A benchmark of structural variation detection by long reads through a realistic simulated model.

Nicolas Dierckxsens^{1,2*}, Tong Li¹, Joris R. Vermeesch² and Zhi Xie^{1*}

¹ State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University,

Guangzhou, 510060, China ² Center for Human Genetics, University Hospital Leuven and KU Leuven, Leuven, Belgium

*To whom correspondence should be addressed. Email: <u>nicolasdierckxsens@hotmail.com</u>; <u>xiezhi@gmail.com</u>

1. Parameters for the structural variation callers

1. Sniffles (v1.0.11)

We aligned the simulated reads to GRCh38 using Minimap2 (v2.17-r941). We changed the parameters of Minimap2 according to the type of simulated reads, 'minimap2 -ax map-ont' corresponds to Nanopore simulated reads and 'minimap2 -ax map-pb' corresponds to PacBio simulated reads. The parameters of Sniffles is 'sniffles -n -1 -s 3 --genotype'.

2. SVIM (v1.3.1)

The same alignment as for Sniffles. We used SVIM to call structural variants with default parameters.

3. NanoSV (v1.2.4)

The same alignment as for Sniffles. We used NanoSV to call structural variants without 'depth_support' mode in its config file. Other parameters are default.

4. Picky (v0.2.a)

The same alignment as for Sniffles. We used the pipeline provided by the github page of Picky to call SVs (https://github.com/TheJacksonLaboratory/Picky/wiki/Using-an-Alternative-Aligner).

5. NanoVar (v1.3.8)

We changed the parameters of NanoVar according to the type of simulated reads, 'nanovar -I 50 -x ont' corresponds to Nanopore simulated reads, 'nanovar -I 50 -x pacbio-clr' corresponds to PacBio simulated reads and 'nanovar -I 50 -x pacbio-ccs' corresponds to PacBio HiFi simulated reads.

6. pbsv (v2.3.0)

We aligned simulated reads to GRCh38 using pbmm2 (v1.3.0) with default parameters. The parameters of pbsv is 'pbsv call -m 50'.

7. cuteSV (v1.0.10)

The same alignment as for Sniffles. The parameters are '--max_cluster_bias_INS 100 -- diff_ratio_merging_INS 0.3 – max_cluster_bias_DEL 100 – diff_ratio_merging_DEL 0.3 – genotype -s 3

2. Long read simulators benchmark

We compared the features of 9 different long read simulators. We tested the wall time and memory consumption for the simulation of 15x coverage Nanopore or PacBio (when no Nanopore available) long reads for the human chromosome 1 (GRCh38).

	Sim-it	PBSIM	Badread	PaSS	LongISLND	DeepSimulator	Simlord	NanoSim	SURVIVOR
с (I	ONT, PB (RS2,			PB (Sequel,	1	0.117		ONIT	ONT, PB
Error profiles	Sequel2, Sequel HiFi)	PB (CCS, RS)	ONT, PB (RS2)	RS2)	/	ONT	PB (CCS, RS2)	ONT	(Sequel)
Train model	1		✓	✓	✓	✓		✓	1
Accuracy adjustment	✓	✓	✓		✓		✓		
Read length adjustment	✓	✓	✓		✓	✓	✓	✓	
Transcriptome reads								✓	
Separate haplotypes	✓								
Quality scores		✓	✓	✓	✓	✓	✓		
Sequencing depth profile	×								 ✓
Wall time	35 min	5 min	938 min	12 min	31 min	1634 min	81 min	327 min	6 min
Virtual Memory	1,2 GB	0,25 GB	12,1 GB	2,5 GB	2,5 GB	14,8 GB	0,37 GB	0,43 GB	0,26 GB

Table S1 | Comparison of the features of each long read simulator and a system requirements benchmark.

3. Error profiles of long read simulators

The error profile of PBSIM (v1.0.4) is located in the installation folder and the relative path is 'PBSIM/data/model qc clr'. The error profile of Badread (v0.1.5) was set '--error model nanopore' and '-error model pacbio' for the respective simulations. The error profile of PaSS is located in the installation folder ('PaSS/E.coli/ecoli.config'). We used '-m pacbio_sequel -c PaSS/E.coli/ecoli.config' for the simulation of PaSS. LongISLND (v0.9.5) does not provide an error profile so we trained error profiles using the same datasets as with Sim-it (v1.0). DeepSimulator (v1.5) provides a Nanopore error profile in the installation folder. Simlord (v1.0.3) does not provide error profiles so we changed the parameters 'Probability for insertions, deletions, substitutions' according to the observed values of real PacBio datasets. The command is 'simlord -ps 0.0312 -pd 0.0309 -pi 0.0433'. We downloaded the NanoSim (v2.6.0) error profile named 'human NA12878 DNA FAB49712 albacore' from its website. We downloaded the SURVIVOR (v1.0.7) profile 'NA12878_nano_error_profile_bwa.txt.zip' error named and 'HG002 Pac error profile bwa.txt.zip' from its website.

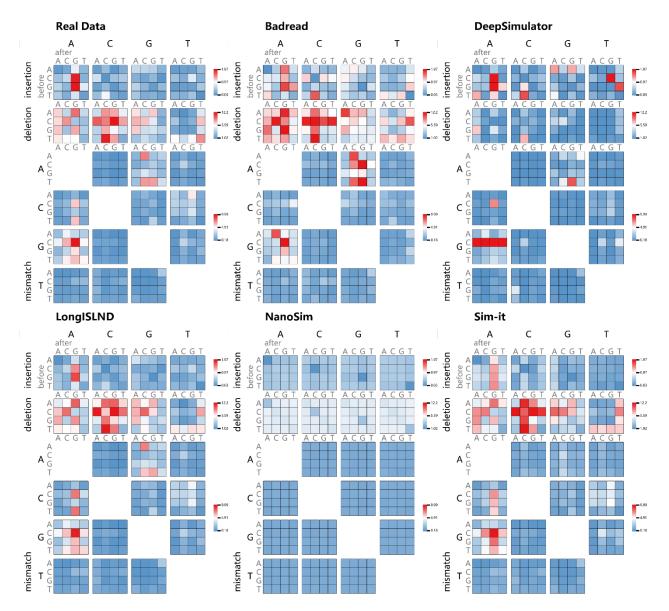


Figure S1 | Error profiles of simulated Nanopore reads from 5 different long read simulators.

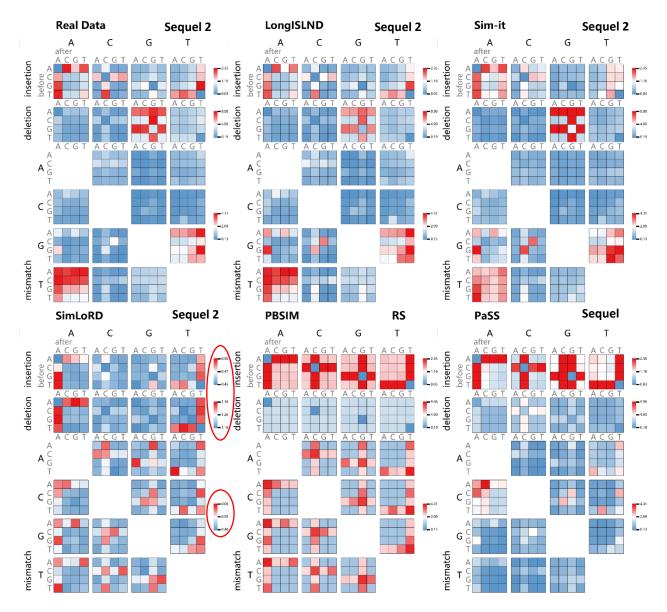


Figure S2 | Error profiles of simulated PacBio reads from 5 different long read simulators. The error rate for Simlord is much lower compared to the real data, we therefore adjusted the ratios to visualize the error profile.

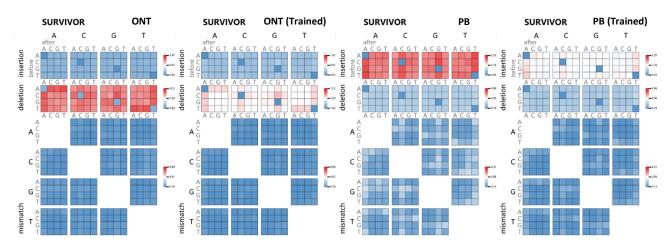


Figure S3 | Error profiles of simulated ONT and PacBio reads from the SURVIVOR simulator. For both ONT and PacBio, we used both the provided error profile and a trained error profile from the data sets we used to train Sim-it.

	Match rate	Insertion rate	Deletion rate	Substitution rate	Totel error rate	Average length
	(%)	(%)	(%)	(%)	(%)	(bp)
Real data	88,21	1,95	5,62	4,22	11,79	18.269
Sim-it	87,63	2,07	5,83	4,47	12,37	17.785
Badread	86,84	2,12	6,70	4,34	13,16	14.222
LongISLND	88,15	1,81	5,73	4,31	11,85	9.129
DeepSimulator	93,43	2,20	1,79	2,58	6,57	7.986
SURVIVOR	88,51	1,32	8,94	1,23	11,49	5.639
NanoSim	88,70	2,60	4,78	3,92	11,30	13.102

Table S2 | Statistics of the simulated reads for Nanopore for chromosome 1 of GRCh38.

Table S3 | Statistics of the simulated reads of PacBio Sequel II for E. coli K12 substrain MG1655.

	Match rate	Insertion rate	Deletion rate	Substitution rate	Totel error rate	Average length
	(%)	(%)	(%)	(%)	(%)	(bp)
Real data	89,50	4,29	3,09	3,12	10,50	11.478
Sim-it	89,06	4,29	3,00	3,65	10,94	11.839
PBSIM	82,02	9,37	3,02	5,59	17,98	3.035
Badread	87,25	3,67	5,34	3,74	12,75	14.939
PaSS	86,30	8,69	2,27	2,74	13,70	9.294
LongISLND	89,91	3,88	2,64	3,57	10,09	10.100
Simlord	95,52	1,76	1,11	1,61	4,48	8.155
SURVIVOR	89,31	6,57	2,48	1,64	10,69	6.435

Table S4 | Comparison of insertion and deletion lengths, and context-specific error patterns for mismatches and indels between simulated reads and the real sequencing data. Euclidean distances were calculated to compare simulated data for different simulators and real sequencing data. For each column and each dataset a color heatmap was adopted with blue indicating the most accurate caller.

		Mismatch patterns	Deletion patterns	Insertion patterns	Deletion lengths	Insertion lengths
	Methods	Euclidean distance	Euclidean distance	Euclidean distance	Euclidean distance	Euclidean distance
	Sim-it	11.82	9.02	1.8	137.54	37.04
Nananara (0,4,1)	Badread	15.11	13.35	1.92	497.99	337.3
Nanopore (9.4.1) chromosome 1 of	LongISLND	2.92	5.97	0.72	939.08	44.26
GRCh38	DeepSimulator	24.5	34.31	6.48	973.54	107.58
UNCH56	SURVIVOR	28.73	35.51	2.67	2574.67	143.59
	NanoSim	23.8	23.5	2.68	326.32	337.3 44.26 107.58
	Sim-it	8.2	12.43	3.25	303.76	36.87
	PBSIM	20.04	20.5	12	101.3	2398.47
PacBio Sequel II	Badread	16.69	32.78	3.15	852.44	299.44
E. coli K12 substrain	PaSS	16.39	22.1	9.77	551.74	1560.25
MG1655	LongISLND	4.04	5.39	1.06	180.57	147.26
	Simlord	15.33	25.64	5.82	1005.05	780.34
	SURVIVOR	14.88	20.37	7.73	279.73	1939.52

Table S5 | System requirements for each of the 6 tested SV callers. Each tool was used on the simulated dataset of Nanopore with 20x coverage and the GIAB dataset. SVIM cannot be run with multiple threads. Other SV callers are run with 24 threads

		Sniffles	cuteSV	pbsv	NanoVar	NanoSV	SVIM	combiSV	SURVIVOR
ONT simulted (20x)	Runtime (min)	64.0	5.0	172.0	62.0	66.0	31.0	<1	<1
Simu (2(Peak memory (GB)	3.3	15.6	13,3	4.0	8.5	1.0	<1	<1
ONT GIAB (45x)	Runtime (min)	288.0	54.0	201.0	169.0	2913.0	199.0	2.0	<1
S S F	Peak memory (GB)	10.9	23.1	65.4	53.2	39.9	2.8	<1	<1

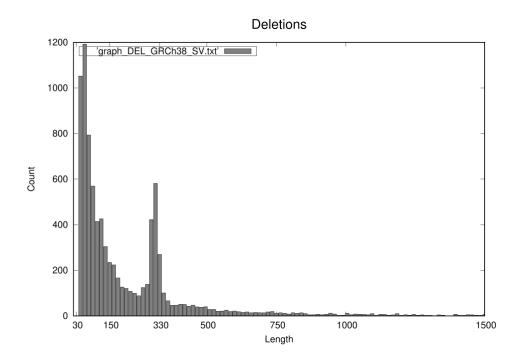
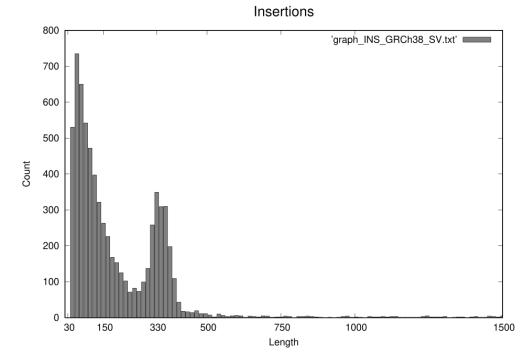



Figure S4 | Graphical output of the deletion length distribution from the structural variation simulation of the 24,600 SVs derived from sample NA19240 of dbVAR nstd152.

Figure S5 | Graphical output of the insertion length distribution from the structural variation simulation of the 24,600 SVs derived from sample NA19240 of dbVAR nstd152.

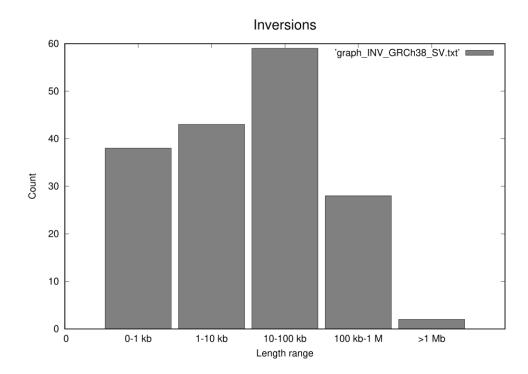


Figure S6 | Graphical output of the inversion length distribution from the structural variation simulation of the 24,600 SVs derived from sample NA19240 of dbVAR nstd152.

Table S6 | Comparison between combiSV and SURVIVOR for 9 combinations of three SV callers on a simulated Nanopore dataset of 20x and the GIAB reference dataset (Nanopore). The highest scores between combiSV and SURVIVOR are indicated in grey.

			cuteSV Sniffles NanoSV	cuteSV Sniffles NanoVar	cuteSV Sniffles SVIM	cuteSV pbsv NanoSV	cuteSV pbsv NanoVar	cuteSV pbsv SVIM	cuteSV pbsv Sniffles	cuteSV NanoSV SVIM	SVIM NanoSV NanoVar
		Recall	81.3%	80.7%	80.6%	79.7%	79.4%	79.8%	80.4%	79.3%	80.1%
		Precision	98.0%	98.6%	98.4%	98.7%	98.8%	98.7%	98.5%	98.7%	97.5%
	-	F-score	88.9%	88.8%	88. 6 %	88.2%	88.0%	88.2%	88.6%	87.9%	87.9%
	combiSV	Perfect matches	8.0%	7.9%	8.0%	31.6%	31.6%	31.6%	31.7%	8.0%	3.6%
(in the second s	qu	Position score	85.2%	85.2%	85.2%	88.0%	88.0%	88.1%	88.6%	84.7%	85.4%
ő	l õ	Length score	87.9%	87.9%	87.9%	91.7%	91.8%	91.8%	92.0%	87.9%	87.4%
g	0	Type score	92.7%	93.8%	93.8%	94.2%	94.3%	94.3%	93.7%	94.4%	94.2%
aŭ		Genotype score	95.2%	94.0%	94.7%	94.9%	95.2%	95.2%	95.3%	95.8%	95.1%
Simulation (Nanopore)		Total score	72.6%	72.0%	72.0%	71.8%	71.7%	71.9%	72.5%	69.9%	69.6%
S		Recall	79.3%	75.2%	77.8%	77.9%	75.7%	77.9%	72.0%	78.5%	78.7%
atic		Precision	97.9%	98.4%	97.7%	98.4%	98.8%	97.8%	98.4%	97.5%	97.7%
ñ	R	F-score	87.6%	85.2%	86.6%	87.0%	85.7%	86.7%	83.2%	87.0%	87.1%
<u>.</u>	SURVIVOR	Perfect matches	6.0%	4.9%	5.3%	6.0%	5.0%	5.4%	18.6%	0.4%	2.8%
S	5	Position score	81.2%	78.5%	78.6%	80.4%	78.3%	78.4%	88.0%	85.0%	85.0%
	Ř	Length score	86.7%	88.6%	86.8%	87.5%	89.7%	88.2%	88.4%	86.2%	87.4%
	S	Type score	79.9%	94.6%	94.2%	81.0%	94.3%	94.2%	93.6%	49.8%	50.4%
		Genotype score	80.7%	92.6%	93.2%	82.3%	94.6%	94.5%	92.5%	51.2%	51.8%
		Total score	63.3%	63.8%	65.3%	62.9%	65.0%	65.8%	63.7%	54.1%	54.8%
		Recall	93.5%	93.6%	93.6%	94.4%	95.1%	95.4%	95.4%	93.8%	85.0%
		Precision	93.9%	93.6%	93.3%	92.8%	92.1%	91.6%	92.7%	90.1%	91.7%
	>	F-score	93.7%	93.6%	93.5%	93.6%	93.6%	93.4%	94.0%	91.9%	88.2%
	combiSV	Perfect matches	0.4%	0.4%	0.4%	25.6%	25.4%	25.4%	25.4%	6.6%	5.2%
	d d	Position score	66.3%	66.2%	66.2%	72.7%	72.3%	72.3%	72.3%	66.3%	70.1%
â	b b	Length score	79.7%	79.7%	79.7%	86.6%	86.2%	86.0%	85.5%	79.3%	80.7%
ore	Ŭ	Type score	98.8%	98.7%	98.8%	99.2%	98.7%	98.7%	98.7%	98.7%	95.6%
ð		Genotype score	97.4%	91.7%	97.1%	97.2%	96.0%	96.4%	96.9%	94.1%	92.5%
(Nanopore)		Total score	70.3%	69.0%	69.7%	73.6%	72.8%	72.4%	73.7%	65.6%	61.8%
2		Recall	80.9%	91.6%	93.8%	81.3%	91.0%	94.2%	93.5%	93.8%	90.8%
B		Precision	94.1%	92.6%	77.4%	95.3%	92.9%	77.8%	93.2%	78.1%	90.4%
GIAB	Ľ	F-score	87.0%	92.1%	84.8%	87.8%	92.0%	85.2%	93.3%	85.2%	90.6%
0	SURVIVOR	Perfect matches	2.9%	1.7%	1.8%	2.6%	1.6%	1.8%	2.3%	1.7%	1.0%
	1	Position score	64.6%	60.0%	57.2%	64.6%	60.7%	57.4%	60.1%	58.6%	60.8%
	R	Length score	79.5%	81.5%	78.5%	81.9%	83.1%	80.8%	82.7%	78.3%	79.5%
	S	Type score	97.9%	97.9%	98.6%	98.6%	94.6%	98.8%	98.7%	98.5%	98.0%
		Genotype score	86.6%	77.1%	79.8%	90.8%	90.1%	91.0%	88.4%	89.1%	84.7%
		Total score	58.6%	61.7%	42.3%	61.1%	63.9%	45.7%	66.1%	45.5%	60.0%

4. Complex substitutions in NA19240

The recall of complex substitutions (CSUB) are significantly higher for the real PacBio dataset (60%) of NA19240 than for our simulated datasets (1-20%). Because we expected a drop in recall we examined the alignment of 27 CSUBs manually with IGV. We selected only homozygous CSUBs to simplify the interpretation of the alignments. CSUBs were not selected on any other criteria, we selected 12 random homozygous CSUBs from chromosome 1 and 15 random homozygous CSUBs of chromosome 2. For the simulated CSUBs, the length of the deleted sequences were always the same as the length of the inserted sequences. This is not necessarily the case for the real CSUBs, which could partially explain the discrepancy between the recall values and different alignment patterns. Nevertheless, several of the CSUBs we examined were in fact deletions or insertions that were incorrectly categorized as a CSUB. From only examining the alignments, we could only confirm one CSUB out of the 27 potential CSUBs as a true CSUB. For 6 presumed CSUBs, we aligned and inspected several individual PacBio reads separately. When the alignment does not show any SV at the given position, it also possible that called position was inaccurate. For each of the screenshots of IGV, the top alignment is the simulation and the bottom the true dataset of NA19240.

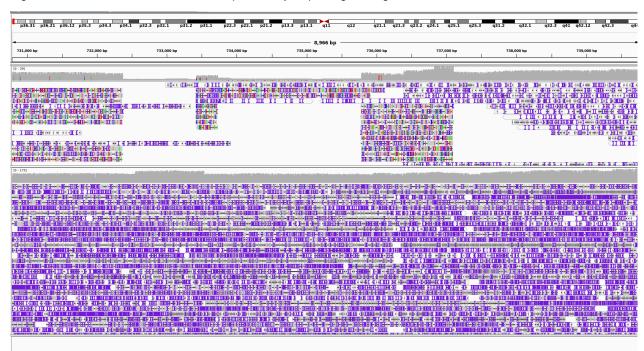


Figure 7: We did not observe a SV at this position by inspecting the alignments.

Figure S7 | CSUB chromosome 1, position 732377, length 3402 bp

Figure 8: This is the only alignment that visually resembles a theoretical CSUB. SV callset 'nstd152' called 3 CSUBs of 61 bp within a region of 400 bp. This region is a tandem repeat region and when we individually aligned several PacBio reads, we found that there are two different haplotypes. Both haplotypes have a shorter tandem repeat region compared to the reference and for one haplotype we also observed an insertion of around 100 bp and can there be categorized as a heterozygous CSUB.

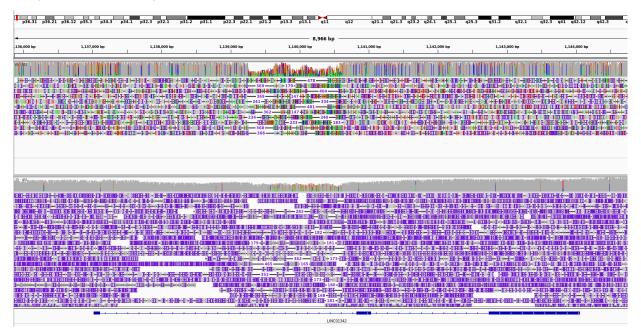
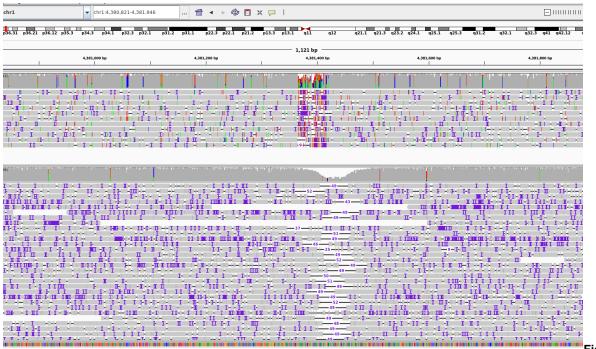



Figure S8 | CSUB chromosome 1, position 1140181, length 61 bp

Figure 9 & 10: This SV is a confirmed deletion, as can be seen in the overall alignment and the individual PacBio alignments.

S9 | CSUB chromosome 1, position 4381366, length 51 bp.

Sbjct 2376 Å-TGTAAGGTTCTTTCTATTTTACATAAGTGTTGGCCAGT-GAGAA-TAAAGA-AGAGCG 2431 Query 181 GTCC-TGGCTTCTGCAAGGTGAACCTLAALTATTGGGGGAACCCATCCCAAA-ATTCAA TGGCTTCTGCAAGGTGAACTCTA-ACTATTGGGGGGAACCCATCCCCAATATTTCAATGTA 239 TGGCTTCTGCAAGGTGACCTCTATACTATTGGGGGGAACCCATCC--AATATT-CAA-GTA 11040 Sbjct 3639 Query 293 Sbjct 10985 TAAAAAGAGAGGAATT - - ACA - CTGGGCCGCTGGGTGGTGACATCACATATTGGTAGTGA Query 236 295 3755 Sbjct 2432 2488 Query Sbjct 11041 Sbjct 11093 CC-ATGATGCCCACCTGAGCCTCAAACCAGCACGTTTTATTAAGGTTTGAAAAGGGGA CCCATGATGCCCACCTG-GCCTCAAACCAGCACCGTTTTATTAAGGGTTTGAAAAGGGA Query 351 Query 300 AGAGGAATTTTACAGCTGGGCCGCTGGGGGGGAC--ATCACATATTGGTAGGA-CCATGA AGAGAA--TTTACAGCTGG-CCGCTGGGGGGGGACCCAACAATATTG-TAGGAACCATGA 356 296 353 3814 AAAGAGAGGAATTTTACAGCTGGGCCGCTGGGGGGTGACATCACATATTGGTAGGA--CCA AAAGAGGGAATTTTACAGCTGGGCCGCTGGGGGTGACATCACATTTGGTAGGACTCCA Sbjct 2489 2547 Sbjct 11094 111/0 Sbjct 3756 Query 410 GAGTA- GGTACAAAGATCACAT 468 354 354 TGATGCCCACCTGAGCCTCAAACCAGCACG--TTTTATTAGGGGTTTGAAAGGGGAGG 3815 tGATG-CCACATGAG-CTCAAACCAGCACGTTTTTTTTTATAGGG-TTGAAAG-GGGAGG 411 Query Sbjct 2548 GGG-ATGTAAGCACAGGGAGTACGGTACAAAGATCACATGCTTCAAATGGCAAAAAGCAG Query 2606 Sbjct Sbjct 11150 11206 AACTACTGATAAGGATCCAGCAAAGATCACAAGGCAAAAGGGCAAAAGCAGAACTACTGAT AACTACTGATAAGGCACCAGCAAAGATCACAAGGCAAAAGGGCAAAAGCAGAACTA-TGAT Query 469 528
 Query
 417
 ТААССАСАССОСОТОСТАСАЛАСТАСТСА
 476

 Sbjct
 11207
 ТААССАСАСС-АСТАС.
 12007
 412 467 Query 412 GGATGTAAGCACA-GGGAGTAGGTAGAAGATCACATGCTTC--AAATGGC-AAAAAGCA Sbjct 3871 GGATGTAAGCACATGGGAGTA-GTACAAAGATCACATGCTTCAAAAATGGCAAAAAAGCA Sbict 2607 2665 3929 Ouery 529 AAGGGTCCAGCAAAGATCACAAGGCAAAAGGGCAAAAGCAGAACTACTGATAAGGGTCTAT Sbjct 2666 MGGG TCCAT 588 468 GA-ACTACTGATA-AGGATCCAGCAAAGATCACAAGGCAAAGGGCAAAAGGCAGAACTACT 3938 GACACTACTGATATAGGATCCAGCAAGAATCACAAGGCGAAAGGGCGAAAAGGCGGAAAAGGCGGAAAAGGCGGAAAAGGCGGAAAAGGCGGAAAAGGCGGAAAAGG Query 477 ATAAGGATCCAGCAAAGATCACAAGGCAAAAGGCAAAAGCAGAACTA-CTGATAAGGGTC Sbjct 11264 ATAACGATCCAGCAAAGATCACAA-CCAAAGGCAAAA-GAGGACTATCTGATAAGGG--535 Sbjct 2675 ATAACGATCACCAAAGGCAAAAGGGCAAAAGCAGAACTACTGATAAGGGTCTATGTTCA-G CAGCAAAGATCACCAAGGCAAAAGGGCAAAAGCAGAACTACTGATAAGGGTCTATGTTCA-G TCATGTTCACG 11330 11318 Query 589 GTTCAGCGGTGCACGCATTGTCTTGATAAACA--TCTTAAACAACAGAAAACAGGGTTTG Sbjct 2676 GTTCAGC-GTGCACGTATTGTCTTGATAAACATGTCTTAAACAACAGAA---ACGGTTTG Query 536 Query 526 GATAAGGGTCCAGCAAAGATCACAAGGCAAAAGGGCAAAAGCAGAACTACTGATAAGGGTC 585 3998 646 Sbjct 11319 Sbjct 3990 2731 643 Query 647 AGAGCAGAGAACCAACTGGTCTGACCACAAATTTACCAG-GGCAGAGATTTCCCCCACTC Sbjet 2732 AGAGCAGAGAACCAACTGGT-TGACCACAAATTACGCAGTGGTGGGGATTTCCCCCACTC Query 595 653 Query CGGTGCACGCATTGTCTTGATAAACATCTTAAACAACAGGAAAACAGGGTTTGAGAGCA-G 653 CGG-CCACTTATTGTCTTGATAAACATC-TAAACAACAACAACAGGGTTTGAGAGCATG 11388 705 Sbict 11331 Sbjct 3999 4058 2796 Query 654 AGAACCAACTGGTCTGACCACAAATTTACCAGGGCAGAGATTTCCCCCCACTCTAATAAGC AG-ACCAACT-GTCTGA-CACAAATT--CCAGGG-TGAGA-TTCCCCCACTCTAATAAGC 713 11441 Query 644 TTGAGAGCAGGAACCAACTGGTCTGACCACAAATTTACCAGGGCAGAGATTTCCCCCCAC 703 Query 706 TAATAAGCCTGAGGG-TACTGCAGGAGACCAGGGTGTATCAGTCCTTATCTCAACTG-CA TAATAAGCCTGAGGGTTACTG-AGGAGACCAGGGTGTATCAGTCCTTA-CTCAACTGCCA Sbjct 11389 Sbjct 4059 Sbjct 2791 2848 Query 714 771 Query 784 762 Query 714 CTGAGGGTACTGCAGGAGACCAG-GGTGT-ATCAGTCCTTATCTCAACTGCATAAGACAG Sbjct 11442 CTGAAGGTACTCCAGGAGACCAGAGGTGTAATCA-TCCTTATCTCAAC-CCAT-AGACAG TCTAAT-AAGCCTGAGGGTACTGCAGGAGACCAGGGTGTATCAGTCCTTATCTCAACTGC 762 TCTAATAAAGCCTGAGGGTA-TGCAGGAGACCA-GGTGTATAAGTCCTTATCTCACCTCC 4174 Query 764 TAAGACAGACATTCCCAGAGTGG-CCATTTATAGACCTCCCCCGAGGAACACATTCCTTT Sbjct 2849 TAAGACAGACAT-CCAGAGTGGCCCCAATTATAGACCTCCCCGAGGAACACATTCC-TT 822 11498 Sbict 4117 Query 772 ACATTCCCAGAGTGGCCATTTATAGACCTCCCCCGAGGAACACATTCCTTTCCCAGGGTA 831 Sbjct 11499 A-ACTCCCAGAG-GCCCA-TTATAGACCT-CCCCGAGGAACACATTCCTTTCCC-TAGTA 11553 ATAAGACAGACATTCCCCAGAGTGGCCATTTATAGACCTCCCCCGAGGAAC-ACATTCCTT 821 ATAAGACAGACATT-CCAGAGT-GCCATTTATAGACCCCCCCCGAGGAACAACATTCCTT 4233 2985 Query Sbjct Query 823 CCCAGGGTATTAATATTTATTATTCATTGCTAGG-AAAAAAATTTAGGG--ATATCTCT 879 Sbjct 2986 CCCAGGGTATTAATA-TTTATTATTCATTGCTAGGAAAAAAAAATTTAGGGCATTATCTC- 2963 4175 Query Query 832 TTAATATTTTATTATTCATTGCTAGGAAAAGAATTTAGGGATATCTCTCCTACTTGCACG 891 Sbjct 11554 ++-ATATATTA+-CATTGCTA-GAAAAGAA-++AGTGATATCTCTCCTACTTGCACA 11609 Query 822 T-CCCAGGGTATTAATATTTTATT-ATTCATTGCTAGGAAAAGAATTTAGGGATA-TCTC 878 Sbjct 4233 TCCCCAGGGTATTAATATTTATTAATTCATTCATGCTAGGAAAAGAA--TAGGGATAATGCTC 4290
 Query
 880
 CCTACTTGCACGTCCATTTATAGGCTCTTCTGCAAGAAAAAATAT
 925

 Sbjct
 2964
 CCTACTTGCACGTCCATTTATAGGCTCTTCTGCAAGAAAAAATAT
 3609
 Query 892 TCCATTTATAGGCTC-TCTGCAAGAAGAAAA 921 Sbjct 11610 TCCA-TTATA-GCTCTTCTGCAAGAAGAAAA 11638 QUERY 879 TECTACTTGCACGT-CCATTTATAGGCTCTCTGCAAGAAGAAAAAA 923 Sbjet 4291 TECTAC-TGCACATGCCATTTATAGC-CTCTGCAA-AAGAAAAAA 4333

Figure S10 | Individual alignment of three PacBio reads for 'CSUB chromosome 1, position 4381366, length 51 bp'.

Figure

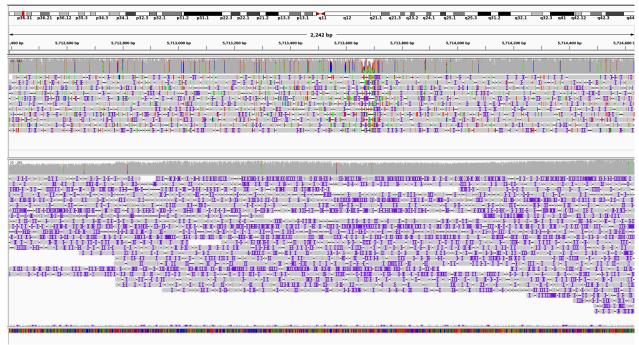


Figure 11: Several reads show insertions around this position.

Figure S11 | CSUB chromosome 1, position 5713658, length 62 bp

p36.31 p36.21 p36.12 p35.3 p34.3 p34.1	p32.3 p32.1 p31.2	p31.1 p22.3 p22.1 p21.2	p13.3 p13.1 q11	q12 q21.1 q21.3	q23.2 q24.1 q25.1 q25.3	q31.2 q32.1 q32.3	q41 q42.12 q42.3 q44
4			4,483 bp				•
7,036,000 bp		7,037,000 bp		7,038,000 bp	I	7,039,000 bp	:
18:1-210 12:41221111120+35221 111120121211111-31111-31111-31-30- 30:3001121121121311111111111111111111111		1310-3++ 1005-01 + 0-1-05-1 FULLAL 1000-1 + 0-1-05-1 FULLAL 1000-1 + 0-1-05-1 FULLAL 1000-1 + + 0-1-05-1 FULLAL FULLAL + + + 0-1-05-1 FULLAL FULLAL +	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 10-41-1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 10-41-1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 10-1 - 1 - 1 - 1 - 1 - 4 - 1 - 1 - 1 1-1 - 1 - 1 - 1 - 1 - 1 - 1	H H	(+ · · · · · 10) · · · · · 10) 80 3() · · · · · · · · · · · · · · · · · · ·	80-14 II 80-410 10 10 10 140 400 T-2 06-14 200-2000 00 0 140-204 - 061 100 140 - 0 - 0 8000 141-46 - 04000 00084-80 000 0 140-46 10000 00084-80 000 0 140-46 10000 0 140-14000 0 140-14000000000000000000000000000000000	41 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3
					HIGH THICH HIGH FITH TO BE H		
					$\begin{array}{cccccccccccccccccccccccccccccccccccc$		

Figure 12 & 13: We did not observe a SV at either position by inspecting the alignments.

Figure S12 | CSUB chromosome 1, position 7036659, length 119 bp

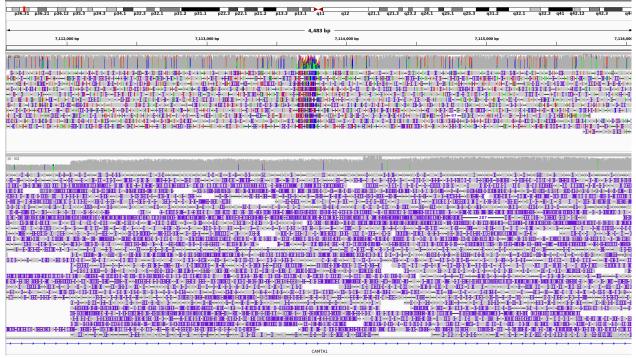


Figure S13 | CSUB chromosome 1, position 7113644, length 165 bp

Figure 14 & 15: This SV is a confirmed insertion, as can be seen in the overall alignment and the individual PacBio alignments.

p36.31 p36.21 p36.12 p35.3 p34.3 p34.1 p32.3 p32.1 p31.2 p31.1 p22.3 p22.1 p21.2 p13.3 p13.1 q11 q12 q21.1 q21.3 q23.2 q24.1 q25.1 q25.3 q31.2 q

Figure S14 | CSUB chromosome 1, position 7856583, length 62 bp

Overy 197 CGATAMAT ATTIGTTGANTAGTAG. GTGGCGACAGG.CTATTGGG.GTTTTET 219 Sbjtt 8290 CTATATAMATTHTTGANTAGTAG.TGGCGACAGG.CTATTGGG.GTTTTET 219 Sbjtt 8290 TTA GGEGMAGACGGT GACAMATAMAMETTTA ATTIGTA GACAGGA Sbjtt 8190 TTA GGEGMAGACGGT GACAMATAMAMETTTA ATTIGTA GACAGGA Sbjtt 8190 TTATGGGTGAGGATAGACACACAGATACATAGCTTGAGGATGATTTAT Sbjtt 8190 THITTGGATGGGGGTAMAGACACAGATACATAGCTTGAGGAGGATAGTTTAT Sbjtt 8190 THITTGGATGGGGGGTAMAGACACAGATACATAGCTTGAGGAGGATTAMAMETTTAT Sbjtt 8190 THITTGGATGGGGGGATAMAGACACAGATACATAGCTTGAGGAGGATACATAGCTTGAGGAGGAT	Overy 174 TATTETTAG ATACATEGATICAC ATACATEGATICAC <th>Overy 218 Genery 128 Genery 1</th>	Overy 218 Genery 128 Genery 1
Design in the second	311 20:10 40:70 (00) 50:71 (00) PumPa 0007 50:2 70:400 (00) 50:70 (00) PumPa 50:900 (00)	Name: 2:8210 0.022 View March Pressues March Press Press Press

Figure S15 | Individual alignment of three PacBio reads for 'CSUB chromosome 1, position 7856583, length 62 bp'.

Figure 16 & 17: This SV is a confirmed deletion, as can be seen in the overall alignment and the individual PacBio alignments. By comparing individual PacBio reads with the reference we concluded that the first duplicated sequence was deleted in the NA19240 (first yellow sequence in Figure 13).

Figure S16 | CSUB chromosome 1, position 8668948, length 76 bp

Figure S17 Individual alignment of three PacBio reads for 'CSUB chromosome 1, position 8668948, length 76 bp'.
READ3 CTCCAACTCTGTTGTGTGTGTGTGTGTGTGTGTGTGTGTG
READ2 ACTCAACTCTGGTTGTGTGTGTGTGTGTGTGTGTGTGTGT
READ1 ACTCAACTITIGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTG
REFERENCE ACTAAACTCT <mark>GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTG</mark>

Figure 18 & 19: This SV is a confirmed insertion, as can be seen in the overall alignment and the individual PacBio alignments. Although it seems this insertion was heterozygous, as half of the reads do not show any inserted sequence.



Figure S18 | CSUB chromosome 1, position 12565675, length 719 bp

Query	1491		1546	Query	1450	TGTCACTCTTTTGCATGGCCAAGCTAAGGAC-AGAATTAGCTCTCCACGCTCAC-T	1505
Sbjct	1185		1243	Sbjct	2219	tgtcacctcaatgcaggcaagctaagaactagaataa-ctctccacgccgtcacat	2273
Query	1547		1604	Query	1506	CTCAAGGCTCTCT-GAGTGCTAAACCATCTGGGAGAGGG-ACCAGAATGGGGCCTCCTGG	1563
Sbjct			1302	Sbict	2274		2330
Query	1605	GATCCAGAAAAAGACTGAAAAGCTCCTGGCTGAGAGGGGGGGG	1663	-			
Sbjct	1303	ĠĂŦĊĊĂĠ-ĂĂĂĂĠĂĊŦĠ-ĂĂĠĊŦĊĊ-ĠĠĊŦĠĂĠĂĠĠĠĠĠĠĠĠĠĠ	1359	Query	1564	GATTCTGCCCAGTGCTTTTTCTTTTGGTTCCTCTGGGAAAAGATCCAGAAAAAGACTGAA	1623
Query	1664	CCTGCCCT - TCTG AGCCCCTGGGGCTCTGGGACGCCAGGGTCCCACTCTGCTA	1715	Sbjct	2331	ĠĂŦĊŦŦĠĊĊĊĂĠŦĠĊŦŦŦŦĊĊŦŦŦŦŦŦĠŦŦĊĊŦĊŦĠĠŦĂĂĂĂĠĂŦĊĊĂĠĂĂĂĂŦŦŦĊĠĂĂ	2382
Sbjct	1360	ĊĊŦĠĊĊAŦĠĊĊŦĠŦĊAĠAAAĂĠĊĊĊĠĊĠĠĠĊĊŦĊŦĠĠĠĂŀĠĊĊĂAĠĠĠŦĊĊĂĊŦĊŦĠĊŦĂ	1418	Query	1624	AGCTCCTGGCTGAGAGGGGGGGGGGGGGGGGGGGGGGGG	1683
Query	1716		1774	Sbjct	2383	A-CTCACTGCTGAGAGGGGGGGGGGGGGGGGGGGGGGGGG	2436
Sbjct	1419	ACACAGCGATTGGTTCTCGAATGCAACTGGGGGGGGGCTGGCGGGGCTTG-AACTCCCAGA	1477	Query	1684	- GGGCTCTGGGACGC - CAGGGTCCCACTCTGCTAACA CAGCGATTGGTTCTCAATGCA	1739
Query	1775	GTCCAATCAGACTTTAGGGATCCTTGTTGCACTCC 1809		Sbict	2437	TGGGCTCTGA-ACGCTCAGCGTCCCA-TC-GCTAACATCCAGCGAT-GTCTCTCAAT-CA	2491
Sbjct	1478	GTCCAATCAGCTTAGGGATCCTTGTTGCACTCC 1510		-			1799
		\smile		Query	1740		
Range 2	: 2237 to	4860 Graphics Vext Match A Previous Match	First Match	Sbjct	2492	ACTGGG-AGGGCCTGCGGGCGCAACTCGCA-AGTCGCATCAGACTTAGGATCCT-	2543
Score 3254 bit	12609)	Expect Identities Gaps Strand 0.0 2426/2669(91%) 170/2669(6%) Plus/Plus		Query	1800	GTTGCACTCCTTTGGGAA-GTCAAGGCAGAAGGGTTGCTTAAGCCAGGAATTCCAGACTA	1858
Query	1807		1864	Sbjct	2544	GTCGCAC-CCTTGGGAAACGTCAAGGCAGAAGG-TTGCTTAA-CCAGGAAT-CCAGACTA	2599
Sbjct			2296	Query	1859	GCCTGGGCAACATAGCGAGACCCTATCTTTACaaaaaaaTGATGAAGTGAGCCAGGCGTG	1918
Query	1865		1924	Sbjct	2600	GCCTGG-CAACATAGCGAGACCCTATCTT-ACAAAAAA-TGATGATGAGCCAGGCG	2652
Sbjct	2297	GCAACATAGCGAGACC-TATCTTACAAAAAAAAGAGTGAGCCAGGCGTGGTGGCA	2355	Query	1919	GTGGCACATGCCTGTAATCTCAGCTAC-TCGAGAGGCTGAGGTGGGAGGATTGCTTGAGC	1977
Query	1925		1983	Sbjct	2653	GTGCAACATGCC-GAACTCA-AGCTACATCGAAGCT-AGGTGGGAGATGCT-GACC	2704
Sbjct	2356	CATGCCTGTAATCTAAGCTACCCGAGAAGGCTGAGGTGGGAGGATTGCTTGAGCCTGGGA	2415	Query	1978	CTGGGAGGTGGAGGCTGCAGTGGCCATGATCGGGCCACTGCACTCCAGCCTGGG	2031
Query	1984		2041	-	2705		2750
Query Sbjct		GGTGGAGGCTGCAGTGGCCATGA - TCGGGCCACTGCAGTCCAGCCTGGGCAACAGAGTG -	2041 2475	Sbjct	2705		2759
		GGTGGAGGCTGCAGTGGCCATGA-TCGGGCCACTGCACTCCAGCCTGGGCAACAGAGTG- GGTGGAGGCTGCAGTGGCCATGAATCGGGCCCACTGCACTCCAGCTGGGCCAACAGAGTGC -AGGACCTAAATAAGTTTAGCGTGAGATGAACACTGACAGTTGCCTCTTTA-GGGCTC		Sbjct Query	2032	CAACAGAGTGAGGACCTAAATAAGTTTAGCGTGAGATGAACACTGACAGTTGCCTCTTTA	2091
Sbjct	2416	GGTGGAGGCTGCAGTGGCCATGA-TCGGGCCACTGCACTCCAGCCTGGGCAACAGAGTG- GGTGGAGGCGCAGTGGCCATGAATCGGGCCACTGCACTCCAGCTGGGCCAACAGAGTGG CAGGACCTAAATAAGTTTAGCGTGAGATGAACACTGACAGTGGCCCTTTTA-GGGCC	2475	Sbjct		CAACAGAGTGAGGACCTAAATAAGTTTAGCGTGAGATGAACACTGACAGTTGCCTCTTTA CAACAGAGTGAGACTAAATAAGTTTAGCGTGAGATGAACACTGACTTCCTCTCA-	2091 2813
Sbjct Query	2416 2042	GGTGGAGGCTGCAGTGGCCATGA-TCGGGCCACTGCACTCCAGCCTGGGCAACAGAGTG- GGTGGAGGCTGCAGTGGCCATGAATCGGGCCCACTGCAGCTGGGCCAACAGAGTG- AGGACCTAAATAAGTTTAGCGTGAGATGAACACTGACAGTTGCCTCTTTA-GGGCCT CAGGACCTAAGAGTAAGTT-AGCGTGAGATGAACAC-GACAGTTGCCTCTTGAGGCTGGAG TGC-TTAGCACCTCCTGTGCCCTCCCAAAAGTCACTGTGTCCTTGGGGCTTGCAGTTGGAA	2475 2097	Sbjct Query	2032	CAACAGAGTGAGGACCTAAATAAGTTTAGCGTGAGATGAACACTGACAGTTGCCTCTTTA CAACAGAGTGAGACTAAATAAGTTTAGCGTGAGATGAACACTGACTTCCTCTCA-	2091
Sbjct Query Sbjct	2416 2042 2476 2098	GGTGGAGGCTGCAGTGGCCCATGA-TCGGGCCACTGCACTCCAGCCTGGGCAACAGAGTG- GGTGGAGGCTGCAGTGGCCCATGAATCGGGCCACTGCACTCCAGCTGGGCCAACAGAGTGG -AGGACCTAAATAAGTTTAGCGTGAGATGAACACTGACAGTGGCCTCTTTA-GGGCTC CAGGACCTAAGAGTAAGTT-AGCGTGAGATGAACAC-GACAGTTGCCTCTTTA-GGGCT CAGGACCTAAGAGTAAGTT-AGCGTGAGATGAACAC-GACAGTTGCCTCTTGAGATTGGAA	2475 2097 2533	Sbjct Query Sbjct	2032 2760	CAACAGAGTGAAGGACCTAAATAAGTTTAGCGTGAGATGAACACTGACAGTTGCCTCTTTA CAACAGAGTGAGGACTAAATAAGTTTAGCGTGAGATGAACACTGACAGTGACCTCTTCA- GGGCT-CTGCTTAGCACCTCCTGTGCCCTC-CCAAAAGTCACTGTGCCCT	2091 2813

Figure 20: Unconfirmed SV.

Figure S20 | CSUB chromosome 1, position 13054543, length 1646 bp

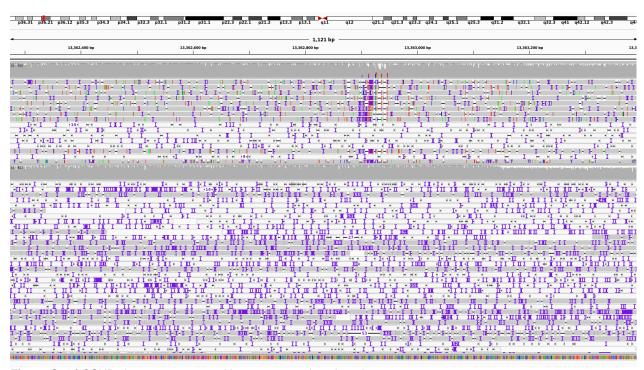


Figure 21: We observed an insertion, although this is a duplicated region which makes alignments less reliable.

Figure S21 | CSUB chromosome 1, position 13362897, length 53 bp

Figure 22: We observed an heterozygous insertion.

Figure S22 | CSUB chromosome 1, position 6935636, length 64 bp

Figure 23: We observed a deletion.

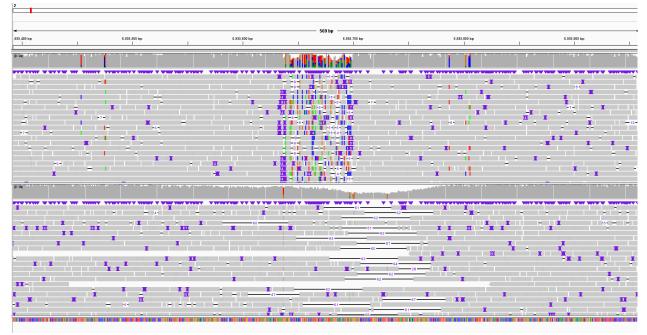


Figure S23 | CSUB chromosome 2, position 6935636, length 64 bp

Figure 24 - 26: We did not observe a SV at any of the positions by inspecting the alignments.



Figure S24 | CSUB chromosome 2, position 8730642, length 242 bp

Figure S25 | CSUB chromosome 2, position 10036422, length 225 bp

Figure S26 | CSUB chromosome 2, position 11235109, length 74 bp

Figure 27 & 28: This SV is a confirmed insertion, as can be seen in the overall alignment and the individual PacBio alignments.

Figure S27 | CSUB chromosome 2, position 14274478, length 895 bp.

Query 17927 Sbjct 519 Query 17933 Sbjct 531 Query 17944 Sbjct 689 Query 17956 Sbjct 745 Query 17956 Sbjct 803	 4 БАСНТЕЛСТА СЕЛАЛТС- ЛАСАЛСТНЕСКСКАЛАСЛАСТАТАВОВ 9. САЛАЛТАСТ - ССМОТАТОТТСАЛОГССКИВСКАТСАЛОГТСАЛО 9. САЛАЛТАСТ - ССМОТАТОТТСАЛОГССКИВСКАТСАЛОГТСАЛО 9. ССТАВССАЛАСЛАТАСТАТОТТСАЛОГССКИВСКАТСАЛОГТСАЛО 9. ССТАВССАЛАСЛАСТ - ССЛАТАЛАТАТИКСКИ СОВОВОВОТАЛАБОВССАЛО 9. ССТАВССАЛАС - ССЛАТАЛАТАТИКСКИ СОВОВОВОТАЛАБОВССАЛО 9. САСТИСТСТАТОТТСАЛО - ЛАСТСТА - ТТАВАТТОТСАЛОТАЛАЛАТСАТСТАЛО 9. САСТИАСТАТОТАТОТСАЛО - ЛАСТСТА - ТТАВАТТОТСАЛО - САСТИАТОТАЛО 9. САСТИАСТАТОТАТОТСАЛО - ЛАСТСТА - ТТАВАТТОТСАЛО - САСТИАТОТАЛО 9. САСТИАСТАТОТАЛО - ЛАСТСТА - ТТАВАТТОТСАЛО - САСТИАТОТАЛО 9. САСТИАСТАТОТАЛО - ЛАСТСА - ТТАВАТТОТСАЛО - САСТИАТОТАЛО 9. САСТИАСТАТОТАЛО - ЛАСТСА - ТТАВАТТОТСАЛО - САСТИАТОТАЛОСТСАТСАЛО 9. САСТИАСТАТОТАЛО - ЛАСТСА - ТТАВАТТОТСАЛО - ЛАСТОНАСТАЛО 9. САСТИАСТАТОТАЛО - ЛАСТСА - ТТАВАТТОТСАЛО - ЛАСТОЛО - САСТИАТОТАЛО 9. САСТИАСТАТАТАТАТАТОТАЛО - ЛАСТСА - ПАСТОНА - ПАЛАЛО - САСТИАТОТАЛО 9. САСТИАСТАТОТАЛО - ЛАСТСА - ТТАВАТТОТСАЛО - ЛАСТОЛО - ЛАСТОНА - САСТИАСТОВАТОТАЛО 9. САСТИАСТАТОТАЛО - ЛАСТСА - ТТАВАТОТТОЛО - ЛАСТОЛО - ЛАСТОРА - ЛАСТОРА	179330 576 179389 630 179448 688 179508 744 179566 802	Sbjct 75 Query 17 Sbjct 76 Query 17 Sbjct 76 Query 17 Sbjct 76 Query 17 Sbjct 77 Query 17 Sbjct 77 Sbjct 77	786	Hidtdallattatattactacdadtticked.akttatdcallattadalladdallacttickedla 768: 5 AGAGATACAT - ATGTGGAAAAATACT - CCAAGTATGTTGAAGTCCAAGACAAGGGCAGC 179: 6 AGAGATAACTCCATGTGGAAAAATACT - CCAAGTATGTTGAAGTCCAAGACAAGGGCAGC 766: 2 GAGAGATGAAGGTTGAAGGCTAGCCAGA - GGACAGCCCATGAA - ATAGTAAGCAAAGGGCAAC 766: 2 GAGAGATGAAGGTTGAAGGCTAGCCAGA - GGACAGCCCATGAA - ATAGTAAGCAAAGAGCAAAGTAAAAAAAT 772: 6 - GACATGAGGTTGAAGGCTAGCCAGGACAGGCCATGAAAATAGTAAGCAAAGAGCAAAAAAAA	98 9431 9489 96 9548 95
Range 6: 1717 to 8	271 Graphics Voxt Match Previous Match Expect Identities Gaps Strand	First Match		43 to 1079	10791 Graphics Vext Match A Previous Match & First M	Match
Score 7683 hits(8520)			Score	7010	Expect Identities Gaps Strand	
7683 bits(8520) Que r 17959 Sbj 1717	0.0 6153/6896(89%) 533/6896(7%) Plus/Plus	179649 1772	2490 bits(27 Query 17	79592	0.0 1762/1907(92%) 102/1907(5%) Plus/Plus 2 GAGGATGAAGACCTTATGATGATTCAGTTCAGTTCAGTT	
7683 bits(8520) Query 17959 Sbjct 1717 Query 17965 Sbjct 1773	0.0 e.1530080(0990) psiudPlas 2 AGGATGAAGACCTTTTATGATGATCAGTCC - CACTT-AATGAACACTAAATATATTTTCC JAGGATGAAGACCTTTTATGATGATCAGTCC - CACTT-AATGAACACTAAATATATTTTCC JAGGATGAA-GAC-THATGATCAGTCAGTCC - CACTT-AATGACACTAAATATATATATATATATATATATATATATA	1772 179707 1829	2490 bits(27 Query 17 Sbjct 89 Query 17	79592 943 79652	0.0 1762/1907(92%) 102/1907(5%) Phus/Phus 2 GAGGATGAAGACCTTTATGATGATTCAGTTCCACTTCAACTAAATATATTTTTCTC 179 2 GAGGATGAAGACCTTTATGATGATCAGTTCCACTTCAACTAAATAATATATTTTTCTC 899 2 TTCCtttttaatttttttaagttttATATGCACATATAATAGATGTGCTCCGTGATCCAAT 179	07 0711
7683 bits(9520) Query 17959 Sbjc 1717 Query 17965 Sbjct 1773 Query 17970 Sbjct 1830	0.0 eL3580898(99) psiupPus 2 AGGATGAAGACCTTTATGATGATCATTC.CACTT-AATGAACACTAAATATATTTTC 4 AGGATGAAGACCTTTATGATGATCATTCACTC.CACTT-AATGAACACTAAATATATTTTC 4 AGGATGAAGACCTTTATGATGATCATTCACTTCACHTAGATGACC.CACTA 4 AGGATGAAGACCTTTATGATGATCATTCACTTCACTCATATATAGATGTG-CTTCGTGAT 4 CC-VATGTGATATTTGATG-CAGGCATACAAAACTATA-GAATG-CTTCGTGAGTAT 4 CC-VATGTGATATTTGATG-CAGGCATACAAAACTATA-GAATG-CTTCGCAGATGTG 4 CC-VATGTGATATTTGATG-CAGGCATACAAAAACTATA-GAATG-TTTCAAGAATGTG 4 CC-VATGTGATATTTGATG-CAGGCATACAAAAACTATA-GAATG-TTTCAAGAATGTG 4 CC-VATGTGATATTTGATG-CAGGCATACAAAAACTATA-GAATG-TTTCAAGAATGTG 4 CC-VATGTGATATTTGATG-CAGGCATACAAAAACTATA-GAATGCTTTCAAGAATGTG 4 CC-VATGTGATATTTGATG-CAGGCATACAAAACTATA-GAATGCTTTCAAGAATGTG 4 CC-VATGTGATATTTGATG-CAGGCATACAAAACTATA-GAATGCTTTCAAGAATGTG	1772 179707	2490 bits(27 Query 17 Sbjct 89 Query 17 Sbjct 89 Query 17	79592 943 79652 998 79712	0.0 1762/1907(92%) 102/1907(5%) Plus/Plus 2 GAGGATGAAGACCTTTATGATGATTCAGTTCCACTTCATAACAACTAAATATATTTTTC 179 2 GAGGATGAAGACCTTTATGATGATCAGTTCACTTCACTT	97 9711 96 9770
7683 bite(0520) Quern 17959 Sbja 1717 Query 17965 Sbjct 1773 Query 17970 Sbjct 1830 Query 17976 Sbjct 1889 Query 17981	0.0 0.0 <td>1772 179707 1829 179761 1888 179818 1946 179874</td> <td>2490 bits(27 Query 17 Sbjct 89 Query 17 Sbjct 89 Query 17 Sbjct 96</td> <td>79592 943 79652 998 79712 057 79771</td> <td>0.0 1762/1907(92%) 102/1907(5%) Plus/Plus 2 GAGGATGAAGACCTTTATGATGATTCAGTTCACTTCACT</td> <td>07 0711 06 0770 .3 0828</td>	1772 179707 1829 179761 1888 179818 1946 179874	2490 bits(27 Query 17 Sbjct 89 Query 17 Sbjct 89 Query 17 Sbjct 96	79592 943 79652 998 79712 057 79771	0.0 1762/1907(92%) 102/1907(5%) Plus/Plus 2 GAGGATGAAGACCTTTATGATGATTCAGTTCACTTCACT	07 0711 06 0770 .3 0828
7683 bits(8520) Query 17959 Sbjc 1717 Query 17965 Sbjct 1773 Query 17970 Sbjct 1830 Query 17976 Sbjct 1889	0.0 0.0 <td>1772 179707 1829 179761 1888 179818 1946</td> <td>2490 bits(27 Query 17 Sbjct 89 Query 17 Sbjct 99 Query 17 Sbjct 91 Query 17 Sbjct 91 Query 17</td> <td>79592 943 79652 998 79712 057 79771</td> <td>0.0 1762/1907(92%) 102/1907(5%) Plus/Plus 2 GAGGATGAAGACCTTTATGATTCAGTTCAGTTCACTTCAGTAGACACTAAATATATTTTTCT 179 2 GAGGATGAAGACCTTTATGATGATTCAGTTCAGTTCACTTAATGAACACTAAATATATTTTTCT 179 2 GAGGATGAAGACCTTAATGATTCAGTTCACTTCACTTAATGAACACTAAATAATATTTTTCT 179 2 TTCCTTTATGATGATGATTGATTGATGCACATATAATAGATGTGCTTCGTGATGCATTGATGATCACAT 179 4 TTCCTTTTAAGTTCTAAGTAGAACATATAGAATGTTTCAAGATGTGCTTCGTGATCCAT 179 4 TTCCTTTTAAGTGCA-GGCATACAAAACTATAGAATGTTTCAAGAATGTTGCTGCTGTGATCACAT 179 905/2 GTGATATTTTGATGCA-GGCATACAAAACTATAGAATGTTTCAAGAATGTTGCTGCTGTGATGCAGCACACACA</td> <td>97 9711 96 9770 3 9828 93 9883</td>	1772 179707 1829 179761 1888 179818 1946	2490 bits(27 Query 17 Sbjct 89 Query 17 Sbjct 99 Query 17 Sbjct 91 Query 17 Sbjct 91 Query 17	79592 943 79652 998 79712 057 79771	0.0 1762/1907(92%) 102/1907(5%) Plus/Plus 2 GAGGATGAAGACCTTTATGATTCAGTTCAGTTCACTTCAGTAGACACTAAATATATTTTTCT 179 2 GAGGATGAAGACCTTTATGATGATTCAGTTCAGTTCACTTAATGAACACTAAATATATTTTTCT 179 2 GAGGATGAAGACCTTAATGATTCAGTTCACTTCACTTAATGAACACTAAATAATATTTTTCT 179 2 TTCCTTTATGATGATGATTGATTGATGCACATATAATAGATGTGCTTCGTGATGCATTGATGATCACAT 179 4 TTCCTTTTAAGTTCTAAGTAGAACATATAGAATGTTTCAAGATGTGCTTCGTGATCCAT 179 4 TTCCTTTTAAGTGCA-GGCATACAAAACTATAGAATGTTTCAAGAATGTTGCTGCTGTGATCACAT 179 905/2 GTGATATTTTGATGCA-GGCATACAAAACTATAGAATGTTTCAAGAATGTTGCTGCTGTGATGCAGCACACACA	97 9711 96 9770 3 9828 93 9883

Figure S28 | Individual alignment of two PacBio reads for 'CSUB chromosome 2, position 14274478, length 895 bp'.

Figure 29 : We did not observe a SV at this position by inspecting the alignments.

Figure S29 | CSUB chromosome 2, position 15485508, length 895 bp.

Figure 30 & 31: Insertions were observed across a tandem repeat region.

Figure S30 | CSUB chromosome 2, position 16395324, length 54 bp.

Figure S31 | CSUB chromosome 2, position 17963505, length 50 bp.

Figure 32: Insertions were observed across a repetitive region.

Figure S32 | CSUB chromosome 2, position 24264701, length 87 bp.

Figure 33 & 34 : We did not observe a SV at either position by inspecting the alignments.

Figure S33 | CSUB chromosome 2, position 45095843, length 110 bp.

Figure S34 | CSUB chromosome 2, position 52248513, length 225 bp.

Figure 35 & 36: Insertions were observed across a repetitive region.

Figure S35 | CSUB chromosome 2, position 55773706, length 50 bp.

Figure S36 | CSUB chromosome 2, position 67592074, length 169 bp.

Figure 37: We observed an heterozygous deletion.

Figure S37 | CSUB chromosome 2, position 112433104, length 90 bp.



Figure 38: Insertions were observed across a tandem repeat region.

Figure S38 | CSUB chromosome 2, position 122059455, length 50 bp.

References

1. Chaisson, M.J.P., et al. (2019). Multi-platform discovery of haplotype resolved structural variation in human genomes. *Nature Communications*, **10**, 1784. doi.org/10.1038/s41467-018-08148-z