacy of follow up of cohorts
 - a) complete follow up all subjects accounted for *
 - b) subjects lost to follow up unlikely to introduce bias small number lost -> 80 % follow up, or description provided of those lost *
 - c) follow up rate < 80% and no description of those lost
 - d) no statement

First Author	Year	selection(1)	selection(2)	selection(3)	selection(4)	comparability(1)	outcome(1)	outcome(2)	outcome(3)	Total score	Risk of bias
Alicino	2015	1	1	1	1	0	1	1	1	7	Low
Balkhair	2019	1	1	1	1	0	1	1	1	7	Low
Ben-David	2012	1	1	1	1	1	1	1	1	8	Low
Brizendine	2015	0		1	1	1	1	1	1	7	Low
Chang	2019	1	1	1	1	0	1	1	1	7	Low
Chang	2011	1	1		1	1	1	1	1	8	Low
Chiotos	2018	0	1	1	1	1	1	1	1	7	Low
Cienfuegos-Gallet	2019	1	1	1	1	1	1	1	1	8	Low
Correa	2013	1	1	1	1	1	1	1	1	8	Low
Cubero	2015	1	1	1	1	0	1	1	1	7	Low
Daikos	2009	1	1	1	1	0	1	0	1	6	Moderate
Fraenkel-Wandel	2016	1	1	1	1	1	1	1	1	8	Low
Gallagher	2014	1	1	1	1	0	1	1	1	7	Low
Garbati	2016	1	1	1	1	0	JA,	1	1	7	Low
Gomez Rueda	2014	1	1	1	1	0	1/1	1	1	7	Low
Hoxha	2016	1	1	1	1	1	1	1	0	7	Low
Huang	2018	1	1	1	1	2	1	1	1	9	Low
Hussein	2013	1	1	1	1	1	1	1	1	8	Low
Kotb	2020	1	1	1	1	0	1	1	1	7	Low
Lee	2016	1	1	1	1	1	1	1	1	8	Low
Li	2019	0	1	1	1	1	1	1	1	7	Low
Liu	2019	0	1	1	1	1	1	1	1	7	Low

Liu	2012	1	1	1	1	1	1	1	1	8	Low
Mclaughlin	2014	1	1	1	1	1	1	1	1	8	Low
Meng	2017	1	1	1	1	1	1	1	1	8	Low
Mouloudi	2010	0	1	1	1	1	1	1	1	7	Low
Ny	2015	1	1	1	1	1	1	1	1	8	Low
Orsi	2013	1	1	1	1	1	1	1	1	8	Low
Pan	2019	1	1	1	1	1	1	1	1	8	Low
Patel	2008	1	1	1	1	1	1	1	1	8	Low
Pereira	2015	0	1		1	1	1	1	1	7	Low
Pouch	2015	0	1	i	1	1	1	1	1	7	Low
Qureshi	2012	1	1	1	1	0	1	1	1	7	Low
Sánchez-Romero	2011	1	1	1	1	0	1	0	1	6	Moderate
Schwaber	2008	1	1	1	1	0	1	1	1	7	Low
Shilo	2013	1	1	1	1	1	1	1	1	8	Low
Simkins	2014	0	1	1	1	1/	1	1	1	7	Low
Tian	2016	1	1	1	1	1	1	1	1	8	Low
Torres-Gonzalez	2016	1	1	1	1	0	1	1	1	7	Low
Trecarichi	2016	0	1	1	1	0	1/	1	1	6	Moderate
Ulu	2015	0	1	1	1	1	1	1	1	7	Low
Vardakas	2015	0	1	1	1	1	1	1	1	7	Low
Wang	2018	1	1	1	1	1	1	1	1	8	Low
Xiao	2018	1	1	1	1	1	1	1	1	8	Low
Zhang, Y.	2018	0	1	1	1	0	1	1	1	6	Mod
Zheng, Si-Han	2018	1	1	1	1	1	1	1	1	8	Low
Zheng,Guanghui	2020	0	1	1	1	1	1	1	1	7	Low

Zuo	2020	1	1	1	1	1	1	1	1	8	Low
Villegas	2016	1	1	1	1	1	1	1	1	8	Low
Stewardson	2019	1	1	1	1	2	1	1	1	9	Low

Appendix 5. The results from stratified analysis and meta-regression for different mortality outcome type

Table S2 Subgroup analysis of the effect of carbapenem resistance on in-hospital mortality for patients infected with Enterobacteriaceae

Sub-groups	No. of studies	No. of CRE patients	No. of CSE patients	unweighted means of mortality among CRE patients	unweighted means of mortality among CSE patients	RR(95%CI)	P value (significance tests of RR=1)	I²(%)	P value between groups	RD(95%CI)	P value (significance tests of RD=0)	I ² (%)	P value beteen groups
Pathogens				•									
Klebsiella pneumoniae	24	1340	3072	43.10%	20.26%	2.12(1.77, 2.53)	0.000	57.4		0.22(0.16, 0.28)	0.000	72.3	
Mixed Enterobacteriaceae pathogens	5	262	551	34.16%	16.58%	2.01(1.62, 2.49)	0.000	0.0	0.161	0.17(0.06, 0.29)	0.003	65.8	0.591
Escherichia. coli	2	66	130	53.06%	25.50%	3.83(0.46, 31.78)	0.214	76.2		0.27(-0.06, 0.59)	0.115	88.6	
Geographical region	1						V/1						
America	11	414	840	40.43%	19.30%	1.97(1.60, 2.43)	0.000	22.2		0.20(0.14, 0.27)	0.000	28.2	
Europe	3	93	74	47.30%	26.67%	1.58(1.06, 2.38)	0.026	0.0	0.781	0.19(0.05, 0.33)	0.009	0.0	0.832
Asia	16	1038	2665	43.11%	19.23%	2.28(1.81, 2.85)	0.000	65.4	///.	0.23(0.15, 0.31)	0.000	82.7	
Economic status													
High income	17	732	1110	39.45%	19.21%	1.94(1.57, 2.40)	0.000	42.5		0.19(0.13, 0.26)	0.000	57.8	
Upper middle income	13	813	2469	46.59%	21.04%	2.29(1.85, 2.82)	0.000	55.2	0.494	0.25(0.16, 0.34)	0.000	81.8	0.263
Infection type													
Bloodstream infections	12	556	1278	54.42%	27.73%	2.01(1.68, 2.41)	0.000	50.7	0.323	0.26(0.19, 0.34)	0.000	61.7	0.355

Urinary tract	3	177	271	25.67%	12.33%	2.40(0.82, 7.03)	0.110	72.5		0.11(0.00, 0.21)	0.044	29.7	
infection	-	,	_,_			(, ,)	*****	, = .0		(,)	****	_,,,	
Pneumonia	1	74	74	35.10%	20.30%	1.73(1.00, 3.00)	0.049	NA		0.15(0.01, 0.29)	0.040	NA	
Mixed	15	861	2130	36.41%	15.34%	2.34(1.83, 2.97)	0.000	40.8		0.20(0.13, 0.28)	0.000	74.7	
Resistance type													
KPC-producing	6	264	478	55.30%	27.13%	2.13(1.56, 2.89)	0.000	58.7		0.30(0.20, 0.40)	0.000	46.2	
Enterobacteriaceae	O	204	4/0	33.3070	27.1370	2.13(1.30, 2.89)	0.000	36.7		0.30(0.20, 0.40)	0.000	40.2	
OXA-producing	1	20	9	35.00%	11.10%	3.15(0.45, 21.96)	0.247	NA		0.24(-0.05, 0.53)	0.110	NA	
Enterobacteriaceae	1	20	9	33.0070		3.13(0.43, 21.90)	0.247	INA		0.24(-0.03, 0.33)	0.110	NA	
include									0.716				0.450
non-carbapenemas													
e-producing strains	24	1384	3266	39.36%	18.59%	2.08(1.75, 2.47)	0.000	51.5		0.20(0.14, 0.25)	0.000	69.8	
or multiple													
resistance types							·						
Sample size							10.						
<100	14	387	588	42.33%	20.34%	1.96(1.52, 2.53)	0.000	30.6		0.21(0.13, 0.30)	0.000	58.3	
100-200	11	589	959	41.13%	18.07%	2.26(1.80, 2.84)	0.000	41.7	0.641	0.23(0.15, 0.30)	0.000	64.8	0.974
>200	6	692	2206	44.39%	22.76%	2.02(1.49, 2.72)	0.000	78.4		0.21(0.09, 0.32)	0.000	85.5	
Range of publication	year								1/,				
2008-2010	3	184	177	53.33%	24.50%	2.28(1.57, 3.31)	0.000	24.7	77 [0.29(0.20, 0.38)	0.000	0.0	
2011-2013	6	275	379	56.84%	32.40%	1.71(1.29, 2.28)	0.000	54.7	0.250	0.24(0.08, 0.41)	0.004	79.3	0.750
2014-2016	14	482	1022	37.92%	18.47%	1.86(1.57, 2.20)	0.000	11.5	0.278	0.18(0.12, 0.24)	0.000	35.1	0.658
2017-2020	8	727	2175	34.93%	11.69%	2.74(2.00, 3.75)	0.000	60.0		0.22(0.12, 0.32)	0.000	86.1	
Total	31	1668	3753	42.30%	20.00%	2.09(1.81, 2.42)	0.000	49.8		0.22(0.17, 0.26)	0.000	71.0	

OXA,oxacillinase; KPC, Klebsiella pneumoniae carbapenemase

Table S3 Subgroup analysis of the effect of carbapenem resistance on 28d or 30d mortality for patients infected with Enterobacteriaceae

Pathogens Scale Pathogens Pathogen	Sub-groups	No. of studies	No. of CRE patients	No. of CSE patients	unweighted means of mortality among CRE	unweighted means of mortality among CSE	RR(95%CI)	P value (significance tests of RR=1)	I ² (%)	P value between groups	RD(95%CI)	P value (significance tests of RD=0)	I²(%)	P value beteen groups
Klebsiella 14 1076 2248 44.60% 19.14% 2.34(1.90, 2.88) 0.000 65.9 0.25(0.18, 0.32) 0.000 76.9 pneumoniae Mixed Enterobacteriacea 2 68 181 16.75% 11.50% 1.78(0.57, 5.60) 0.321 34.3 0.761 0.05(-0.03, 0.13) 0.213 0.0 0.12 epathogens Escherichia. coli 1 17 34 70.59% 47.06% 1.50(0.94, 2.40) 0.091 NA 0.24(-0.04, 0.51) 0.092 NA Geographical region America 3 99 484 28.85% 14.94% 2.00(1.37, 2.92) 0.000 0.0 0.12(-0.00, 0.23) 0.055 50.1 Europe 2 398 211 48.55% 21.75% 2.04(1.07, 3.90) 0.030 73.6 0.927 0.26(-0.02, 0.53) 0.068 87.5 0.43	n d				patients	patients								
Poeumoniae 14					-									
Enterobacteriacea 2 68 181 16.75% 11.50% 1.78(0.57, 5.60) 0.321 34.3 0.76 0.05(-0.03, 0.13) 0.213 0.0 0.1 0.05 0.05 0.05 0.05 0.05 0.05 0		14	1076	2248	44.60%	19.14%	2.34(1.90, 2.88)	0.000	65.9		0.25(0.18, 0.32)	0.000	76.9	
Enterobacteriacea 2 68 181 16.75% 11.50% 1.78(0.57, 5.60) 0.321 34.3 0.05(-0.03, 0.13) 0.213 0.0 e pathogens Escherichia coli 1 17 34 70.59% 47.06% 1.50(0.94, 2.40) 0.091 NA 0.24(-0.04, 0.51) 0.092 NA Geographical region America 3 99 484 28.85% 14.94% 2.00(1.37, 2.92) 0.000 0.0 0.12(-0.00, 0.23) 0.055 50.1 Europe 2 398 211 48.55% 21.75% 2.04(1.07, 3.90) 0.030 73.6 0.927 0.26(-0.02, 0.53) 0.068 87.5 0.4 Asia 12 664 1768 45.40% 20.81% 2.31(1.81, 2.94) 0.000 68.4 0.25(0.16, 0.34) 0.000 77.0 Economic status High income 7 657 962 40.79% 21.04% 1.92(1.46, 2.52) 0.000 57.6 0.427 0.25(0.16, 0.35) 0.001 80.6 Upper middle income 10 504 1501 44.29% 19.07% 2.48(1.92, 3.20) 0.000 58.9 0.427 0.25(0.16, 0.35) 0.000 75.7 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	Mixed													
Escherichia coli 1 17 34 70.59% 47.06% 1.50(0.94, 2.40) 0.091 NA 0.24(-0.04, 0.51) 0.092 NA	Enterobacteriacea	2	68	181	16.75%	11.50%	1.78(0.57, 5.60)	0.321	34.3	0.761	0.05(-0.03, 0.13)	0.213	0.0	0.124
Region Proper middle income Proper midd	e pathogens													
region America 3 99 484 28.85% 14.94% 2.00(1.37, 2.92) 0.000 0.0 0.12(-0.00, 0.23) 0.055 50.1 Europe 2 398 211 48.55% 21.75% 2.04(1.07, 3.90) 0.030 73.6 0.927 0.26(-0.02, 0.53) 0.068 87.5 0.4 Asia 12 664 1768 45.40% 20.81% 2.31(1.81, 2.94) 0.000 68.4 0.25(0.16, 0.34) 0.000 77.0 78.0 <td< td=""><td>Escherichia. coli</td><td>1</td><td>17</td><td>34</td><td>70.59%</td><td>47.06%</td><td>1.50(0.94, 2.40)</td><td>0.091</td><td>NA</td><td></td><td>0.24(-0.04, 0.51)</td><td>0.092</td><td>NA</td><td></td></td<>	Escherichia. coli	1	17	34	70.59%	47.06%	1.50(0.94, 2.40)	0.091	NA		0.24(-0.04, 0.51)	0.092	NA	
America 3 99 484 28.85% 14.94% 2.00(1.37, 2.92) 0.000 0.0 0.12(-0.00, 0.23) 0.055 50.1 Europe 2 398 211 48.55% 21.75% 2.04(1.07, 3.90) 0.030 73.6 0.927 0.26(-0.02, 0.53) 0.068 87.5 0.26 Asia 12 664 1768 45.40% 20.81% 2.31(1.81, 2.94) 0.000 68.4 0.25(0.16, 0.34) 0.000 77.0 Economic status High income 7 657 962 40.79% 21.04% 1.92(1.46, 2.52) 0.000 57.6 0.19(0.08, 0.30) 0.001 80.6 Upper middle income 10 504 1501 44.29% 19.07% 2.48(1.92, 3.20) 0.000 58.9 0.427 0.25(0.16, 0.35) 0.000 75.7 0.25 0.16 0.35 0.000 75.7 0.25 0.16 0.35 0.000 75.7 0.25 0.16 0.35 0.000 75.7 0.25 0.16 0.35 0.000 75.7 0.25 0.16 0.35 0.000 75.7 0.25 0.16 0.35 0.000 75.7 0.25 0.16 0.35 0.000 75.7 0.25 0.16 0.35 0.000 75.7 0.25 0.16 0.35 0.000 75.7 0.25 0.16 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	Geographical							/ ·						
Europe 2 398 211 48.55% 21.75% 2.04(1.07, 3.90) 0.030 73.6 0.927 0.26(-0.02, 0.53) 0.068 87.5 0.4 Asia 12 664 1768 45.40% 20.81% 2.31(1.81, 2.94) 0.000 68.4 0.25(0.16, 0.34) 0.000 77.0 Economic status High income 7 657 962 40.79% 21.04% 1.92(1.46, 2.52) 0.000 57.6 0.19(0.08, 0.30) 0.001 80.6 Upper middle income 10 504 1501 44.29% 19.07% 2.48(1.92, 3.20) 0.000 58.9 0.427 0.25(0.16, 0.35) 0.000 75.7 0.427 0.25(0.16, 0.35) 0.0000	region													
Asia 12 664 1768 45.40% 20.81% 2.31(1.81, 2.94) 0.000 68.4 0.25(0.16, 0.34) 0.000 77.0 Economic status High income 7 657 962 40.79% 21.04% 1.92(1.46, 2.52) 0.000 57.6 0.19(0.08, 0.30) 0.001 80.6 Upper middle income 10 504 1501 44.29% 19.07% 2.48(1.92, 3.20) 0.000 58.9	America	3	99	484	28.85%	14.94%	2.00(1.37, 2.92)	0.000	0.0		0.12(-0.00, 0.23)	0.055	50.1	
High income 7 657 962 40.79% 21.04% 1.92(1.46, 2.52) 0.000 57.6 0.19(0.08, 0.30) 0.001 80.6 Upper middle income 10 504 1501 44.29% 19.07% 2.48(1.92, 3.20) 0.000 58.9 6.427 0.25(0.16, 0.35) 0.000 75.7 Infection type 12 929 1812 48.59% 22.31% 2.29(1.81, 2.90) 0.000 72.0 0.746 0.26(0.18, 0.34) 0.000 73.2 0.19(0.08, 0.30) 0.000 73.2 0.19(0.08, 0.30) 0.000 75.7 0.25(0.16, 0.35) 0.000 0.000 75.7 0.25(0.16, 0.35) 0.000 75.7 0.25(0.16, 0.35) 0.000 0.000 0.25(0.16, 0.35) 0.000 0.25(0.16, 0.35) 0.000 0.25(0.16, 0.35) 0.25(0.16, 0.35) 0.000 0.25(0.16, 0.35) 0.25(0.	Europe	2	398	211	48.55%	21.75%	2.04(1.07, 3.90)	0.030	73.6	0.927	0.26(-0.02, 0.53)	0.068	87.5	0.441
High income 7 657 962 40.79% 21.04% 1.92(1.46, 2.52) 0.000 57.6 0.19(0.08, 0.30) 0.001 80.6 Upper middle income 10 504 1501 44.29% 19.07% 2.48(1.92, 3.20) 0.000 58.9 0.427 0.25(0.16, 0.35) 0.000 75.7 Infection type Bloodstream infections 12 929 1812 48.59% 22.31% 2.29(1.81, 2.90) 0.000 72.0 0.746 0.26(0.18, 0.34) 0.000 73.2 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.	Asia	12	664	1768	45.40%	20.81%	2.31(1.81, 2.94)	0.000	68.4		0.25(0.16, 0.34)	0.000	77.0	
Upper middle income 10 504 1501 44.29% 19.07% 2.48(1.92, 3.20) 0.000 58.9 0.427 0.25(0.16, 0.35) 0.000 75.7 0.427 Infection type Bloodstream infections 12 929 1812 48.59% 22.31% 2.29(1.81, 2.90) 0.000 72.0 0.746 0.26(0.18, 0.34) 0.000 73.2 0.1	Economic status									7//				
Infection type Bloodstream infections 12 929 1812 48.59% 22.31% 2.29(1.81, 2.90) 0.000 58.9 0.25(0.16, 0.35) 0.000 75.7 0.1000 75.7 0.1000 75.7 0.000 75	High income	7	657	962	40.79%	21.04%	1.92(1.46, 2.52)	0.000	57.6		0.19(0.08, 0.30)	0.001	80.6	
Bloodstream 12 929 1812 48.59% 22.31% 2.29(1.81, 2.90) 0.000 72.0 0.26(0.18, 0.34) 0.000 73.2 infections 0.10 0.26(0.18, 0.34) 0.000 0.10 0.10 0.10 0.10 0.10 0.10 0.	• •	10	504	1501	44.29%	19.07%	2.48(1.92, 3.20)	0.000	58.9	0.427	0.25(0.16, 0.35)	0.000	75.7	0.414
Bloodstream 12 929 1812 48.59% 22.31% 2.29(1.81, 2.90) 0.000 72.0 0.26(0.18, 0.34) 0.000 73.2 0.16(0.18, 0.34) 0.000 0.16(0.18, 0.34) 0.000 0.16(0.18, 0.34) 0.														
	Bloodstream	12	929	1812	48.59%	22.31%	2.29(1.81, 2.90)	0.000	72.0	0.746	0.26(0.18, 0.34)	0.000	73.2	0.108
		5	232	651	29.07%	14.06%	2.05(1.50, 2.81)	0.000	4.2		0.14(0.02, 0.26)	0.019	74.5	

Resistance type									-				
KPC-producing													
Enterobacteriacea	2	115	421	25.42%	13.64%	1.89(1.27, 2.82)	0.002	0.0		0.11(0.01, 0.21)	0.030	22.9	
e													
include									0.428				0.211
non-carbapenema									0.420				0.211
se-producing	15	1046	2042	45.17%	20.72%	2.29(1.84, 2.84)	0.000	67.2		0.24(0.16, 0.32)	0.000	79.5	
strains or multiple													
resistance types				_									
Sample size													
<100	6	167	290	52.17%	27.01%	1.97(1.45, 2.67)	0.000	33.6		0.25(0.14, 0.37)	0.000	41.3	
100-200	4	184	441	19.12%	8.42%	2.30(1.25, 4.24)	0.008	34.6	0.207	0.09(0.04, 0.15)	0.001	3.7	0.088
>200	7	810	1732	48.42%	20.33%	2.39(1.80, 3.18)	0.000	80.1		0.28(0.17, 0.39)	0.000	83.5	
Range of publicatio	n year						·,°						
2011-2013	4	164	329	53.42%	33.39%	1.56(1.25, 1.94)	0.000	0.0		0.17(0.08, 0.26)	0.000	0.0	
2014-2016	4	468	349	39.35%	20.90%	1.79(1.28, 2.49)	0.001	32.6	0.060	0.18(0.05, 0.32)	0.009	67.9	0.568
2017-2020	9	529	1785	39.70%	13.43%	2.91(2.41, 3.51)	0.000	29.1		0.26(0.14, 0.37)	0.000	88.0	
Total	17	1161	2463	42.85%	19.88%	2.23(1.83, 2.72)	0.000	63.6	h	0.23(0.15, 0.30)	0.000	79.1	

KPC, Klebsiella pneumoniae carbapenemase

Table S4 Subgroup analysis of the effect of carbapenem resistance on mortality attributable to infection for patients infected with Enterobacteriaceae

Sub-groups	No. of studies	No. of CRE patients	No. of CSE patients	unweighted means of mortality among CRE patients	unweighted means of mortality among CSE patients	RR(95%CI)	P value (significance tests of RR=1)	I²(%)	P value between groups	RD(95%CI)	P value (significanc e tests of RD=0)	I²(%)	P value beteen groups
Pathogens				<u> </u>									
Klebsiella pneumoniae	5	285	361	36.22%	15.42%	2.81(2.06, 3.82)	0.000	0.0		0.23(0.16, 0.29)	0.000	0.0	
Mixed									0.739				0.388
Enterobacteriaceae	3	106	417	55.10%	20.83%	2.72(1.17, 6.32)	0.020	84.6		0.34(0.02, 0.65)	0.036	93.3	
pathogens						- / h							
Geographical regio	n												
America	3	179	409	44.70%	20.80%	2.27(1.41, 3.68)	0.001	52.4		0.24(0.03, 0.46)	0.026	89.5	
Europe	1	37	22	27.00%	14.00%	1.98(0.61, 6.43)	0.255	NA	0.484	0.13(-0.07, 0.34)	0.195	NA	0.641
Asia	4	175	347	46.33%	15.80%	3.32(2.22, 4.97)	0.000	38.8		0.32(0.14, 0.49)	0.000	77.4	
Economic status													
High income	3	178	206	37.67%	14.33%	2.99(2.01, 4.43)	0.000	0.0	1	0.26(0.17, 0.34)	0.000	0.0	
Upper middle income	5	213	572	46.68%	19.32%	2.68(1.66, 4.32)	0.000	70.4	0.932	0.28(0.10, 0.47)	0.002	87.7	0.725
Infection type													
Bloodstream	4	165	390	50.60%	24.65%	2.08(1.75, 2.48)	0.000	0.0		0.30(0.18, 0.42)	0.000	53.4	
Pneumonia	1	74	74	25.70%	9.50%	2.71(1.21, 6.07)	0.015	NA	0.075	0.16(0.04, 0.28)	0.008	NA	0.203
Neurosurgical infection	1	26	107	69.20%	12.10%	5.70(3.22, 10.08)	0.000	NA		0.57(0.38, 0.76)	0.000	NA	

Mixed	2	126	207	24.55%	9.70%	2.75(1.32, 5.71)	0.007	27.2		0.16(-0.08, 0.40)	0.200	87.2	
Resistance type													
KPC-producing	2	70	107	27.500/	15.500/	2 (0/1 (1 451)	0.000	0.0		0.22(0.0(-0.41)	0.010	42.0	
Enterobacteriaceae	2	79	107	37.50%	15.50%	2.69(1.61, 4.51)	0.000	0.0		0.23(0.06, 0.41)	0.010	43.8	
OXA-producing	1	27	108	11.10%	7.40%	1.50(0.43, 5.28)	0.528	NA		0.04(-0.09, 0.17)	0.572	NA	
Enterobacteriaceae	1	21	108	11.10%	7.4070	1.30(0.43, 3.28)	0.328	NA		0.04(-0.09, 0.17)	0.372	NA	
include									0.488				0.277
non-carbapenemas													
e-producing	5	285	563	52.06%	20.24%	2.96(1.87, 4.70)	0.000	75.4		0.33(0.20, 0.46)	0.000	76.9	
strains or multiple													
resistance types						Q_{\perp}							
Sample size					,	1 4							
<100	1	37	22	27.00%	14.00%	1.98(0.61, 6.43)	0.255	NA		0.13(-0.07, 0.34)	0.195	NA	
100-200	6	301	554	39.07%	13.77%	3.21(2.35, 4.39)	0.000	22.0	0.641	0.26(0.13, 0.39)	0.000	80.0	0.566
>200	1	53	202	85.00%	43.00%	1.97(1.62, 2.40)	0.000	NA		0.42(0.30, 0.54)	0.000	NA	
Range of publication	ı year							1.					
2008-2010	2	136	121	32.50%	13.00%	3.07(1.79, 5.28)	0.000	0.0		0.23(0.10, 0.36)	0.000	27.2	
2011-2013	1	42	85	48.00%	17.00%	2.89(1.63, 5.13)	0.000	NA		0.31(0.14, 0.48)	0.000	NA	
2014-2016	3	113	391	46.17%	25.00%	2.00(1.66, 2.40)	0.000	0.0	0.380	0.24(-0.02, 0.49)	0.067	89.5	0.849
2017-2020	2	100	181	47.45%	10.80%	4.14(1.94, 8.82)	0.000	58.4		0.36(-0.05, 0.77)	0.082	92.5	
Total		391	778	43.30%	17.45%	2.74(1.97, 3.81)	0.000	58.3		0.27(0.15, 0.38)	0.000	79.5	

OXA,oxacillinase;KPC, Klebsiella pneumoniae carbapenemase

Table S5 Univariate meta-regression of the potential variables on risk difference of in-hospital mortality for patients with CRE versus CSE

Variables	Sub-categories	No. of studies	No. of CRE patients	No. of CSE patients	coefficient	standard error	95% cor		P value from meta-regression
	Klebsiella pneumoniae	24	1340	3072	-0.199	0.187	-0.583	0.184	0.296
Pathogens	Mixed Enterobacteriaceae pathogens	5	262	551	-0.178	0.210	-0.608	0.252	0.404
	Escherichia. coli	2	66	130	reference	-	-	-	-
Caramakiaal	America	11	414	840	-0.025	0.105	-0.241	0.190	0.810
Geographical	Europe	3	93	74	-0.067	0.216	-0.510	0.375	0.757
region	Asia	16	1038	2665					
Economic	High income	17	732	1110	-0.068	0.097	-0.267	0.131	0.490
status	Upper middle income	13	813	2469	reference	-	-	-	-
	Bloodstream infections	12	556	1278	0.228	0.195	-0.171	0.627	0.252
Infection	Urinary tract infection	3	177	271	reference	-	-	-	-
type	pneumonia	1	74	74	0.084	0.335	-0.604	0.771	0.805
	Mixed	15	861	2130	0.150	0.203	-0.267	0.567	0.468
	KPC-producing	6	264	478	0.062	0.995	1 077	2.100	0.951
	Enterobacteriaceae	O	204	4/0	0.002	0.993	-1.977	2.100	0.931
	OXA-producing	1	20	9	reference				
Resistance	Enterobacteriaceae	1	20		reference	-	-	-	-
type	include								
	non-carbapenemase-producing	24	1384	3266	-0.007	0.992	-2.040	2.025	0.994
	strains or multiple resistance	24	1304	3200	-0.007	0.772	-2.040	2.023	0.774
	types								
	<100	14	387	588	0.006	0.128	-0.255	0.268	0.962
Sample size	100-200	11	589	959	reference	-	-	-	-
	>200	6	692	2206	-0.029	0.109	-0.253	0.194	0.789
Range of	2008-2010	3	184	177	0.042	0.183	-0.335	0.418	0.823
publication	2011-2013	6	275	379	0.031	0.131	-0.238	0.299	0.816
year	2014-2016	14	482	1022	-0.005	0.117	-0.245	0.234	0.964
J CMI	2017-2020	8	727	2175	reference	-	-	-	-
Sample size	-	31	1668	3753	-0.00012	0.00013	-0.00039	0.00015	0.380
Year of publication	-	31	1668	3753	-0.005	0.015	-0.035	0.025	0.751

OXA,oxacillinase;KPC, Klebsiella pneumoniae carbapenemase

Table S6 Univariate meta-regression of the potential variables on risk difference of 28d or 30d mortality for patients with CRE versus CSE

Variables	Sub-groups	No. of studies	No. of CRE patients	No. of CSE patients	coefficient	standard error	95% cor		P value from meta-regression
) I	Klebsiella pneumoniae	14	1076	2248	reference	-	-	-	-
Pathogens	Mixed Enterobacteriaceae pathogens	2	68	181	-0.228	0.385	-1.055	0.598	0.563
1 5	Escherichia. coli	1	17	34	-0.047	0.247	-0.576	0.483	0.853
5	America	3	99	484	-0.129	0.204	-0.566	0.307	0.536
Geographical	Europe	2	398	211	-0.116	0.154	-0.447	0.215	0.464
3 region 9	Asia	12	664	1768	reference	-	-	-	-
Economic	High income	7	657	962	-0.066	0.110	-0.301	0.169	0.558
status	Upper middle income	10	504	1501	reference	-	-	-	-
Infection	Bloodstream infections	12	929	1812	reference	-	-	-	-
type type	Mixed	5	232	651	-0.095	0.165	-0.446	0.257	0.575
5	KPC-producing	2	115	421	-0.150	0.210	-0.599	0.298	0.486
7	Enterobacteriaceae	2	113	421	-0.130	0.210	-0.399	0.298	0.480
3 Resistance	include								
type	non-carbapenemase-producing	15	1046	2042	reference	_	_	_	_
, 	strains or multiple resistance	13	1040	2042	reference	-	-	-	-
2	types								
} 	<100	6	167	290	-0.030	0.141	-0.332	0.272	0.833
Sample size	100-200	4	184	441	-0.179	0.236	-0.686	0.327	0.460
5	>200	7	810	1732	reference	-	-	-	-
Range of	2011-2013	4	164	329	-0.168	0.134	-0.455	0.119	0.229
publication	2014-2016	4	468	349	-0.182	0.144	-0.491	0.128	0.228
year	2017-2020	9	529	1785	reference	-	-	-	-
Sample size	-	17	1161	2463	0.00009	0.00039	-0.00075	0.00092	0.827
Year of publication	-	17	1161	2463	0.027	0.020	-0.017	0.070	0.207

KPC, Klebsiella pneumoniae carbapenemase

Table S7 Univariate meta-regression of the potential variables on risk ratio of in-hospital mortality for patients with CRE versus CSE

Variables	Sub-categories	No. of studies	No. of CRE patients	No. of CSE patients	coefficient	standard error		nfidence erval	P value from meta-regressio
	Klebsiella pneumoniae	24	1340	3072	-0.040	0.344	-0.744	0.664	0.908
Pathogens	Mixed Enterobacteriaceae pathogens	5	262	551	-0.080	0.387	-0.872	0.713	0.838
	Escherichia. coli	2	66	130	reference	-	-	-	-
~	America	11	414	840	-0.108	0.173	-0.463	0.247	0.537
Geographical .	Europe	3	93	74	-0.334	0.306	-0.962	0.293	0.284
region	Asia	16	1038	2665					
Economic	High income	17	732	1110	-0.165	0.156	-0.485	0.154	0.299
status	Upper middle income	13	813	2469	reference	-	-	-	-
	Bloodstream infections	12	556	1278	0.194	0.308	-0.437	0.825	0.533
Infection	Urinary tract infection	3	177	271	reference	-	-	-	-
type	pneumonia	1	74	74	0.044	0.495	-0.972	1.061	0.929
	Mixed	15	861	2130	0.339	0.315	-0.307	0.985	0.291
	KPC-producing Enterobacteriaceae	6	264	478	-0.394	1.108	-2.664	1.875	0.725
Resistance	OXA-producing Enterobacteriaceae	1	20	9	reference	-	-	-	-
type	include non-carbapenemase-producing strains or multiple resistance types	24	1384	3266	-0.419	1.100	-2.672	1.835	0.707
	<100	14	387	588	-0.142	0.189	-0.529	0.246	0.460
Sample size	100-200	11	589	959	reference	-	-	-	-
	>200	6	692	2206	-0.119	0.187	-0.502	0.265	0.532
	2008-2010	3	184	177	-0.157	0.254	-0.677	0.364	0.541
Range of	2011-2013	6	275	379	-0.447	0.192	-0.840	-0.054	0.027
publication	2014-2016	14	482	1022	-0.343	0.175	-0.702	0.017	0.061
year	2017-2020	8	727	2175	reference	-	-	-	-
Sample size	-	31	1668	3753	0.00016	0.00023	-0.00031	0.00062	0.503
Year of publication	-	31	1668	3753	0.023	0.023	-0.024	0.070	0.316

Table S8 Univariate meta-regression of the potential variables on risk ratio of 28-30d mortality for patients with CRE versus CSE

7 8 Variables 10	Sub-groups	No. of studies	No. of CRE patients	No. of CSE patients	coefficient	standard error		nfidence rval	P value from meta-regression
11	Klebsiella pneumoniae	14	1076	2248	reference	-	-	-	-
2 3 Pathogens 4	Mixed Enterobacteriaceae pathogens	2	68	181	-0.370	0.464	-1.364	0.625	0.439
15	Escherichia. coli	1	17	34	-0.443	0.388	-1.275	0.389	0.272
6	America	3	99	484	-0.125	0.313	-0.796	0.545	0.695
¹⁷ Geographical	Europe	2	398	211	-0.146	0.299	-0.787	0.495	0.633
8 region 9	Asia	12	664	1768	reference	-	-	-	-
20 Economic	High income	7	657	962	-0.262	0.189	-0.664	0.141	0.186
21 22 status	Upper middle income	10	504	1501	reference	-	-	-	-
23 Infection	Bloodstream infections	12	929	1812	reference	-	-	-	-
24 25 type	Mixed	5	232	651	-0.117	0.244	-0.636	0.402	0.637
26 27	KPC-producing Enterobacteriaceae	2	115	421	-0.209	0.316	-0.882	0.465	0.519
Resistance	include								
30 type 31 32 33	non-carbapenemase-producing strains or multiple resistance types	15	1046	2042	reference	-	-	-	-
3 4	<100	6	167	290	-0.191	0.224	-0.672	0.290	0.408
35 Sample size	100-200	4	184	441	-0.064	0.322	-0.754	0.625	0.845
36 3 7	>200	7	810	1732	reference	-	-	-	-
8 Range of	2011-2013	4	164	329	-0.621	0.149	-0.939	-0.302	0.001
39 publication	2014-2016	4	468	349	-0.514	0.160	-0.856	-0.171	0.006
lo year	2017-2020	9	529	1785	reference	-	-	-	-
11 Sample size	-	17	1161	2463	0.00039	0.00067	-0.00104	0.00182	0.572
13 Year of 14 publication 15	-	17	1161	2463	0.093	0.025	0.038	0.147	0.002

KPC, Klebsiella pneumoniae carbapenemase

PRISMA Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	Title page
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2
INTRODUCTIO	N		
Rationale	3	Describe the rationale for the review in the context of what is already known.	4-5
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	5
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	6
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	7
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	6
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	6

Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	7
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	7-8
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	7-8
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	10
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	8-9
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis.	8-9
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	10
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	9
RESULTS	•		
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	10, Figure 1
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	10, Table 1, Table S1 in Supplementary Material Appendix 3

Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	11, Supplementary Material Appendix 4
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	14, Figure 2, Figure 3, Table 2
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	14, Figure 2, Figure 3, Table 2
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	17, Figure 4
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	14-17
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	19-22
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	22-23
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	22-23
FUNDING			
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	24