Stereodivergent Synthesis via Iridium-Catalyzed Asymmetric Double Allylic Alkylation of Cyanoacetate

Chong Shen,^a Xiang Cheng,^a Liang Wei,^a Ruo-Qing Wang,^a and Chun-Jiang Wang^{a,b}*

^aEngineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, China 430072, ^bState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, China 230021

E-mail: cjwang@whu.edu.cn

Supporting Information

Table of Contents

I.	General Remarks					
II.	General Procedure for Synthesis of Gem-Allylic Cyanoacetates					
III.	Preliminary Investigate Synthesis of Bisallylated Cyanoacetates Bearing Continues Three					
	Stereocenters with Two Different Allyl Carbonates					
IV.	General Procedure for Synthesis of Monoallylated Cyanoacetates and Krapcho					
	Decarboxylation					
V.	Optimization of the Asymmetric Double Allylation Reaction Conditions					
VI.	Stereodivergent Synthesis of Bisallylated Cyanoacetates Bearing Continues Three					
	Stereocenters					
VII.	Synthesis of (<i>S</i> , <i>s</i> , <i>R</i>)- <i>meso</i> - 7d					
VIII.	Gram Scales and Synthetic Transformations					
IX.	References					
X.	NMR and HPLC Spectra					
XI.	X-ray Structures of (<i>S</i> , <i>S</i>)- 7j , (<i>S</i> , <i>R</i> , <i>S</i>)- 8A , <i>meso</i> -(<i>S</i> , <i>s</i> , <i>R</i>)- 7d , and (3 <i>S</i> ,4 <i>S</i> ,5 <i>R</i>)- 12 S140-S141					

I. General Remarks

¹H NMR spectra were recorded on a Bruker 400 MHz spectrometer in CDCl₃. Chemical shifts are reported in ppm with the internal TMS signal at 0.0 ppm as a standard. ¹³C NMR spectra were recorded on a Bruker 100 MHz spectrometer in CDCl₃. Chemical shifts are reported in ppm with the internal chloroform signal at 77.0 ppm as a standard. ¹⁹F NMR spectra were recorded on a Bruker 376 MHz spectrometer in CDCl₃. Chemical shifts are reported in ppm with the internal CF₃COOH signal at -76.55 ppm. The data are reported as (s = single, d = double, t = triple, q = quarter, m = multiple or unresolved, br s = broad single, coupling constant(s) in Hz, integration). Commercially obtained reagents were used without further purification. Solvents were purified prior to use according to the standard methods. Unless otherwise noted, all reactions were carried out under nitrogen atmosphere. The enantiomeric excesses (ee) of the products were determined by high-performance liquid chromatography (HPLC) analysis performed on Agilent 1200 Series chromatographs using a Diacel chiral column (25 cm). Optical rotations were measured on an Rudolph Research Analytical Autopol VI polarimeter with [a]D values reported in degrees; concentration (c) is in g/100 mL. All reactions were reacted under Ar₂ atmosphere. Allylic carbonates 2 were prepared according to the literature procedure.¹ Chiral ligands (R_a, R, R) -SL1 (L2) and (R_a, R, R) -SL7 (L3) were prepared according to the literature procedure.² The absolute configuration of (S,S)-7j, (S,R,S)-8A, meso-(S,s,R)-7d, and (3S,4S,5R)-(S)-12 were determined by X-ray analysis.

II. General Procedure for Synthesis of Gem-Allylic Cyanoacetates

A flame dried Schlenk tube was cooled to rt and evacuated and backfilled with argon for three times. To this Schlenk tube were added [Ir(COD)Cl]₂ (0.005 mmol, 2.5 mol %), phosphoramidite ligand (R_a , R, R)-**SL1** (**L2**) (0.01 mmol, 5 mol %), degassed THF (0.5 mL) and degassed *n*-propylamine (0.5 mL). The reaction mixture was heated at 50 °C for 30 min and then the volatile solvents were removed under vacuum to give a pale yellow solid. allylic carbonates (0.44 mmol), Cyanoacetates (0.20 mmol), Cs_2CO_3 (0.40 mmol), DCM (2 mL) were then added, reacted at room temperature. Once starting material was consumed (monitored by TLC), the mixture was added water, and extracted with dichloromethane (3×). The dichloromethane layers were dried over anhydrous Na₂SO₄, filtered, and evaporated to give crude 7, and dr was determined by crude ¹H NMR. The crude product was purified by silica-gel column chromatography to give 7.

tert-butyl (*R*)-2-cyano-3-phenyl-2-((*R*)-1-phenylallyl)pent-4-enoate (7a): Yield (97%); white solid, mp 92–94 °C; $[\alpha]^{25}_{D} = -108.66$ (*c* 1.64, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 – 7.40 (m, 2H), 7.35 – 7.26 (m, 7H), 7.25 – 7.21 (m, 1H), 6.64 (ddd, *J* = 17.0, 10.1 Hz, 9.9 Hz, 1H), 6.20 (ddd, *J* = 16.9, 10.2, 9.3 Hz, 1H), 5.31 (dd, *J* = 10.2, 1.6 Hz, 1H), 5.22 (dd, *J* = 17.0, 1.4 Hz, 1H), 5.20 (dd, *J* = 10.1, 1.6 Hz, 1H), 5.13 (dd, *J* = 16.9, 1.4 Hz, 1H), 3.91 (d, *J* = 9.3 Hz, 1H), 3.83 (d, *J* = 9.9 Hz, 1H), 0.99 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.4, 138.8, 138.4, 134.6, 134.3, 129.09, 129.06, 128.49, 128.45, 127.9, 127.6, 119.7, 119.6, 118.5, 84.0, 58.6, 55.3, 53.4, 27.2.; HRMS (ESI+) Calcd. For C₂₅H₂₇NNaO₂⁺ ([M+Na]⁺): 396.1934, found: 396.1923. >20:1 dr. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak IE, *i*-propanol/hexane = 2/98, flow rate 1.0 mL/min, λ = 220 nm); t_r = 5.78 and 6.61 min.

tert-butyl (*R*)-2-cyano-3-(4-fluorophenyl)-2-((*R*)-1-(4-fluorophenyl)allyl)pent-4-enoate (7b): Yield (97%); pale yellow solid, mp 54–56 °C; $[\alpha]^{25}_{D} = -87.68$ (*c* 1.25, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.42 – 7.36 (m, 2H), 7.32 – 7.27 (m, 2H), 7.04 – 6.94 (m, 4H), 6.59 (ddd, *J* = 17.2, 10.0,

10.0 Hz, 1H), 6.17 (ddd, J = 17.2, 10.2, 9.2 Hz, 1H), 5.32 (dd, J = 10.0, 1.2 Hz, 1H), 5.23 (dd, J = 10.4, 1.2 Hz, 1H), 5.20 (dd, J = 17.2, 1.0 Hz, 1H), 5.13 (dd, J = 17.2, 1.0 Hz, 1H), 3.90 (d, J = 9.2 Hz, 1H), 3.81 (d, J = 10.0 Hz, 1H), 1.03 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.3, 162.3 (d, J = 246 Hz), 162.2 (d, J = 245 Hz), 134.5 (d, J = 3 Hz), 134.14, 134.10 (d, J = 3 Hz), 133.8, 130.7 (d, J = 7 Hz), 130.6 (d, J = 8 Hz), 120.0, 119.9, 118.2, 115.4 (d, J = 21 Hz), 115.3 (d, J = 22 Hz), 84.3, 58.7, 54.3, 52.5, 27.2.; ¹⁹F NMR (376 MHz, Chloroform-d) δ -114.16 – -114.39 (m), -114.46 – -114.71 (m). HRMS (APCI+) Calcd. For C₂₅H₂₆F₂NO₂⁺ ([M+H]⁺): 410.1926, found: 410.1922. >20:1 dr. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak IE, *i*-propanol/hexane = 2/98, flow rate 1.0 mL/min, $\lambda = 220$ nm); t_r = 5.28 and 5.72 min.

tert-butyl (*R*)-3-(4-chlorophenyl)-2-((*R*)-1-(4-chlorophenyl)allyl)-2-cyanopent-4-enoate (7c): Yield (96%); white solid, mp 58–60 °C; $[\alpha]^{25}_{D} = -120.96$ (*c* 1.46, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.37 – 7.33 (m, 2H), 7.32 – 7.26 (m, 5H), 7.26 – 7.24 (m, 1H), 6.56 (ddd, *J* = 17.0, 10.0 Hz, 10.0 Hz, 11H), 6.15 (ddd, *J* = 16.9, 10.2, 9.4 Hz, 1H), 5.33 (dd, *J* = 10.2, 1.5 Hz, 1H), 5.24 (dd, *J* = 10.2, 1.5 Hz, 1H), 5.21 (dd, *J* = 16.9, 1.2 Hz, 1H), 5.14 (dd, *J* = 16.9, 1.2 Hz, 1H), 3.88 (d, *J* = 9.4 Hz, 1H), 3.79 (d, *J* = 10.0 Hz, 1H), 1.04 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.1, 137.1, 136.7, 133.9, 133.7, 133.5, 130.4, 130.4, 128.7, 128.6, 120.28, 120.25, 118.1, 84.6, 58.3, 54.5, 52.6, 27.2.; HRMS (ESI+) Calcd. For C₂₅H₂₅NNaO₂⁺ ([M+Na]⁺): 464.1155, found: 464.1133. >20:1 dr. The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (Chiralpak ID, *i*-propanol/hexane = 2/98, flow rate 1.0 mL/min, $\lambda = 220$ nm); t_r = 4.95 and 5.94 min.

tert-butyl (*R*)-3-(4-bromophenyl)-2-((*R*)-1-(4-bromophenyl)allyl)-2-cyanopent-4-enoate (7d): Yield (99%); white solid, mp 98–100 °C; $[\alpha]^{25}_{D} = -114.83$ (*c* 1.51, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.46 – 7.40 (m, 4H), 7.31 – 7.26 (m, 2H), 7.22 – 7.17 (m, 2H), 6.56 (ddd, *J* = 17.0, 10.0 Hz, 10.0 Hz, 1H), 6.15 (ddd, *J* = 16.9, 10.2, 9.3 Hz, 1H), 5.32 (dd, *J* = 10.1, 1.5 Hz, 1H), 5.24 (dd, *J* = 10.1, 1.2 Hz, 1H), 5.20 (dd, *J* = 16.9, 1.0 Hz, 1H), 5.14 (dd, *J* = 16.9, 1.0 Hz, 1H), 3.87 (d, *J* = 9.3 Hz, 1H), 3.77 (d, *J* = 10.0 Hz, 1H), 1.04 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.1, 137.6, 137.2, 133.8, 133.5, 131.7, 131.6, 130.8, 130.7, 122.0, 121.8, 120.4, 120.3, 118.1, 84.6, 58.2, 54.6, 52.7, 27.3.; HRMS (APCI+) Calcd. For C₂₅H₂₆Br₂NO₂⁺ ([M+H]⁺): 530.0325, found: 530.0337. >20:1 dr. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak IE, *i*-propanol/hexane = 2/98, flow rate 1.0 mL/min, λ = 220 nm); t_r = 6.021 and 7.65 min.

tert-butyl (*R*)-2-cyano-3-(4-(trifluoromethyl)phenyl)-2-((*R*)-1-(4-(trifluoromethyl)phenyl)allyl)pent -4-enoate (7e): Yield (91%); pale yellow solid, mp 59–61 °C; $[α]^{25}_D = -88.82$ (*c* 0.93, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.61 – 7.54 (m, 6H), 7.46 (d, *J* = 8.2 Hz, 2H), 6.61 (ddd, *J* = 17.0, 10.0 Hz, 10.0 Hz, 1H), 6.19 (ddd, *J* = 16.9, 10.2, 9.4 Hz, 1H), 5.38 (dd, *J* = 10.2, 1.4 Hz, 1H), 5.262 (dd, *J* = 10.2, 1.4 Hz, 1H), 5.257 (dd, *J* = 16.9, 1.0 Hz, 1H), 5.17 (dd, *J* = 16.9, 1.0 Hz, 1H), 3.99 (d, *J* = 9.4 Hz, 1H), 3.90 (d, *J* = 10.0 Hz, 1H), 0.99 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.9, 142.5, 142.1, 133.3, 133.1, 130.3 (q, *J* = 32 Hz), 130.1 (q, *J* = 34 Hz), 129.51, 129.49, 125.5 (q, *J* = 4 Hz), 125.4 (q, *J* = 4 Hz), 123.93 (q, *J* = 271 Hz), 123.90 (q, *J* = 271 Hz), 121.0, 120.8, 117.9, 84.9, 58.0, 54.9, 53.1, 27.1.; ¹⁹F NMR (376 MHz, Chloroform-d) δ -62.67, -62.77. HRMS (APCI+) Calcd. For C₂₇H₂₆F₆NO₂⁺ ([M+H]⁺): 510.1862, found: 510.1875. >20:1 dr. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak IE, *i*-propanol/hexane = 2/98, flow rate 1.0 mL/min, $\lambda = 220$ nm); t_r = 4.14 and 4.71 min.

tert-butyl (*R*)-2-cyano-3-(*p*-tolyl)-2-((*R*)-1-(*p*-tolyl)allyl)pent-4-enoate (7f): Yield (99%); pale yellow syrupy liquid; $[\alpha]^{25}_{D} = -118.70$ (*c* 0.58, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 – 7.27 (m, 2H), 7.22 – 7.18 (m, 2H), 7.13 – 7.06 (m, 4H), 6.60 (ddd, *J* = 17.0, 10.0 Hz, 10.0 Hz, 1H), 6.19 (ddd, *J* = 16.9, 10.2, 9.4 Hz, 1H), 5.28 (dd, *J* = 10.2, 1.6 Hz, 1H), 5.19 (dd, *J* = 17.0, 1.5 Hz, 1H), 5.18 (dd, *J* = 10.0, 1.6 Hz, 1H), 5.12 (dd, *J* = 16.9, 1.5, 1H), 3.87 (d, *J* = 9.4 Hz, 1H), 3.77 (d, *J* = 10.0 Hz, 1H), 2.32 (s, 3H), 2.29 (s, 3H), 1.02 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.5, 137.5, 137.2, 135.8, 135.5, 134.9, 134.6, 129.2, 129.0, 128.92, 128.85, 119.33, 119.28, 118.6, 83.8, 58.7, 55.0, 53.0, 27.2, 21.1, 21.0.; HRMS (ESI+) Calcd. For C₂₇H₃₁NNaO₂⁺ ([M+Na]⁺): 424.2247, found: 424.2238. >20:1 dr. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak IE, *i*-propanol/hexane = 2/98, flow rate 1.0 mL/min, λ = 220 nm); t_r = 6.59 and 12.39 min.

tert-butyl (*R*)-2-cyano-3-(4-methoxyphenyl)-2-((*R*)-1-(4-methoxyphenyl)allyl)pent-4-enoate (7g): Yield (81%); pale yellow syrupy liquid; $[\alpha]^{25}_{D} = -126.00$ (*c* 0.55, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 – 7.29 (m, 2H), 7.26 – 7.21 (m, 2H), 6.86 – 6.80 (m, 4H), 6.59 (ddd, *J* = 17.0, 10.1, 10.0 Hz, 1H), 6.18 (ddd, *J* = 16.9, 10.2, 9.3 Hz, 1H), 5.28 (dd, *J* = 10.2, 1.7 Hz, 1H), 5.19 (dd, *J* = 10.1, 1.5 Hz, 1H), 5.18 (dd, *J* = 17.0, 1.7 Hz, 1H), 5.11 (d, *J* = 16.9, 1.7 Hz, 1H), 3.86 (d, *J* = 9.3 Hz, 1H), 3.79 (s, 3H), 3.78 (d, *J* = 10.0 Hz, 1H), 3.76 (s, 3H), 1.04 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.6, 159.1, 159.0, 134.8, 134.5, 131.0, 130.6, 130.1, 130.0, 119.19, 119.16, 118.7, 113.83, 113.77, 83.8, 59.1, 55.3, 55.2, 54.4, 52.6, 27.3.; HRMS (ESI+) Calcd. For C₂₇H₃₁NNaO₄⁺ ([M+Na]⁺): 456.2145, found: 456.2135. 18:1 dr. The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak IE, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 238 nm); t_r = 7.48 and 10.19 min.

tert-butyl (*R*)-2-cyano-3-(3-fluorophenyl)-2-((*R*)-1-(3-fluorophenyl)allyl)pent-4-enoate (7h): Yield (95%); pale yellow syrupy liquid; $[\alpha]^{25}_{D} = -94.44$ (*c* 0.72, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.33 – 7.28 (m, 1H), 7.26 – 7.24 (m, 1H), 7.21 (dt, *J* = 7.7, 1.5 Hz, 1H), 7.16 – 7.11 (m, 2H), 7.04 – 6.92 (m, 3H), 6.57 (ddd, *J* = 17.0, 10.0, 9.9 Hz, 1H), 6.17 (ddd, *J* = 16.9, 10.2, 9.4 Hz, 1H), 5.35 (dd, *J* = 10.0, 1.5 Hz, 1H), 5.25 (dd, *J* = 10.2, 1.5 Hz, 1H), 5.23 (dd, *J* = 17.0, 1.5 Hz, 1H), 5.16 (dd, *J* = 16.9, 1.5 Hz, 1H), 3.90 (d, *J* = 9.4 Hz, 1H), 3.81 (d, *J* = 9.9 Hz, 1H), 1.05 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.1, 162.62 (d, *J* = 245 Hz), 162.55 (d, *J* = 245 Hz), 140.9 (d, *J* = 7 Hz), 140.5 (d, *J* = 7 Hz), 133.7, 133.4, 130.1 (d, *J* = 9 Hz), 130.0 (d, *J* = 8 Hz), 125.0 (d, *J* = 3 Hz), 124.7 (d, *J* = 3 Hz), 120.4, 120.3, 118.0, 116.2 (d, *J* = 34 Hz), 115.9 (d, *J* = 34 Hz), 114.9 (d, *J* = 21 Hz), 114. (d, *J* = 29 Hz), 114.6 (d, *J* = 29 Hz), 84.6, 58.2, 54.8 (d, *J* = 2 Hz), 52.9 (d, *J* = 2 Hz), 27.2.; ¹⁹F NMR (376 MHz, Chloroform-d) δ -112.48 – -112.59 (m), -112.59 – -112.68 (m). HRMS (ESI+) Calcd. For C₂₅H₂₅F₂NNaO₂⁺ ([M+Na]⁺): 432.1746, found: 432.1740. 20:1 dr. The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak IE, *i*-propanol/hexane = 1/99, flow rate 1.0 mL/min, λ = 238 nm); t_r = 6.60 and 8.11 min.

tert-butyl (*R*)-3-(3-chlorophenyl)-2-((*R*)-1-(3-chlorophenyl)allyl)-2-cyanopent-4-enoate (7i): Yield (86%); pale yellow solid, mp 78–80 °C; $[\alpha]^{25}_{D} = -90.81$ (*c* 0.74, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 (dt, *J* = 5.4, 2.1 Hz, 2H), 7.29 – 7.26 (m, 3H), 7.26 – 7.22 (m, 3H), 6.57 (ddd, *J* = 17.0, 10.3, 10.0 Hz, 1H), 6.17 (ddd, *J* = 16.9, 10.2, 9.5 Hz, 1H), 5.35 (dd, *J* = 10.2, 1.5 Hz, 1H), 5.27 (dd, *J* = 10.3, 1.3 Hz, 1H), 5.22 (dd, *J* = 17.0, 1.5 Hz, 1H), 5.17 (dd, *J* = 16.9, 1.3 Hz, 1H), 3.88 (d, *J* = 9.5

Hz, 1H), 3.78 (d, J = 10.0 Hz, 1H), 1.07 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.0, 140.5, 140.1, 134.3, 134.2, 133.7, 133.4, 129.9, 129.8, 129.5, 128.8, 128.1, 127.8, 127.6, 127.0, 120.5, 117.8, 84.8, 58.2, 54.8, 52.9, 27.3.; HRMS (ESI+) Calcd. For C₂₅H₂₅Cl₂NNaO₂⁺ ([M+Na]⁺): 464.1155, found: 464.1156. 17:1 dr. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak IE, *i*-propanol/hexane = 1/99, flow rate 1.0 mL/min, $\lambda = 220$ nm); t_r = 5.98 and 7.84 min.

tert-butyl (*R*)-3-(3-bromophenyl)-2-((*R*)-1-(3-bromophenyl)allyl)-2-cyanopent-4-enoate (7j): Yield (88%); pale yellow solid, mp 108–110 °C; $[\alpha]^{25}_{D} = -82.36$ (*c* 1.27, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.50 (t, *J* = 1.9 Hz, 1H), 7.44 – 7.37 (m, 4H), 7.30 (dt, *J* = 7.8, 1.4 Hz, 1H), 7.19 (dt, *J* = 11.0, 7.8 Hz, 2H), 6.56 (ddd, *J* = 17.0, 10.2, 10.0 Hz, 1H), 6.17 (ddd, *J* = 16.8, 10.1, 9.5 Hz, 1H), 5.34 (dd, *J* = 10.2, 1.5 Hz, 1H), 5.27 (dd, *J* = 10.1, 1.4 Hz, 1H), 5.22 (dd, *J* = 16.9, 1.4 Hz, 1H), 5.17 (dd, *J* = 16.9, 1.0 Hz, 1H), 3.86 (d, *J* = 9.5 Hz, 1H), 3.76 (d, *J* = 10.0 Hz, 1H), 1.08 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.0, 140.8, 140.4, 133.6, 133.3, 132.3, 131.7, 131.1, 130.8, 130.1, 130.1, 128.0, 127.4, 122.6, 122.4, 120.6, 120.5, 117.8, 84.9, 58.2, 54.8, 52.8, 27.3.; HRMS (APCI+) Calcd. For C₂₅H₂₆Br₂NO₂⁺ ([M+H]⁺): 530.0325, found: 530.0313. 18:1 dr. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak IE, *i*-propanol/hexane = 1/99, flow rate 1.0 mL/min, $\lambda = 220$ nm); t_r = 6.99 and 8.55 min.

tert-butyl (*R*)-2-cyano-3-(*m*-tolyl)-2-((*R*)-1-(*m*-tolyl)allyl)pent-4-enoate (7k): Yield (93%); white solid, mp 82–84 °C; $[\alpha]^{25}_{D} = -96.06$ (*c* 0.66, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.26 (d, *J* = 8.1 Hz, 1H), 7.22 – 7.16 (m, 3H), 7.15 – 7.10 (m, 2H), 7.08 (dd, *J* = 7.5, 1.3 Hz, 1H), 7.05 – 7.01 (m, 1H), 6.63 (ddd, *J* = 16.9, 10.1, 9.9 Hz, 1H), 6.21 (ddd, *J* = 16.9, 10.2, 9.4 Hz, 1H), 5.29 (dd, *J* = 10.1, 1.7)

Hz, 1H), 5.201 (dd, J = 10.1, 1.5 Hz, 1H), 5.198 (dd, J = 16.9, 1.7 Hz, 1H), 5.13 (dd, J = 16.9, 1.5 Hz, 1H), 3.87 (d, J = 9.4 Hz, 1H), 3.77 (d, J = 9.9 Hz, 1H), 2.32 (s, 3H), 2.30 (s, 3H), 1.01 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.5, 138.7, 138.3, 138.0, 137.9, 134.8, 134.5, 129.9, 129.6, 128.6, 128.38, 128.36, 128.2, 126.1, 125.9, 119.44, 119.39, 118.4, 83.8, 58.5, 55.3, 53.4, 27.2, 21.4, 21.3.; HRMS (ESI+) Calcd. For C₂₇H₃₁NNaO₂⁺ ([M+Na]⁺): 424.2247, found: 424.2238. >20:1 dr. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak IE, *i*-propanol/hexane = 1/99, flow rate 1.0 mL/min, $\lambda = 220$ nm); t_r = 6.58 and 8.90 min.

tert-butyl (*R*)-2-cyano-3-(3-methoxyphenyl)-2-((*R*)-1-(3-methoxyphenyl)allyl)pent-4-enoate (71): Yield (92%); white solid, mp 103–105 °C; $[\alpha]^{25}_{D} = -99.07$ (*c* 0.75, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.24 – 7.20 (m, 1H), 7.20 – 7.16 (m, 1H), 7.03 – 6.99 (m, 1H), 6.97 – 6.92 (m, 2H), 6.88 (t, *J* = 2.1 Hz, 1H), 6.83 – 6.76 (m, 2H), 6.60 (ddd, *J* = 17.0, 10.0, 10.0 Hz, 1H), 6.18 (ddd, *J* = 16.9, 10.2, 9.3 Hz, 1H), 5.30 (dd, *J* = 10.0, 1.7 Hz, 1H), 5.21 (dd, *J* = 16.9, 1.2 Hz, 1H), 5.19 (dd, *J* = 10.2, 1.2 Hz, 1H), 5.12 (dd, *J* = 17.0, 1.7 Hz, 1H), 3.87 (d, *J* = 9.3 Hz, 1H), 3.81 (d, *J* = 10.0 Hz, 1H), 3.80 (s, 3H), 3.78 (s, 3H), 1.04 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.4, 159.52, 159.48, 140.2, 139.7, 134.5, 134.3, 129.44, 129.42, 121.34, 121.29, 119.6, 119.5, 115.0, 114.3, 113.6, 113.2, 84.0, 58.4, 55.3, 55.21, 55.19, 53.5, 27.2.; HRMS (ESI+) Calcd. For C₂₇H₃₁NNaO₄⁺ ([M+Na]⁺): 456.2145, found: 456.2138. 10:1 dr. The product was analyzed by HPLC to determine the enantiomeric excess: 96% ee (Chiralpak IE, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 220 nm); t_r = 6.72 and 9.24 min.

tert-butyl (*R*)-2-cyano-3-(3,4-dichlorophenyl)-2-((*R*)-1-(3,4-dichlorophenyl)allyl)pent-4-enoate (7m): Yield (98%); white solid, mp 64–66 °C; $[\alpha]^{25}_{D} = -118.04$ (*c* 0.56, CH₂Cl₂); ¹H NMR (400 MHz,

Chloroform-*d*) δ 7.45 (d, J = 2.1 Hz, 1H), 7.43 – 7.38 (m, 2H), 7.36 – 7.29 (m, 2H), 7.20 (dd, J = 8.4, 2.2 Hz, 1H), 6.52 (ddd, J = 17.0, 10.0. 9.9 Hz, 1H), 6.14 (ddd, J = 16.8, 10.2, 9.5 Hz, 1H), 5.36 (dd, J = 10.0, 1.4 Hz, 1H), 5.30 (dd, J = 10.2, 1.2 Hz, 1H), 5.22 (dd, J = 17.0, 1.4 Hz, 1H), 5.30 (dd, J = 16.8, 1.2 Hz, 1H), 3.86 (d, J = 9.5 Hz, 1H), 3.75 (d, J = 9.9 Hz, 1H), 1.10 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.8, 138.5, 138.3, 133.1, 132.8, 132.7, 132.5, 132.2, 132.0, 131.3, 130.6, 130.54, 130.46, 128.6, 128.1, 121.1, 121.0, 117.6, 85.3, 58.0, 54.1, 52.3, 27.3.; HRMS (ESI+) Calcd. For C₂₅H₂₃Cl₄NNaO₂⁺ ([M+Na]⁺): 532.0375, found: 532.0360. >20:1 dr. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak IE, *i*-propanol/hexane = 2/98, flow rate 1.0 mL/min, $\lambda = 220$ nm); t_r = 5.07 and 6.66 min.

tert-butyl (*R*)-2-cyano-3-(3,5-dichlorophenyl)-2-((*R*)-1-(3,5-dichlorophenyl)allyl)pent-4-enoate (7n): Yield (97%); white solid, mp 88–90 °C; $[\alpha]^{25}_{D} = -86.52$ (*c* 0.69, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.30 (d, *J* = 2.0 Hz, 3H), 7.27 (t, *J* = 1.9 Hz, 1H), 7.19 (d, *J* = 1.8 Hz, 2H), 6.50 (ddd, *J* = 16.9, 10.1, 9.9 Hz, 1H), 6.13 (ddd, *J* = 16.9, 10.1, 9.6 Hz, 1H), 5.37 (dd, *J* = 10.1, 1.3 Hz, 1H), 5.33 (dd, *J* = 10.1, 1.1 Hz, 1H), 5.23 (dd, *J* = 16.9, 1.3 Hz, 1H), 5.21 (dd, *J* = 16.9, 1.1 Hz, 1H), 3.85 (d, *J* = 9.6 Hz, 1H), 3.72 (d, *J* = 9.9 Hz, 1H), 1.14 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.7, 141.5, 141.2, 135.1, 135.0, 132.9, 132.5, 128.3, 128.0, 127.51, 127.49, 121.4, 121.3, 117.2, 85.5, 57.6, 54.5, 52.5, 27.3.; HRMS (ESI+) Calcd. For C₂₅H₂₃Cl₄NNaO₂⁺ ([M+Na]⁺): 532.0375, found: 532.0368. >20:1 dr. The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak IE, *i*-propanol/hexane = 2/98, flow rate 1.0 mL/min, λ = 210 nm); t_r = 5.00 and 5.86 min.

tert-butyl (*R*)-2-cyano-3-(naphthalen-2-yl)-2-((*R*)-1-(naphthalen-2-yl)allyl)pent-4-enoate (7o): Yield (97%); white solid, mp 116–118 °C; $[\alpha]^{25}_{D} = -155.41$ (*c* 0.85, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 – 7.76 (m, 8H), 7.61 (dd, *J* = 8.6, 1.8 Hz, 1H), 7.51 – 7.43 (m, 5H), 6.79 (ddd, *J* = 17.0, 10.0 Hz, 10.0 Hz, 1H), 6.35 (ddd, *J* = 16.9, 10.0 Hz, 9.8 Hz, 1H), 5.37 (dd, *J* = 10.2, 1.5 Hz, 1H), 5.29 (dd, *J* = 17.0, 1.5 Hz, 1H), 5.23 (dd, *J* = 10.0, 1.2 Hz, 1H), 5.20 (dd, *J* = 16.9, 1.2 Hz, 1H), 4.17 (d, *J* = 10.0 Hz, 1H), 4.06 (d, *J* = 10.0 Hz, 1H), 0.84 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.6, 136.1, 135.9, 134.5, 134.4, 133.3, 133.2, 132.9, 132.7, 128.3, 128.23, 128.20, 128.1, 128.0, 127.9, 127.6, 127.5, 126.9, 126.7, 126.2, 126.12, 126.05, 126.0, 120.0, 119.8, 118.5, 84.1, 58.6, 55.5, 53.6, 27.1.; HRMS (ESI+) Calcd. For C₃₃H₃₁NNaO₂⁺ ([M+Na]⁺): 496.2247, found: 496.2242. >20:1 dr. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak IE, *i*-propanol/hexane = 2/98, flow rate 1.0 mL/min, λ = 232 nm); t_r = 10.70 and 21.76 min.

7p

tert-butyl (*R*)-2-cyano-3-(naphthalen-1-yl)-2-((*R*)-1-(naphthalen-1-yl)allyl)pent-4-enoate (7p): Yield (77%); white solid, mp 80–82 °C; $[\alpha]^{25}_{D} = -123.58$ (*c* 0.95, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.41 (d, *J* = 8.7 Hz, 1H), 8.09 (d, *J* = 8.7 Hz, 1H), 7.88 (dt, *J* = 7.9, 1.9 Hz, 2H), 7.85 – 7.76 (m, 2H), 7.75 – 7.64 (m, 2H), 7.62 – 7.51 (m, 3H), 7.49 – 7.37 (m, 4H), 6.64 (ddd, *J* = 16.7, 9.8. 9.5 Hz, 1H), 6.06 (ddd, *J* = 16.9, 10.2, 9.2 Hz, 1H), 5.37 (dd, *J* = 16.7, 1.2 Hz, 1H), 5.36 (dd, *J* = 9.8, 1.2 Hz, 1H), 5.21 (d, *J* = 9.5 Hz, 1H), 5.03 (d, *J* = 9.2 Hz, 1H), 4.83 (dd, *J* = 10.2, 1.2 Hz, 1H), 4.65 (dd, *J* = 16.9, 1.2 Hz, 1H), 3.15 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.5, 135.5, 135.4, 134.8, 134.3, 134.1, 133.9, 132.3, 130.7, 129.2, 128.9, 128.6, 128.1, 126.6, 126.3, 125.9, 125.8, 125.6, 125.3, 125.2, 125.1, 122.6, 122.4, 119.4, 118.2, 118.1, 59.3, 52.7, 48.5, 46.0.; HRMS (ESI+) Calcd. For C₃₀H₂₅NNaO₂⁺ ([M+Na]⁺): 454.1778, found: 454.1771. >20:1 dr. The product was analyzed by HPLC to determine the enantiomeric excess: 96% ee (Chiralpak IE, *i*-propanol/hexane = 2/98, flow rate 1.0 mL/min, λ = 220 nm); t_r = 11.46 and 17.56 min.

tert-butyl (*R*)-2-cyano-3-(pyridin-3-yl)-2-((*R*)-1-(pyridin-3-yl)allyl)pent-4-enoate (7q): Yield (33%); pale yellow solid, mp 106–108 °C; $[\alpha]^{25}_{D} = -112.50$ (*c* 0.84, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.54 (ddt, *J* = 14.3, 4.8, 2.5 Hz, 4H), 7.88 (ddd, *J* = 8.0, 2.4, 1.6 Hz, 1H), 7.74 – 7.66 (m, 1H), 7.30 – 7.24 (m, 2H), 6.60 (ddd, *J* = 17.0, 10.0, 9.9 Hz, 1H), 6.17 (ddd, *J* = 16.9, 10.2, 9.4 Hz, 1H), 5.40 (dd, *J* = 10.2, 1.4 Hz, 1H), 5.28 (dd, *J* = 17.0, 1.0 Hz, 1H), 5.27 (dd, *J* = 10.0, 1.4 Hz, 1H), 5.18 (dd, *J* = 16.9, 1.0 Hz, 1H), 3.97 (d, *J* = 9.4 Hz, 1H), 3.89 (d, *J* = 9.9 Hz, 1H), 1.04 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.8, 150.5, 150.2, 149.3, 149.1, 136.4, 135.9, 134.3, 133.9, 133.1, 132.7, 123.4, 123.3, 121.1, 121.0, 117.7, 85.2, 58.3, 52.8, 50.7, 27.2.; HRMS (APCI+) Calcd. For C₂₃H₂₆N₃O₂⁺ ([M+H]⁺): 376.2020, found: 376.2031. >20:1 dr. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak IE, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 220$ nm); t_r = 27.78 and 36.47 min.

tert-butyl (*R*)-2-cyano-3-(naphthalen-1-yl)-2-((*R*)-1-(naphthalen-1-yl)allyl)pent-4-enoate (7r): Yield (83%); pale yellow solid, mp 96–98 °C; $[\alpha]^{25}_{D} = -97.75$ (*c* 0.71, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.22 (dd, *J* = 5.1, 1.2 Hz, 1H), 7.19 (dd, *J* = 5.1, 1.2 Hz, 1H), 7.14 – 7.10 (m, 2H), 6.97 (dd, *J* = 5.1, 3.6 Hz, 1H), 6.93 (dd, *J* = 5.1, 3.6 Hz, 1H), 6.46 (ddd, *J* = 16.9, 10.0, 9.8 Hz, 1H), 6.15 (ddd, *J* = 16.8, 10.2, 9.2 Hz, 1H), 5.34 (dd, *J* = 10.2, 1.4 Hz, 1H), 5.251 (dd, *J* = 10.0, 1.2 Hz, 1H), 5.246 (dd, *J* = 16.8, 1.4 Hz, 1H), 5.34 (dd, *J* = 16.9, 1.2 Hz, 1H), 4.23 (d, *J* = 9.2 Hz, 1H), 4.16 (d, *J* = 9.8 Hz, 1H), 1.13 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.0, 140.32, 140.25, 133.9, 133.8, 126.8, 126.6, 126.5, 126.4, 124.9, 124.8, 120.1, 119.7, 118.4, 84.3, 59.6, 50.3, 48.7, 27.3.; HRMS (ESI+) Calcd. For C₂₁H₂₃NNaO₂S₂⁺ ([M+Na]⁺): 408.1062, found: 408.1056. >20:1 dr. The product was analyzed by HPLC to determine the enantiomeric excess: 96% ee (Chiralpak IE, *i*-propanol/hexane = 1/99, flow rate 1.0

mL/min, $\lambda = 220$ nm); t_r = 9.26 and 10.42 min.

tert-butyl (*S*)-2-((*S*)-but-3-en-2-yl)-2-cyano-3-methylpent-4-enoate (7s): Yield (87%); pale yellow liquid; $[\alpha]^{25}_{D} = -9.03$ (*c* 1.03, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 5.84 (ddd, *J* = 17.2, 11.6, 8.7 Hz, 1H), 5.82 (ddd, *J* = 17.2, 10.4, 9.0 Hz, 1H), 5.203 (dd, *J* = 11.6, 1.6 Hz, 1H), 5.196 (dd, *J* = 17.2, 1.2 Hz, 1H), 5.12 (dd, *J* = 17.2, 1.6 Hz, 1H), 5.10 (dd, *J* = 10.4, 1.2 Hz, 1H), 2.75 (dq, *J* = 9.0, 6.9 Hz, 1H), 2.75 (dq, *J* = 8.7, 6.8 Hz, 1H), 1.51 (s, 9H), 1.23 (d, *J* = 6.9 Hz, 3H), 1.15 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.0, 136.7, 136.4, 118.3, 118.2, 117.8, 84.1, 58.4, 42.7, 41.6, 27.9, 17.2, 16.5.; HRMS (ESI+) Calcd. For C₁₅H₂₃NNaO₂⁺ ([M+Na]⁺): 272.1621, found: 272.1615. >20:1 dr. The product was transformed to **16** (*vide infra*) and then analyzed by HPLC to determine the enantiomeric excess: 95% ee.

To a solution of (S,S)-**7s** (0.20 mmol) in DCM (2.0 mL) was added TFA (1.0 mL) under Ar₂ at rt and the reaction mixture was stirred for 2 h, then concentrated in vacuo to give crude **11** without purified by flash chromatography. To a solution of crude **15** in DCM (2.0 mL) was added (COCl)₂ (0.80 mmol, 4.0 equiv.) and DMF (20 µL) under Ar₂ and the reaction mixture stirred for 1 h, then concentrated in vacuo. After that, DCM (2 mL), diisopropylethylamine (0.40 mmol) and aniline (0.30 mmol) was added under Ar₂, the reaction mixture stirred for 8 h at rt. The reaction was quenched with H₂O and extracted with CH₂Cl₂ (3 x 3 mL) and the combined organics were washed with 10% NaHCO₃ (1 x 10 mL), and brine (10 mL). The combined organics were combined and dried over Na₂SO₄ and concentrated under vacuum and purified by silica-gel flash chromatography.

(*S*,*Z*)-2-((*S*)-but-3-en-2-yl)-2-cyano-3-methyl-N-phenylpent-4-enimidic acid (16): Yield (74%); Pale yellow liquid; $[\alpha]^{32}_{D} = -16.60$ (*c* 3.56, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 (s, 1H), 7.54 – 7.46 (m, 2H), 7.40 – 7.32 (m, 2H), 7.23 – 7.14 (m, 1H), 5.96 (ddd, *J* = 17.5, 9.9, 8.6 Hz, 1H), 5.84 (ddd, *J* = 17.1, 10.3, 8.7 Hz, 1H), 5.33 – 5.21 (m, 2H), 5.20 – 5.10 (m, 2H), 3.01 – 2.82 (m, 2H), 1.28 (d, *J* = 7.0 Hz, 3H), 1.21 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 163.6, 136.7, 136.5, 136.4, 129.1, 125.5, 120.7, 112.0, 118.7, 118.0, 58.7, 42.4, 41.9, 17.0, 16.4.; HRMS (ESI+) Calcd. For C₁₇H₂₁N₂O ([M+H]⁺): 269.1648, found: 269.1646. The product was analyzed by HPLC to determine the enantiomeric excess: 95% ee (Chiralcel OJ-H, *i*-propanol/hexane = 2/98, flow rate 1.0 mL/min, λ = 240 nm); t_r = 8.45 and 9.51 min.

III. Preliminary Investigate Synthesis of Bisallylated Cyanoacetates Bearing Continues Three Stereocenters with Two Different Allylic Carbonates.

A flame dried Schlenk tube was cooled to rt and evacuated and backfilled with argon for three times. To this Schlenk tube were added [Ir(COD)Cl]₂ (0.005 mmol, 2.5 mol %), phosphoramidite ligand (R_{a} ,R,R)-**SL1** (0.01 mmol, 5 mol %), degassed THF (0.5 mL) and degassed *n*-propylamine (0.5 mL). The reaction mixture was heated at 50 °C for 30 min and then the volatile solvents were removed under vacuum to give a pale yellow solid. Allylic carbonate **1d** (0.20 mmol), cyanoacetate **3** (0.20 mmol), Et₃N (0.20 mmol), DCM (2 mL) were then added, and then reacted at room temperature for 12 h under Ar₂ atmosphere. The crude product was purified by silica-gel column chromatography to give the mono-allylic cyanoacetate **5d**. Then under Ar₂ atmosphere, [Ir(COD)Cl]₂ (0.005 mmol, 2.5 mol %),

phosphoramidite ligand (R_{a} ,R,R)-**SL1** (0.01 mmol, 5 mol %), degassed THF (0.5 mL) and degassed n-propylamine (0.5 mL) were heated at 50 °C for 30 min and then the volatile solvents were removed under vacuum to give Ir-compless. To this Schlenk tube allylic carbonate **1m** (0.20 mmol), mono-allylic cyanoacetate **5d**, Cs₂CO₃ (0.20 mmol), DCM (2 mL) were then added, and then reacted at room temperature under Ar₂ atmosphere. Once starting material was consumed (monitored by TLC), the mixture was added water, and extracted with dichloromethane (3×). The dichloromethane layers were dried over anhydrous Na₂SO₄, filtered, and evaporated to give crude **8A**. The crude product was purified by silica-gel column chromatography to give **8A**.

IV. Optimization of the Asymmetric Monoallylation Reaction Conditions and General Procedure for Synthesis of Mono-Allylic Cyanoacetates and Krapcho Decarboxylation

<i>t</i> Bu0	D_2C + Br 1d	∕OCO₂Me5 base	mol% [lr]/ L , solvent, <i>T</i> °C		u LiCl, H ₂ O DMF	NC
	3			5d		9d
		((Ar = $C_6 h$ (R_a, R, R) - SL (R_a, R, R) - SL (R_a, R, R) - SL	H ₅ 1 (L2) -C ₆ H ₄ 7 (L3)	
Entry ^a	Ligand	Base	Solvent	<i>T</i> (°C)	Yield of 5d $(\%)^b$	Ee of 9d (%) ^c
1^d	(R_a, R, R) - SL1 (L2)	Et_3N^d	DCM	room temp.	47	90
2^d	(R_a, R, R) -SL1 (L2)	DABCO	DCM	room temp.	43	88
3^d	(R_a, R, R) -SL1 (L2)	DABCO	THF	room temp.	34	90
4	(R_a, R, R) -SL7 (L3)	DABCO	THF	reflux	43	86
5	(R_a, R, R) -SL7 (L3)	DABCO	THF	room temp.	56	94
6 ^e	(R_a, R, R) -SL7 (L3)	Et ₃ N	THF	room temp.	47	93
7	(R_a, R, R) -SL7 (L3)	DABCO	THF	0 °C	68	99

^{*a*} All the reactions were carried out with 0.2 mmol of **3**, 0.1 mmol of **1d** and 0.04 mmol base in 2 mL of solvent. ^{*b*} Isolated yields. ^{*c*} Ee was determined by chiral HPLC analysis. ^{*d*} 0.2 mmol Et₃N was used. ^{*e*} 0.2 mmol of **3** and 0.2 mmol **1d** was used.

A flame dried Schlenk tube was cooled to rt and evacuated and backfilled with argon for three times. To this Schlenk tube were added [Ir(COD)Cl]₂ (0.01 mmol, 2.5 mol %), phosphoramidite ligand **SL7** (0.02 mmol, 5 mol %), degassed THF (1.0 mL) and degassed *n*-propylamine (1.0 mL). The reaction mixture was heated at 50 °C for 30 min and then the volatile solvents were removed under vacuum to give a pale yellow solid. allylic carbonates (0.40 mmol), Cyanoacetates (0.80 mmol), DABCO (0.08 mmol), DCM (4 mL) were then added, reacted at room temperature. Once starting material **1** was consumed (monitored by TLC), the mixture was added water, and extracted with dichloromethane (3×). The dichloromethane layers were dried over anhydrous Na₂SO₄, filtered, and evaporated to give crude **5**.

A Schlenk tube was evacuated and backfilled with argon for three times, then added LiCl (0.35 mmol), **5** (0.10 mmol), DMF (0.75 mL), and H₂O (7 μ L). The mixture was stirred under reflux for 1 h. After the reaction was complete, a saturated aqueous solution of NH₄Cl (5 mL) was added. The aqueous layer was extracted three times with ether (2 mL). The combined organic layer was dried with Na₂SO₄ filtered, and evaporated to give crude **9**. The crude product was purified by silica-gel column chromatography to give **9**.

tert-butyl 3-(4-bromophenyl)-2-cyanopent-4-enoate (Mixture of Diastereomers) (5d): Yield (68%); pale yellow liquid; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.53 – 7.45 (m, 4H), 7.24 – 7.14 (m, 4H), 6.17 – 5.99 (m, 2H), 5.35 – 5.20 (m, 4H), 4.02 – 3.94 (m, 2H), 3.75 (d, *J* = 7.2 Hz, 1H), 3.67 (d, *J* = 6.9 Hz, 1H), 1.39 (s, 9H), 1.39 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 163.4, 137.6, 136.8, 135.7, 134.4, 132.0, 131.9, 129.9, 129.5, 122.0, 121.8, 119.5, 118.4, 115.5, 84.51, 84.47, 49.1, 48.8, 44.8, 44.4, 27.7, 27.6.; HRMS (ESI+) Calcd. For C₁₆H₁₈BrNNaO₂⁺ ([M+Na]⁺): 358.0413, found: 358.0412.

tert-butyl 2-cyano-3-(naphthalen-2-yl)pent-4-enoate (Mixture of Diastereomers) (50): Yield (64%); pale yellow liquid; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 – 7.74 (m, 8H), 7.50 – 7.38 (m, 6H), 6.31 – 6.09 (m, 2H), 5.37 – 5.26 (m, 4H), 4.22 – 4.13 (m, 2H), 3.86 (d, *J* = 7.6 Hz, 1H), 3.82 (d, *J* = 7.1 Hz, 1H), 1.34 (s, 9H), 1.33 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 163.74, 163.73, 136.2, 135.9, 135.3, 135.0, 133.3, 132.9, 132.8, 128.7, 128.6, 127.9, 127.8, 127.63, 127.62, 127.4, 126.8, 126.4, 126.3, 126.22, 126.18, 125.7, 125.4, 119.3, 118.2, 115.8, 115.7, 84.30, 84.25, 49.9, 49.7, 45.0, 44.6, 27.64, 27.61.; HRMS (ESI+) Calcd. For C₂₀H₂₁NNaO₂⁺ ([M+Na]⁺): 330.1465, found: 330.1468.

tert-butyl 2-cyano-3-(3,5-dichlorophenyl)pent-4-enoate (Mixture of Diastereomers) (5n): Yield (50%); pale yellow liquid; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.33 – 7.29 (m, 2H), 7.26 – 7.16 (m, 4H), 6.15 – 5.96 (m, 2H), 5.42 – 5.24 (m, 4H), 4.03 – 3.91 (m, 2H), 3.77 (d, *J* = 7.1 Hz, 1H), 3.68 (d, *J* = 7.0 Hz, 1H), 1.42 (s, 9H), 1.40 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 163.13, 163.10, 141.8, 141.1, 135.4, 135.3, 134.7, 133.6, 128.2, 128.0, 126.8, 126.4, 120.3, 119.1, 115.1, 115.0, 84.9, 84.8, 49.0, 48.6, 44.5, 44.1, 27.63, 27.61.; HRMS (ESI+) Calcd. For C₁₆H₁₇Cl₂NNaO₂⁺ ([M+Na]⁺): 348.0529, found: 348.0529.

3-(4-bromophenyl)pent-4-enenitrile (9d): Yield (72%); colorless liquid; ¹H NMR (400 MHz,

Chloroform-*d*) δ 7.54 – 7.44 (m, 2H), 7.16 – 7.03 (m, 2H), 5.99 (ddd, J = 17.2, 10.4, 6.8 Hz, 1H), 5.27 (dd, J = 10.4, 0.8 Hz, 1H), 5.20 (dd, J = 17.2, 0.8 Hz, 1H), 3.67 (dt, J = 6.8, 6.7 Hz, 1H), 2.74 (dd, J = 16.2, 6.7 Hz, 1H), 2.68 (dd, J = 16.2, 6.7 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 139.2, 137.2, 132.1, 129.1, 121.5, 117.8, 117.3, 44.8, 23.8.; HRMS (ESI+) Calcd. For C₁₁H₁₀BrNNa⁺ ([M+Na]⁺): 257.9889, found: 257.9883. The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee for (*S*)-**9d**, 99% ee for (*R*)-**9d** (Chiralcel OD-H, *i*-propanol/hexane = 2/98, flow rate 1.0 mL/min, $\lambda = 220$ nm); t_r = 19.61 and 23.67 min.

3-(naphthalen-2-yl)pent-4-enenitrile (90): Yield (80%); colorless liquid; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 – 7.80 (m, 3H), 7.70 – 7.66 (m, 1H), 7.52 – 7.44 (m, 2H), 7.33 (dd, *J* = 8.5, 1.9 Hz, 1H), 6.11 (ddd, *J* = 17.2, 10.4, 6.9 Hz, 1H), 5.30 (dd, *J* = 10.4, 1.0 Hz, 1H), 5.25 (dd, *J* = 17.2, 1.1 Hz, 1H), 3.86 (td, *J* = 7.2, 6.9 Hz, 1H), 2.83 (dd, *J* = 16.8, 7.2 Hz, 1H), 2.79 (dd, *J* = 16.8, 7.2 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 137.7, 137.6, 133.4, 132.7, 128.8, 127.8, 127.6, 126.4, 126.08, 126.06, 125.2, 118.2, 117.1, 45.5, 23.8.; HRMS (ESI+) Calcd. For C₁₅H₁₃NNa⁺ ([M+Na]⁺): 230.0940, found: 230.0941. The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee for (*S*)-90, 99% ee for (*R*)-90 (Chiralcel OJ-H, *i*-propanol/hexane = 10/9, flow rate 1.0 mL/min, λ = 220 nm); t_r = 36.09 and 37.82 min.

3-(3,5-dichlorophenyl)pent-4-enenitrile (9n): Yield (75%); colorless liquid; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.30 (t, *J* = 1.9 Hz, 1H), 7.13 (dd, *J* = 1.9, 0.5 Hz, 2H), 5.96 (ddd, *J* = 17.2, 10.4, 6.9 Hz, 1H), 5.33 (dd, *J* = 10.4, 0.4 Hz, 1H), 5.24 (dd, *J* = 17.2, 0.8 Hz, 1H), 3.66 (dt, *J* = 7.2, 6.9 Hz, 1H), 2.81 – 2.70 (dd, *J* = 9.2, 7.2 Hz, 1H), 2.75 – 2.64 (dd, *J* = 9.2, 7.2 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 143.5, 136.3, 135.5, 127.9, 126.0, 118.1, 117.4, 44.8, 23.6.; HRMS (ESI+) Calcd. For

 $C_{11}H_9Cl_2NNa^+$ ([M+Na]⁺): 248.0004, found: 248.0015. The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee for (*S*)-**9n**, 95% ee for (*R*)-**9n** (Chiralpak IE, *i*-propanol/hexane = 1/99, flow rate 1.0 mL/min, $\lambda = 206$ nm); t_r = 11.92 and 12.69 min.

V. Optimization of the Asymmetric Double Allylation Reaction Conditions

4D i					tBuO ₂ C_CN
ibu			[\] OCO₂Me	5 mol% [lr]/ L	
	+		b	ase, solvent, rt	
	Ser Br				Br
	5d	10			(R,R,R)- 8A
Entry ^a	Ligand	Base	Solvent	Yield of 8A $(\%)^b$	dr of 8A (%) ^c
1	(R_a, R, R) - SL1	Cs_2CO_3	THF	93	1:0.18:0.03:0.02
2	(R_a, R, R) - SL1	Cs_2CO_3	toluene	90	1:0.25:0.05:0.01
3	(R_a, R, R) -SL1	Cs ₂ CO ₃	Et ₂ O	93	1:0.33:0.06:0.02
4	(R_a, R, R) -SL1	Cs_2CO_3	MeOH	90	1:0.40:0.31:0.05
5	(R_a, R, R) -SL1	Cs ₂ CO ₃	MeCN	83	1:0.36:0.05:0.02
6	(R_a, R, R) -SL1	Cs ₂ CO ₃	DMF	95	1:0.41:0.10:0.03
7	(R_a, R, R) -SL1	Cs_2CO_3	DCM	93	1:0.24:0.10:0.01
8	(R_a, R, R) -SL1	Cs ₂ CO ₃	DCE	94	1:0.25:0.09:0.01
9	(R_a, R, R) -SL1	tBuOK	THF	38	1:0.19:0.03:0.01
10	(R_a, R, R) -SL1	NaOH	THF	46	1:0.19:0.07:0.03
11	(R_a, R, R) -SL1	DBU	THF	30	1:0.17:0.03:0.01
12	(R_a, R, R) - SL1	nBuLi	THF	88	1:0.22:0.10:0.01
13	(R_a, R, R) -SL1	LiHDMS	THF	33	1:0.39:0.03:0.03
14	(R_a, R, R) -SL1	NaHDMS	THF	56	1:0.20:0.05:0.02
15	(R_a, R, R) -SL1	Et ₃ N	THF	96	1:0.24:0.11:0.01
16^d	(R_a, R, R) -SL1	Cs ₂ CO ₃	DCM	91	1:0.15:0.08:0.01
17^d	(R_a, R, R) -SL1	Cs ₂ CO ₃	DCM/THF = 1:1	86	1:0.15:0.08:0.01
18	(R_a, R, R) -SL2	Cs_2CO_3	THF	<5	/
19	(R_a, R, R) - SL3	Cs ₂ CO ₃	THF	<5	/
20^d	(R_a, R, R) -SL2	Cs_2CO_3	DCM	75	1:0.35:0.04:0.02
21^d	(R_a, R, R) - SL3	Cs ₂ CO ₃	DCM	85	1:0.27:0.04:0.01
22^d	(R_a, R, R) -SL4	Cs ₂ CO ₃	DCM	88	1:0.45:0.04:0.03
23^d	(R_a, R, R) -SL5	Cs_2CO_3	DCM	92	1:0.17:0.05:0.02
24^d	(R_a, R, R) - SL6	Cs ₂ CO ₃	DCM	83	1:0.18:0.06:0.02
25^d	(R_a, R, R) - SL7	Cs ₂ CO ₃	DCM	94	1:0.15:0.03:0

26^d	(R_a, R, R) - SL8	Cs ₂ CO ₃	DCM	75	1:0.12:0.03:0.01
27^d	(R_a, R, R) - SL9	Cs ₂ CO ₃	DCM	81	1:0.14:0.05:0.02
28^d	(R_a, R, R) - SL10	Cs ₂ CO ₃	DCM	84	1:0.13:0.04:0.02
29^d	(R_a, R, R) - SL11	Cs ₂ CO ₃	DCM	90	1:0.21:0.05:0.02
30^d	(R_a, R, R) - SL12	Cs ₂ CO ₃	DCM	46	1:0.17:0.05:0.03
31^d	(R_a, R, R) - SL13	Cs ₂ CO ₃	DCM	78	1:0.20:0.05:0.02
32^d	(R_a, R, R) - SL14	Cs ₂ CO ₃	DCM	47	1:0.09:0.03:0.01
33	(R_a, R, R) - SL14	Cs ₂ CO ₃	DCM	60	1:0.09:0.05:0.01
34	(R_a, R, R) - SL7	Cs ₂ CO ₃	DCM	95	1:0.16:0.03:0

^{*a*} All reactions were carried out with 0.20 mmol **5d**, 0.2 mmol **1o** and 0.2 mmol base in 2 mL of solvent. ^{*b*} Yields refer to the isolated products after chromatographic purification. ^{*c*} The dr value was determined by ¹H NMR analysis. ^{*d*} Reaction was carried out at 0 °C.

(R_a,R,R)-**SL1 (L2**)

(R_a,R,R)-**SL5**

(R_a,R,R)-**SL9**

(R_a,R,R)-**SL13**

Ph

(R_a,R,R)-**SL6**

(R_a,R,R)-**SL10**

(S_a,S)-**SL14**

(R_a,R,R)-**SL3**

(R_a,R,R)-**SL4**

OMe

(R_a,R,R)-**SL7 (L3**)

(R_a,R,R)-**SL11**

(R_a,R,R)-**SL8**

(S,R,R)-**SL12**

VI. Stereodivergent Synthesis of Bisallylated Cyanoacetates Bearing Continues Three Stereocenters

General Procedure for Synthesis of Bisallylated Cyanoacetates:

(*S*,*R*,*S*)-**8A** as example

A flame dried Schlenk tube was cooled to rt and evacuated and backfilled with argon for three times. To this Schlenk tube were added [Ir(COD)Cl]₂ (0.005 mmol, 2.5 mol %), phosphoramidite ligand (S_a, S, S) -**SL7** (L3) (0.01 mmol, 5 mol %), degassed THF (0.5 mL) and degassed *n*-propylamine (0.5 mL). The reaction mixture was heated at 50 °C for 30 min and then the volatile solvents were removed under vacuum to give a pale yellow solid. Allylic carbonate **10** (0.50 mmol), cyanoacetate **3** (1.00 mmol), DABCO (0.10 mmol), THF (10 mL) were then added, and then reacted at 0 °C for 12 h under Ar₂ atmosphere. The crude product was purified by silica-gel column chromatography to give the mono-allylic cyanoacetate **50**.

Then under Ar₂ atmosphere, [Ir(COD)Cl]₂ (0.005 mmol, 2.5 mol %), phosphoramidite ligand (S_a, S, S) -SL7 (0.01 mmol, 5 mol %), degassed THF (0.5 mL) and degassed *n*-propylamine (0.5 mL) were heated at 50 °C for 30 min and then the volatile solvents were removed under vacuum to give Ir-compless. To this Schlenk tube allylic carbonate 1d (0.20 mmol), mono-allylic cyanoacetate 5o (0.20 mmol), Cs₂CO₃ (0.20 mmol), DCM (2 mL) were then added, and then reacted at room temperature under Ar₂ atmosphere. Once starting material was consumed (monitored by TLC), the mixture was added water, and extracted with dichloromethane (3×). The dichloromethane layers were dried over anhydrous Na₂SO₄, filtered, and evaporated to give crude (*S*,*R*,*S*)-8A. The crude product was purified by silica-gel column chromatography to give (*S*,*R*,*S*)-8A.

tert-butyl (2*R*,3*S*)-3-(4-bromophenyl)-2-cyano-2-((*S*)-1-(naphthalen-2-yl)allyl)pent-4-enoate ((*S*,*R*,*S*)-8A): Yield (94%); White solid, mp 88–90 °C; $[\alpha]^{25}_{D} = 126.46$ (*c* 1.05, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 – 7.76 (m, 4H), 7.57 (dd, *J* = 8.6, 1.9 Hz, 1H), 7.49 – 7.38 (m, 4H), 7.25 – 7.21 (m, 2H), 6.62 (ddd, *J* = 17.0, 10.0, 9.8 Hz, 1H), 6.30 (ddd, *J* = 16.9, 10.2, 9.4 Hz, 1H), 5.35 (dd, *J* = 10.2, 1.5 Hz, 1H), 5.244 (dd, *J* = 10.0, 1.6 Hz, 1H), 5.35 (dd, *J* = 17.0, 1.6 Hz, 1H), 5.17 (dd, *J* = 16.9, 2.0 Hz, 1H), 4.08 (d, *J* = 9.4 Hz, 1H), 3.84 (d, *J* = 9.8 Hz, 1H), 0.86 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.3, 137.4, 135.9, 134.3, 133.8, 133.2, 132.7, 131.6, 130.8, 128.2, 128.1, 127.9, 127.4, 126.6, 126.2, 126.1, 122.0, 120.2, 120.1, 118.3, 84.3, 58.4, 54.7, 53.5, 27.1.; HRMS (ESI+) Calcd. For C₂₉H₂₈BrNNaO₂⁺ ([M+Na]⁺): 524.1196, found: 524.1179; dr = 1:0.12:0.02:0.

tert-butyl (2*R*,3*R*)-3-(4-bromophenyl)-2-cyano-2-((*S*)-1-(naphthalen-2-yl)allyl)pent-4-enoate ((*S*,*R*,*R*)-8A): Yield (98%); White solid, mp 88–90 °C; $[\alpha]^{25}_{D} = 31.96$ (*c* 1.12, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.78 (ddd, *J* = 8.8, 4.3, 2.4 Hz, 4H), 7.51 (dd, *J* = 8.6, 1.8 Hz, 1H), 7.46 – 7.40 (m, 4H), 7.30 – 7.26 (m, 2H), 6.46 (dddd, *J* = 16.9, 10.2, 8.8 Hz, 1H), 6.37 (dddd, *J* = 16.9, 10.2, 8.8 Hz, 1H), 5.30 (dd, *J* = 10.2, 1.6 Hz, 1H), 5.29 (dd, *J* = 10.2, 1.7 Hz, 1H), 5.18 (dd, *J* = 16.9, 2.3 Hz, 1H), 5.17 (dd, *J* = 16.9, 2.2 Hz, 1H), 4.05 (d, *J* = 8.8 Hz, 1H), 3.92 (d, *J* = 8.8 Hz, 1H), 0.79 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.1, 138.1, 136.2, 135.9, 135.7, 133.1, 132.7, 131.4, 130.9, 128.2, 128.0, 127.9, 127.5, 126.8 126.2, 126.1, 121.7, 120.1, 120.0, 118.4, 84.1, 58.3, 56.2, 55.5, 26.9.; dr = 1:0.04:0.04:0.

tert-butyl

(2R,3S)-3-(4-bromophenyl)-2-cyano-2-((R)-1-(naphthalen-2-yl)allyl)pent-4-enoate

((R,S,S)-8A): Yield (99%); White solid, mp 84–86 °C; $[\alpha]^{25}_{D} = -20.39$ (*c* 1.27, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.78 (ddd, J = 8.8, 3.6, 2.4 Hz, 4H), 7.51 (dd, J = 8.6, 1.9 Hz, 1H), 7.46 – 7.40 (m, 4H), 7.29 – 7.26 (m, 2H), 6.46 (ddd, J = 16.9, 10.0, 8.8 Hz, 1H), 6.36 (ddd, J = 16.8, 10.0, 8.9 Hz, 1H), 5.30 (dd, J = 10.0, 1.6 Hz, 1H), 5.29 (dd, J = 10.0, 1.6 Hz, H), 5.18 (dd, J = 16.8, 2.0 Hz, 1H), 5.17 (dd, J = 16.9, 2.0 Hz, H), 4.05 (d, J = 8.8 Hz, 1H), 3.92 (d, J = 8.9 Hz, 1H), 0.79 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.1, 138.1, 136.2, 135.9, 135.7, 133.1, 132.7, 131.4, 130.9, 128.2, 128.0, 127.9, 127.5, 126.8, 126.2, 126.1, 121.7, 120.1, 120.0, 118.4, 84.1, 58.3, 56.2, 55.5, 26.9.; dr = 1:0.03:0.02:0.

tert-butyl (2*S*,3*R*)-3-(4-bromophenyl)-2-cyano-2-((*R*)-1-(naphthalen-2-yl)allyl)pent-4-enoate ((*R*,*S*,*R*)-8A): Yield (95%); White solid, mp 84–86 °C; $[\alpha]^{25}_{D} = -159.26$ (*c* 1.36, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 – 7.76 (m, 4H), 7.57 (dd, *J* = 8.6, 1.9 Hz, 1H), 7.47 – 7.43 (m, 4H), 7.25 – 7.21 (m, 2H), 6.62 (ddd, *J* = 17.0, 10.0. 9.8 Hz, 1H), 6.30 (ddd, *J* = 16.9, 10.2, 9.4 Hz, 1H), 5.35 (dd, *J* = 10.2, 1.5 Hz, 1H), 5.244 (dd, *J* = 10.0, 1.5 Hz, 1H), 5.240 (dd, *J* = 17.0, 1.5 Hz, 1H), 5.18 (dd, *J* = 16.9, 2.1 Hz, 1H), 4.08 (d, *J* = 9.4 Hz, 1H), 3.84 (d, *J* = 9.8 Hz, 1H), 0.86 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.3, 137.4, 135.9, 134.3, 133.8, 133.2, 132.7, 131.6, 130.8, 128.2, 128.1, 127.9, 127.4, 126.6, 126.2, 126.1, 122.0, 120.2, 120.1, 118.3, 84.3, 58.4, 54.7, 53.5, 27.1.; dr = 1:0.12:0.02:0.

tert-butyl (2*S*,3*S*)-3-(4-bromophenyl)-2-cyano-2-((*S*)-1-(naphthalen-2-yl)allyl)pent-4-enoate ((*S*,*S*,*S*)-8A): Yield (92%); Pale yellow liquid; $[\alpha]^{25}_{D} = 146.88$ (*c* 1.12, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 – 7.73 (m, 4H), 7.48 – 7.38 (m, 5H), 7.34 – 7.30 (m, 2H), 6.72 (ddd, *J* = 17.0, 10.0, 10.0 Hz, 1H), 6.20 (ddd, *J* = 16.9, 10.2, 9.6 Hz, 1H), 5.34 (dd, *J* = 10.0, 1.5 Hz, 1H), 5.26 (dd, *J* = 17.0, 10.0, 10.0 Hz, 1H), 6.20 (ddd, *J* = 16.9, 10.2, 9.6 Hz, 1H), 5.34 (dd, *J* = 10.0, 1.5 Hz, 1H), 5.26 (dd, *J* = 17.0, 10.0 Hz, 1H), 5.26 (dd, *J* = 17.0 Hz, 1H), 5.26 (dd, Jz = 17.0 Hz, 1H), 5.26 (dz) = 12.0 Hz, 1Hz, 1Hz, 1Hz, 1Hz, 1Hz, 1

1.0 Hz, 1H), 5.21 (dd, J = 10.2, 1.5 Hz, 1H), 5.15 (dd, J = 16.9, 1.0 Hz, 1H), 3.98 (d, J = 10.0 Hz, 1H), 3.94 (d, J = 9.6 Hz, 1H), 1.01 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.3, 137.7, 135.7, 134.1, 134.0, 133.2, 132.9, 131.5, 130.9, 128.2, 128.1, 127.9, 127.6, 126.8, 126.2, 126.1, 121.7, 120.2, 120.0, 118.2, 84.4, 58.4, 55.3, 52.8, 27.2.; dr = 1:0.18:0.05:0.02.

tert-butyl (2*R*,3*R*)-3-(4-bromophenyl)-2-cyano-2-((*R*)-1-(naphthalen-2-yl)allyl)pent-4-enoate ((*R*,*R*,*R*)-8A): Yield (95%); Pale yellow liquid; $[\alpha]^{25}_{D} = -124.13$ (*c* 1.04, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.81 – 7.76 (m, 4H), 7.47 – 7.41 (m, 5H), 7.35 – 7.30 (m, 2H), 6.72 (ddd, *J* = 17.0, 10.0, 10.0 Hz, 1H), 6.20 (ddd, *J* = 16.9, 10.2, 9.3 Hz, 1H), 5.34 (dd, *J* = 10.2, 1.5 Hz, 1H), 5.25 (dd, *J* = 17.0, 2.0 Hz, 1H), 5.21 (dd, *J* = 10.0, 1.5 Hz, 1H), 5.15 (dd, *J* = 16.9, 2.1 Hz, 1H), 3.98 (d, *J* = 9.3 Hz, 1H), 3.96 (d, *J* = 10.0 Hz, 1H), 1.01 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.3, 137.7, 135.7, 134.1, 134.0, 133.2, 132.9, 131.6, 131.5, 130.9, 128.2, 128.1, 127.9, 127.6, 126.8, 126.2, 126.1, 121.7, 120.2, 120.0, 118.2, 84.4, 58.4, 55.3, 52.8, 27.2.; dr = 1:0.16:0.03:0.

tert-butyl (2*R*,3*S*)-3-(4-bromophenyl)-2-cyano-2-((*S*)-1-(3,5-dichlorophenyl)allyl)pent-4-enoate ((*S*,*R*,*S*)-8B): Yield (83%); Pale yellow liquid; $[\alpha]^{25}_{D} = 86.85$ (*c* 1.08, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 – 7.42 (m, 2H), 7.29 (d, *J* = 1.9 Hz, 2H), 7.27 – 7.26 (m, 1H), 7.22 – 7.17 (m, 2H), 6.53 (ddd, *J* = 17.0, 10.0, 9.8 Hz, 1H), 6.10 (ddd, *J* = 17.0, 10.3, 9.4 Hz, 1H), 5.33 (dd, *J* = 10.0, 1.5 Hz, 1H), 5.27 (dd, *J* = 10.3, 1.2 Hz, 1H), 5.20 (dd, *J* = 17.0, 1.6 Hz, 1H), 5.16 (dd, *J* = 17.0, 1.6 Hz, 1H), 3.85 (d, *J* = 9.4 Hz, 1H), 3.75 (d, *J* = 9.8 Hz, 1H), 1.11 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.9, 141.8, 136.9, 135.0, 133.3, 133.0, 131.7, 130.7, 127.8, 127.5, 122.1, 121.1, 120.5, 117.6, 85.0,

57.9, 54.6, 52.6, 27.3.; HRMS (ESI+) Calcd. For $C_{25}H_{24}BrCl_2NNaO_2^+$ ([M+Na]⁺): 542.0260, found: 542.0257; dr = 1:0.07:0.03:0.

tert-butyl (2*R*,3*R*)-3-(4-bromophenyl)-2-cyano-2-((*S*)-1-(3,5-dichlorophenyl)allyl)pent-4-enoate ((*S*,*R*,*R*)-8B): Yield (94%); Pale yellow solid, mp 63–65 °C; $[\alpha]^{25}_{D} = -21.50$ (*c* 1.27, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 – 7.41 (m, 2H), 7.26 – 7.23 (m, 5H), 6.28 (ddd, *J* = 16.8, 10.2, 9.2 Hz, 1H), 6.26 (ddd, *J* = 16.8, 10.4, 9.2 Hz, 1H), 5.32 (d, *J* = 10.2 Hz, 1H), 5.32 (dd, *J* = 10.4, 0.8 Hz, 1H), 5.17 (dd, *J* = 16.8, 2.0 Hz, 1H), 5.16 (dd, *J* = 16.8, 2.0 Hz, 1H), 3.82 (d, *J* = 9.2 Hz, 1H), 3.81 (d, *J* = 9.2 Hz, 1H), 0.99 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.8, 142.0, 137.6, 135.2, 134.8, 134.7, 131.5, 130.8, 127.8, 127.6, 121.9, 121.0, 120.4, 117.7, 84.8, 57.8, 55.5, 55.1, 27.1.; dr = 1:0.07:0.03:0.01.

tert-butyl (2*S*,3*S*)-3-(4-bromophenyl)-2-cyano-2-((*R*)-1-(3,5-dichlorophenyl)allyl)pent-4-enoate ((*R*,*S*,*S*)-8B): Yield (91%); Pale yellow solid, mp 63–65 °C; $[\alpha]^{25}_{D} = 20.82$ (*c* 1.22, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 (d, *J* = 8.5 Hz, 2H), 7.26 – 7.22 (m, 5H), 6.27 (dtd, *J* = 16.9, 10.4, 8.9 Hz, 1H), 6.27 (ddd, *J* = 16.9, 10.2, 9.2 Hz, 1H), 6.27 (ddd, *J* = 17.2, 10.2, 9.2 Hz, 1H), 5.32 (dd, *J* = 10.2, 1.6 Hz, 1H), 5.17 (dd, *J* = 17.2, 2.0 Hz, 1H), 5.16 (dd, *J* = 16.9, 2.0 Hz, 1H), 3.82 (d, *J* = 9.2 Hz, 1H), 3.81 (d, *J* = 9.2 Hz, 1H), 0.99 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.8, 142.0, 137.6, 135.2, 134.8, 134.7, 131.5, 130.8, 127.8, 127.6, 121.9, 121.0, 120.4, 117.7, 84.8, 57.8, 55.5, 55.1, 27.1.; dr = 1:0.04:0.02:0.

tert-butyl (2*S*,3*R*)-3-(4-bromophenyl)-2-cyano-2-((*R*)-1-(3,5-dichlorophenyl)allyl)pent-4-enoate ((*R*,*S*,*R*)-8B): Yield (91%); Pale yellow liquid; $[\alpha]^{25}_{D} = -85.43$ (*c* 0.94, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 – 7.43 (m, 2H), 7.29 (d, *J* = 1.9 Hz, 2H), 7.26 (d, *J* = 2.1 Hz, 1H), 7.21 – 7.18 (m, 2H), 6.53 (ddd, *J* = 17.0, 10.0, 9.9 Hz, 1H), 6.10 (ddd, *J* = 16.9, 10.2, 9.4 Hz, 1H), 5.33 (dd, *J* = 10.2, 1.5 Hz, 1H), 5.27 (dd, *J* = 10.2, 1.1 Hz, 1H), 5.22 (dd, *J* = 17.0, 1.1 Hz, 1H), 5.16 (dd, *J* = 16.9, 1.1 Hz, 1H), 3.85 (d, *J* = 9.4 Hz, 1H), 3.75 (d, *J* = 9.9 Hz, 1H), 1.11 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.9, 141.8, 136.9, 134.9, 133.3, 133.0, 131.7, 130.7, 127.8, 127.5, 122.1, 121.1, 120.5, 117.6, 85.0, 57.9, 54.6, 52.7, 27.3.; dr = 1:0.07:0.03:0.

tert-butyl (2*S*,3*S*)-3-(4-bromophenyl)-2-cyano-2-((*S*)-1-(3,5-dichlorophenyl)allyl)pent-4-enoate ((*S*,*S*,*S*)-8B): Yield (99%); Pale yellow liquid; $[\alpha]^{25}_{D} = 88.98$ (*c* 0.89, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 (d, *J* = 8.6 Hz, 2H), 7.31 – 7.28 (m, 3H), 7.19 (d, *J* = 1.9 Hz, 2H), 6.52 (ddd, *J* = 16.9, 10.0, 9.9 Hz, 1H), 6.18 (ddd, *J* = 16.9, 10.2, 9.5 Hz, 1H), 5.36 (dd, *J* = 10.0, 1.4 Hz, 1H), 5.28 (dd, *J* = 10.2, 1.3 Hz, 1H), 5.23 (dd, *J* = 16.9, 1.3 Hz, 1H), 5.28 (dd, *J* = 16.9, 1.4 Hz, 1H), 3.86 (d, *J* = 9.5 Hz, 1H), 3.73 (d, *J* = 9.9 Hz, 1H), 1.08 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.9, 141.5, 137.3, 135.0, 133.6, 132.7, 131.6, 130.8, 128.2, 127.5, 121.9, 121.1, 120.6, 117.6, 85.1, 57.9, 54.5, 52.7, 27.3.; dr = 1:0.19:0.02:0.01.

tert-butyl (2*R*,3*R*)-3-(4-bromophenyl)-2-cyano-2-((*R*)-1-(3,5-dichlorophenyl)allyl)pent-4-enoate

((R,R,R)-8B): Yield (97%); Pale yellow liquid; $[\alpha]^{25}_{D} = -97.83$ (*c* 0.92, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 – 7.41 (m, 2H), 7.31 – 7.28 (m, 3H), 7.19 (d, *J* = 1.9 Hz, 2H), 6.52 (ddd, *J* = 16.9, 10.1. 9.6 Hz, 1H), 6.18 (ddd, *J* = 16.9, 10.2, 9.9 Hz, 1H), 5.36 (dd, *J* = 10.1, 1.3 Hz, 1H), 5.28 (dd, *J* = 10.2, 1.3 Hz, 1H), 5.23 (dd, *J* = 10.2, 1.0 Hz, 1H), 5.18 (dd, *J* = 16.9, 1.0 Hz, 1H), 3.87 (d, *J* = 9.6 Hz, 1H), 3.74 (d, *J* = 9.9 Hz, 1H), 1.08 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.9, 141.5, 137.3, 135.0, 133.6, 132.7, 131.6, 130.8, 128.1, 127.5, 121.9, 121.0, 120.6, 117.6, 85.1, 57.8, 54.5, 52.7, 27.3.; dr = 1:0.19:0.02:0.01.

tert-butyl (2*R*,3*S*)-3-(4-bromophenyl)-2-cyano-2-((*S*)-1-(3,5-dichlorophenyl)allyl)pent-4-enoate ((*S*,*R*,*S*)-8C): Yield (93%); White solid, mp 88–90 °C; $[\alpha]^{25}_{D} = 80.56$ (*c* 0.90, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 – 7.76 (m, 4H), 7.48 – 7.44 (m, 3H), 7.32 (d, *J* = 1.9 Hz, 2H), 7.26 – 7.24 (m, 1H), 6.70 (dd, *J* = 17.0, 10.0, 9.9 Hz, 1H), 6.15 (ddd, *J* = 16.9, 10.2, 9.3 Hz, 1H), 5.34 (dd, *J* = 10.1, 1.6 Hz, 1H), 5.25 (dd, *J* = 17.0, 0.8 Hz, 1H), 5.34 (dd, *J* = 10.2, 1.2 Hz, 1H), 5.17 (dd, *J* = 16.8, 1.6 Hz, 1H), 3.96 (d, *J* = 9.9 Hz, 1H), 3.93 (d, *J* = 9.3 Hz, 1H), 1.08 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.2, 142.0, 135.4, 134.9, 133.9, 133.23, 133.21, 132.9, 128.3, 128.2, 128.0, 127.8, 127.6, 126.8, 126.3, 126.2, 121.0, 120.2, 117.8, 84.8, 58.1, 55.3, 52.7, 27.3.; HRMS (ESI+) Calcd. For C₂₉H₂₇Cl₂NNaO₂⁺ ([M+Na]⁺): 514.1311, found: 514.1307; dr = 1:0.07:0.04:0.

tert-butyl (2*R*,3*S*)-2-cyano-3-(3,5-dichlorophenyl)-2-((*R*)-1-(naphthalen-2-yl)allyl)pent-4-enoate ((*S*,*R*,*R*)-8C): Yield (98%); White solid, mp 98–100 °C; $[\alpha]^{25}_{D} = -34.00$ (*c* 0.84, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.78 (dd, *J* = 9.2, 2.3 Hz, 4H), 7.50 (dd, *J* = 8.6, 1.8 Hz, 1H), 7.48 – 7.44 (m, 2H), 7.29 (d, *J* = 1.9 Hz, 2H), 7.26 (d, *J* = 1.8 Hz, 1H), 6.44 (ddd, *J* = 16.9, 10.2, 8.9 Hz, 1H), 6.32 (ddd, *J* = 1.8 Hz, 1H), 6.44 (ddd, *J* = 16.9, 10.2, 8.9 Hz, 1H), 6.32 (ddd, *J* = 1.8 Hz, 1H), 6.44 (ddd, *J* = 16.9, 10.2, 8.9 Hz, 1H), 6.32 (ddd, *J* = 1.8 Hz, 1H), 6.44 (ddd, *J* = 16.9, 10.2, 8.9 Hz, 1H), 6.32 (ddd, *J* = 1.8 Hz, 1H), 6.44 (ddd, *J* = 16.9, 10.2, 8.9 Hz, 1H), 6.32 (ddd, *J* = 1.8 Hz, 1H), 6.44 (ddd, *J* = 16.9, 10.2, 8.9 Hz, 1H), 6.32 (ddd, *J* = 1.8 Hz, 1H), 6.44 (ddd, *J* = 16.9, 10.2, 8.9 Hz, 1H), 6.32 (ddd, *J* = 1.8 Hz, 1H), 6.44 (ddd, *J* = 16.9, 10.2, 8.9 Hz, 1H), 6.32 (ddd, *J* = 1.8 Hz, 1H), 6.44 (ddd, *J* = 16.9, 10.2, 8.9 Hz, 1H), 6.32 (ddd, *J* = 1.8 Hz, 1H), 6.44 (ddd, *J* = 16.9, 10.2, 8.9 Hz, 1H), 6.32 (ddd, *J* = 1.8 Hz, 1H), 6.44 (ddd, *J* = 16.9, 10.2, 8.9 Hz, 1H), 6.32 (ddd, *J* = 1.8 Hz, 1H), 6.44 (ddd, *J* = 16.9, 10.2, 8.9 Hz, 1H), 6.32 (ddd, *J* = 1.8 Hz, 1H), 6.44 (ddd, *J* = 16.9, 10.2, 8.9 Hz, 1H), 6.32 (ddd, *J* = 1.8 Hz, 1H), 6.44 (ddd, *J* = 16.9, 10.2, 8.9 Hz, 1H), 6.32 (ddd, *J* = 1.8 Hz, 1H), 6.44 (ddd, *J* = 16.9, 10.2, 8.9 Hz, 1H), 6.32 (ddd, *J* = 1.8 Hz, 1H), 6.44 (ddd, *J* = 16.9, 10.2, 8.9 Hz, 1H), 6.32 (ddd, *J* = 1.8 Hz, 1H), 6.44 (ddd, *J* = 16.9, 10.2, 8.9 Hz, 1H), 6.32 (ddd, *J* = 1.8 Hz, 1H), 6.44 (ddd, *J* = 16.9, 10.2, 8.9 Hz, 1H), 6.32 (ddd, *J* = 1.8 Hz, 1H), 6.44 (ddd, *J* = 16.9, 10.2, 8.9 Hz, 1H), 6.32 (ddd, *J* = 1.8 Hz, 1H), 6.44 (ddd, *J* = 16.9, 10.2, 8.9 Hz, 1H), 6.32 (ddd, J = 1.8 Hz, 1H), 6.34 (ddd), 4 = 1.8 Hz, 1H), 6.44 (dd

16.9, 10.2, 8.9 Hz, 1H), 5.35 (d, J = 10.2 Hz, 1H), 5.30 (d, J = 10.2 Hz, 1H), 5.21 (d, J = 16.9 Hz, 1H), 5.20 (d, J = 16.9 Hz, 1H), 4.03 (d, J = 8.9 Hz, 1H), 3.90 (d, J = 8.9 Hz, 1H), 0.85 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.9, 142.3, 136.0, 135.7, 134.9, 134.8, 133.1, 132.7, 128.2, 128.1, 127.9, 127.7, 127.6, 127.5, 126.7, 126.24, 126.17, 120.9, 120.2, 117.9, 84.5, 58.1, 56.3, 55.2, 27.0.; dr = 1:0.03:0.03:0.

tert-butyl (2*S*,3*R*)-2-cyano-3-(3,5-dichlorophenyl)-2-((*S*)-1-(naphthalen-2-yl)allyl)pent-4-enoate ((*R*,*S*,*S*)-8C): Yield (96%); White solid, mp 99–101 °C; $[\alpha]^{25}_{D} = 35.64$ (*c* 0.94, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.79 (dd, *J* = 9.2, 2.2 Hz, 4H), 7.50 (dd, *J* = 8.7, 1.8 Hz, 2H), 7.49 – 7.42 (m, 3H), 7.29 (d, *J* = 1.9 Hz, 2H), 7.26 – 7.24 (m, 2H), 6.44 (ddd, *J* = 16.9, 10.2, 8.9 Hz, 1H), 6.32 (ddd, *J* = 16.9, 10.2, 8.9 Hz, 1H), 5.35 (d, *J* = 10.2 Hz, 2H), 5.31 (dd, *J* = 10.2, 1.2 Hz, 2H), 5.209 (dd, *J* = 16.9, 1.2 Hz, 1H), 5.203 (dd, *J* = 16.9, 1.2 Hz, 1H), 4.03 (d, *J* = 8.9 Hz, 1H), 3.90 (d, *J* = 8.9 Hz, 1H), 0.85 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.9, 142.3, 136.0, 135.7, 134.9, 134.8, 133.1, 132.7, 128.2, 128.1, 127.9, 127.7, 127.6, 127.5, 126.7, 126.2, 126.2, 120.9, 120.2, 118.0, 84.6, 58.1, 56.3, 55.2, 27.0.; dr = 1:0.03:0.02:0.01.

tert-butyl (2*S*,3*S*)-2-cyano-3-(3,5-dichlorophenyl)-2-((*S*)-1-(naphthalen-2-yl)allyl)pent-4-enoate ((*S*,*S*,*S*)-8C): Yield (88%); White solid, mp 105–107 °C; $[\alpha]^{25}_{D} = 143.60$ (*c* 1.50, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 – 7.77 (m, 4H), 7.58 (dd, *J* = 8.6, 1.9 Hz, 1H), 7.45 (ddd, *J* = 7.5, 3.5, 1.9 Hz, 2H), 7.29 (t, *J* = 1.9 Hz, 1H), 7.23 (d, *J* = 1.9 Hz, 2H), 6.59 (ddd, *J* = 17.0, 10.0. 9.6 Hz, 1H), 6.33 (ddd, *J* = 16.9, 10.1, 9.9 Hz, 1H), 5.39 (dd, *J* = 10.1, 1.4 Hz, 1H), 5.30 (dd, *J* = 10.0, 1.2 Hz, 1H), 5.26 (dd, *J* = 10.1, 1.2 Hz, 1H), 5.39 (dd, *J* = 10.1, 1.4 Hz, 1H), 4.08 (d, *J* = 9.6 Hz, 1H), 3.81 (d, *J* = 9.9 Hz, 1H), 0.89 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.1, 141.7, 135.7, 135.0, 134.2, 133.2, 133.1, 132.7, 128.21, 128.18, 128.1, 127.9, 127.6, 127.5, 126.5, 126.2, 126.1, 120.9, 120.3, 117.9, 84.8, 58.1, 54.7, 53.5, 27.1; dr = 1:0.15:0.03:0.01.

tert-butyl (2*R*,3*R*)-2-cyano-3-(3,5-dichlorophenyl)-2-((*R*)-1-(naphthalen-2-yl)allyl)pent-4-enoate ((*R*,*R*,*R*)-8C): Yield (96%); White solid, mp 105–107 °C; $[\alpha]^{25}_{D} = -127.44$ (*c* 1.33, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 – 7.77 (m, 4H), 7.58 (dd, *J* = 8.6, 1.9 Hz, 1H), 7.47 – 7.43 (m, 2H), 7.29 (t, *J* = 1.9 Hz, 1H), 7.23 (d, *J* = 1.8 Hz, 2H), 6.59 (ddd, *J* = 17.0, 10.8, 9.8 Hz, 1H), 6.33 (ddd, *J* = 16.9, 10.0, 9.5 Hz, 1H), 5.39 (dd, *J* = 10.0, 1.4 Hz, 1H), 5.29 (dd, *J* = 10.8, 1.2 Hz, 1H), 5.26 (dd, *J* = 17.2, 1.4 Hz, 1H), 5.22 (dd, *J* = 16.9, 1.2 Hz, 1H), 4.08 (d, *J* = 9.5 Hz, 1H), 3.81 (d, *J* = 9.8 Hz, 1H), 0.89 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.1, 141.7, 135.7, 135.0, 134.2, 133.2, 133.1, 132.7, 128.21, 128.18, 128.1, 127.9, 127.6, 127.5, 126.5, 126.2, 126.1, 120.9, 120.3, 117.9, 84.8, 58.1, 54.7, 53.5, 27.1.; dr = 1:0.15:0.03:0.01.

VII. Synthesis of (S,s,R)-meso-7d

A flame dried Schlenk tube was cooled to rt and evacuated and backfilled with argon for three times. To this Schlenk tube were added [Ir(COD)Cl]₂ (0.005 mmol, 2.5 mol %), phosphoramidite ligand (S_a, S, S) -**SL7** (L3) (0.01 mmol, 5 mol %), degassed THF (0.5 mL) and degassed *n*-propylamine (0.5 mL). The reaction mixture was heated at 50 °C for 30 min and then the volatile solvents were removed under vacuum to give a pale yellow solid. Allylic carbonate **1d** (0.50 mmol), cyanoacetate **3** (1.00 mmol), DABCO (0.10 mmol), THF (10 mL) were then added, and then reacted at 0 °C for 12 h under Ar₂ atmosphere. The crude product was purified by silica-gel column chromatography to give the mono-allylic cyanoacetate **5d**.

Then under Ar₂ atmosphere, [Ir(COD)Cl]₂ (0.005 mmol, 2.5 mol %), phosphoramidite ligand (R_{a} ,R,R)-**SL7** (L3) (0.01 mmol, 5 mol %), degassed THF (0.5 mL) and degassed *n*-propylamine (0.5 mL) were heated at 50 °C for 30 min and then the volatile solvents were removed under vacuum to give Ir-compless. To this Schlenk tube allylic carbonate 1d (0.20 mmol), mono-allylic cyanoacetate 5d (0.20 mmol), Cs₂CO₃ (0.20 mmol), DCM (2 mL) were then added, and then reacted at room temperature under Ar₂ atmosphere. Once starting material was consumed (monitored by TLC), the mixture was added water, and extracted with dichloromethane (3×). The dichloromethane layers were dried over anhydrous Na₂SO₄, filtered, and evaporated to give crude (S,s,R)-*meso*-7d. The crude product was purified by silica-gel column chromatography to give (S,s,R)-*meso*-7d.

tert-butyl (2*s*,3*S*)-3-(4-bromophenyl)-2-((*R*)-1-(4-bromophenyl)allyl)-2-cyanopent-4-enoate ((*S*,*s*,*R*)-*meso*-7d): Yield (86%); White solid, mp 158–160 °C; $[\alpha]^{25}_{D} = 0.03$ (*c* 1.02, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 – 7.38 (m, 4H), 7.26 – 7.19 (m, 4H), 6.30 (ddd, *J* = 16.9, 10.2, 8.9 Hz, 2H), 5.27 (dd, *J* = 10.3, 0.9 Hz, 1H), 5.26 (dd, *J* = 10.3, 1.2 Hz, 1H), 5.14 (dd, *J* = 16.9, 0.9 Hz, 1H), 5.13 (dd, *J* = 16.9, 1.2 Hz, 1H), 3.83 (d, *J* = 8.9 Hz, 2H), 0.94 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.9, 137.8, 135.4, 131.5, 130.9, 121.8, 120.2, 118.1, 84.4, 58.0, 55.4, 27.1.

VIII. Gram Scales and Synthetic Transformations

A flame dried Schlenk tube was cooled to rt and evacuated and backfilled with argon for three times. To this Schlenk tube were added [Ir(COD)Cl]₂ (0.075 mmol, 2.5 mol %), phosphoramidite ligand ($R_{a,}R,R$)-**SL7** (L3) (0.15 mmol, 5 mol %), degassed THF (7.5 mL) and degassed *n*-propylamine (7.5 mL). The reaction mixture was heated at 50 °C for 30 min and then the volatile solvents were removed under vacuum to give a pale yellow solid. allylic carbonates **1n** (6.00 mmol), Cyanoacetates **3** (3.00 mmol), Cs₂CO₃ (6.00 mmol), DCM (30 mL) were then added, reacted at room temperature. Once starting material was consumed (monitored by TLC), the mixture was added water, and extracted with dichloromethane (3×). The dichloromethane layers were dried over anhydrous Na₂SO₄, filtered, and evaporated to give crude (*S*,*S*)-**7n**. The crude product was purified by silica-gel column chromatography to give (*S*,*S*)-**7n** in 90% yield with 99% ee.

To a solution of (S,S)-**7n** (0.20 mmol) in DCM (2.0 mL) was added TFA (1.0 mL) under Ar₂ at rt and the reaction mixture was stirred for 2 h before concentrated in vacuo and purified by flash chromatography (CH₂Cl₂ to 5% MeOH:CH₂Cl₂) to yield **11** (81%) as a foamy solid.

To a solution of **11** (0.10 mmol) in MeCN (1.0 mL) was added NaHCO₃ (0.20 mmol, 2.0 equiv.) and I₂ (0.30 mmol, 3.0 equiv.) under Ar₂ and the flask was covered with aluminum foil and the reaction mixture stirred in the dark for 5 h before being uncovered to reveal a brown precipitate. The reaction was quenched with 10% Na₂S₂O₃ and extracted with CH₂Cl₂ (3 x 3 mL) and the combined organics were washed with 10% NaHCO₃ (1 x 10 mL), and brine (10 mL). The combined organics were combined and dried over Na₂SO₄ and concentrated under vacuum and purified by silica-gel flash chromatography to yield **12**.

(*S*)-2-cyano-3-(3,5-dichlorophenyl)-2-((*S*)-1-(3,5-dichlorophenyl)allyl)pent-4-enoic acid (11): Yield (81%); Pale yellow foamy solid, m.p. 86–88 °C; $[\alpha]^{25}_{D} = 115.71$ (*c* 0.91, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.30 (dt, *J* = 16.8, 1.7 Hz, 2H), 7.22 (dd, *J* = 19.6, 1.9 Hz, 4H), 6.79 (bs, 1H), 6.35 (ddd, *J* = 16.9, 10.1, 9.6 Hz, 1H), 6.10 (ddd, *J* = 16.8, 10.0, 9.8 Hz, 1H), 5.38 (dd, *J* = 10.1, 1.1 Hz, 1H), 5.32 (dd, *J* = 10.0, 1.2 Hz, 1H), 5.25 (d, *J* = 16.8, 1.1 Hz, 1H), 5.20 (d, *J* = 16.9, 1.2 Hz, 1H), 3.85 (d, *J* = 9.6 Hz, 1H), 3.80 (d, *J* = 9.8 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.2, 141.1, 140.6, 135.3, 135.2, 132.4, 132.0, 128.6, 128.4, 127.5, 127.3, 127.2, 121.8, 121.7, 58.0, 54.3, 52.2.; HRMS (ESI+) Calcd. For C₂₁H₁₄Cl₄NNa₂O₂ ([M+2Na-H]⁺): 497.9569, found: 497.9573.

(3S,4S,5R)-4-(3,5-dichlorophenyl)-3-((S)-1-(3,5-dichlorophenyl)allyl)-5-(iodomethyl)-2-oxotetrahyd

rofuran-3-carbonitrile (12): Yield (57%); white solid, mp 232–234 °C; $[α]^{25}_D = -50.14$ (*c* 0.74, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 (t, *J* = 1.8 Hz, 1H), 7.38 (t, *J* = 1.8 Hz, 1H), 7.24 (d, *J* = 1.8 Hz, 2H), 7.10 (d, *J* = 1.8 Hz, 2H), 6.30 (ddd, *J* = 16.8, 10.0, 9.3 Hz, 1H), 5.61 (d, *J* = 10.0 Hz, 1H), 5.50 (d, *J* = 16.8 Hz, 1H), 4.96 (ddd, *J* = 9.4, 5.7, 5.5 Hz, 1H), 3.95 (d, *J* = 5.5 Hz, 1H), 3.72 (d, *J* = 9.3 Hz, 1H), 3.36 (dd, *J* = 10.3, 5.7 Hz, 1H), 2.76 (dd, *J* = 10.3, 9.4 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.2, 138.5, 136.2, 135.7, 134.9, 132.5, 130.1, 129.3, 126.9, 122.9, 114.0, 80.1, 57.1, 52.9, 52.7, -1.3.; HRMS (ESI+) Calcd. For C₂₁H₁₄Cl₄INNaO₂⁺ ([M+Na]⁺): 601.8716, found: 601.8692. The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak ID, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 210 nm); t_r = 6.00 and 8.41 min.

A flame dried Schlenk tube was cooled to rt and evacuated and backfilled with argon for three times. То this Schlenk tube were added $[Ir(COD)Cl]_2$ (0.01 mmol, 5 mol %), bis(diphenylphosphino)methane (dppm) (10 mol %) and anhydrous DCM (2 mL), and the reaction mixture was stirred for 30 min. After that, (S,S)-7n (0.20 mmol) was added in one portion under Ar₂. Then 4,4,5,5-tetramethyl-1,3,2-dioxaborolane (HBpin, 1.0 mmol) was added at room temperature, and the resulting solution was stirred overnight. The reaction mixture was quenched with MeOH (1 mL) and concentrated under reduced pressure. The residue was purified by silica-gel column chromatography to afford the product 13.

(R)-3-(3,5-dichlorophenyl)-2-((R)-1-(3,5-dichlorophenyl)allyl)pent-4-enenitrile (13): Yield (69%);

Pale yellow liquid; $[\alpha]^{25}_{D} = -62.25$ (*c* 0.89, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 (q, *J* = 1.9 Hz, 2H), 7.12 (dd, *J* = 8.4, 1.8 Hz, 4H), 6.11 (ddd, *J* = 16.9, 10.2, 9.0 Hz, 1H), 5.90 (ddd, *J* = 16.9, 10.2, 8.6 Hz, 1H), 5.42 (dd, *J* = 10.2, 1.3 Hz, 1H), 5.33 (dd, *J* = 10.2, 1.5 Hz, 1H), 5.25 (dd, *J* = 16.9, 1.5 Hz, 1H), 5.24 (dd, *J* = 16.9, 1.3 Hz, 1H), 3.54 (dd, *J* = 9.2, 5.4 Hz, 1H), 3.41 (dd, *J* = 9.3, 8.6 Hz, 1H), 3.12 (dd, *J* = 9.3, 5.4 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 143.2, 142.4, 135.9, 135.64, 135.55, 133.8, 128.2, 128.0, 126.5, 126.2, 121.0, 119.8, 117.9, 49.5, 48.0, 42.8.; HRMS (ESI+) Calcd. For C₂₀H₁₅Cl₄NNa⁺ ([M+Na]⁺): 431.9851, found: 431.9860. The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak IE, *i*-propanol/hexane = 5/95, flow rate 1.0 mL/min, $\lambda = 220$ nm); t_r = 6.13 and 6.45 min.

A flame dried Schlenk tube was cooled to rt and evacuated and backfilled with argon for three times. То this Schlenk tube were added $[Ir(COD)Cl]_2$ (0.01)mmol. 5 mol %). bis(diphenylphosphino)methane (dppm) (10 mol %) and anhydrous DCM (2 mL), and the reaction mixture was stirred for 30 min. After that, (S,S)-70 (0.20 mmol) was added in one portion under Ar₂. Then 4,4,5,5-tetramethyl-1,3,2-dioxaborolane (HBpin, 1.0 mmol) was added at room temperature, and the resulting solution was stirred overnight. The reaction mixture was quenched with MeOH (1 mL) and concentrated under reduced pressure. The residue was purified by fast silica-gel (inactivated by Et_3N) column chromatography to afford the product 14.

tert-butyl (*S*)-2-cyano-3-(naphthalen-2-yl)-2-((*S*)-1-(naphthalen-2-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentanoate (14): Yield (71%); white solid, mp 92–95 °C; $[\alpha]^{25}_{D} = 30.13$ (*c* 0.76, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.84 – 7.79 (m, 4H), 7.77 – 7.68 (m, 4H), 7.60 – 7.50 (m, 2H), 7.46 – 7.40 (m, 4H), 3.49 (dd, *J* = 12.1, 3.2 Hz, 1H), 3.33 (dd, *J* = 12.0, 2.9 Hz, 1H), 2.48 – 2.32 (m, 1H), 2.11 – 2.03 (m, 1H), 1.91 – 1.70 (m, 1H), 1.59 – 1.44 (m, 1H), 1.18 (s, 6H), 1.02 (s, 6H), 1.00 (s, 6H), 0.89 (s, 9H), 0.67 – 0.58 (m, 1H), 0.53 – 0.45 (m, 1H), 0.42 – 0.33 (m, 1H), 0.28 – 0.18 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.7, 136.7, 135.7, 133.3, 133.04, 133.03, 132.7, 129.0, 128.2, 128.0, 127.8, 127.6, 127.5, 127.3, 127.21, 127.19, 125.9, 125.8, 125.74, 125.71, 125.6, 119.1, 83.3, 82.9, 82.7, 60.4, 53.6, 52.0, 27.0, 25.7, 24.82, 24.77, 24.6, 24.5, 9.0.; HRMS (ESI+) Calcd. For C₄₅H₅₇B₂NNaO₆⁺ ([M+Na]⁺): 752.4264, found: 752.4269. The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak IE, *i*-propanol/hexane = 5/95, flow rate 1.0 mL/min, λ = 220 nm); t_r = 13.08 and 18.84 min.

IX. References

- a) B. M. Trost, J. R. Miller, Jr. C. M. Hoffman, J. Am. Chem. Soc. 2011, 133, 8165; b) M. Yasumoto,
 H. Ueki, V. A. Soloshonok, J. Fluorine Chem. 2007, 128, 736; c) K. Morisaki, Y. Kondo, M. Sawa,
 H. Morimoto, T. Ohshima, Chem. Pharm. Bull. 2017, 65, 1089; d) L.-M. Shi, X.-S. Sun, C. Shen,
 Z.-F. Wang, H.-Y. Tao, C.-J. Wang, Org. Lett. 2019, 21, 4842.
- 2. a) C. R. Smith, D. J. Mans, T. V. Rajanbabu, *Org. Synth.* 2008, 85, 238. b) K. Tissot-Croset, D. Polet, S. Gille, C. Hawner, A. Alexakis, *Synthesis*, 2004, 2586.

X. NMR and HPLC Data

Data File E:\DATA\SC\SC-13-25\SC-13-25 2020-06-27 21-08-56\SC-13-25.D Sample Name: SC-13-25Rac

Data File E:\DATA\SC\SC-13-25\SC-13-25 2020-06-27 21-08-56\SC-13-252.D Sample Name: SC-13-25B _____ Acq. Operator : SYSTEM Seq. Line : 3 Location : 86 Acq. Instrument : 1260 Inj : 1 Injection Date : 6/27/2020 9:42:59 PM Inj Volume : 2.000 µl : E:\DATA\SC\SC-13-25\SC-13-25 2020-06-27 21-08-56\SC-4-IE-98-2-DAD-1ML-20MIN Acq. Method -2UL.M : 6/27/2020 9:24:39 PM by SYSTEM Last changed Analysis Method : E:\DATA\SC\SC-13-25\SC-13-25 2020-06-27 21-08-56\SC-4-IE-98-2-DAD-1ML-20MIN -2UL.M (Sequence Method) : 3/23/2021 11:53:56 AM by SYSTEM Last changed (modified after loading) Additional Info : Peak(s) manually integrated
DAD1 A Sig=220.4 Re#360.100 (E:DATA:SC\SC-13-25\SC-13-25 2020-06-27 21-08-56\SC-13-252.D) has all and mAU 1 400 300 200 100 5.669 D 10 12 14 Ŕ ģ Area Percent Report _____ Sorted By : Signal Multiplier 1.0000 : 1.0000 Dilution : Do not use Multiplier & Dilution Factor with ISTDs Signal 1: DAD1 A, Sig=220,4 Ref=360,100 Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] * ----|-----|-----|-----|-----|-----| 1 5.776 MM 0.1394 4160.79443 497.35904 99.8783 2 6.606 MM 0.1536 5.06956 5.49999e-1 0.1217 4165.86399 497.90904 Totals :

1260 3/23/2021 11:57:11 AM SYSTEM

-110.5 -111.0 -111.5 -112.0 -112.5 -113.0 -113.5 -114.0 -114.5 -115.0 -115.5 -116.0 -116.5 -117.0 -117.5 -118.0 -118.5 -119.0 -119.5 -12 fl (ppm)

Data File E:\DATA\SC...-1-2-6-7-22-23 2021-04-06 18-00-44\SC-16-14-15_13-1-2-6-7-22-2318.D Sample Name: SC-13-1-RAC-2

Acq. Operator	: SYSTEM Sec. Line : 19
Acq. Instrument	: 1260 Location : 85
Injection Date	: 4/6/2021 11:06:47 PM Thi: 1
injeotion bate	Thi Volume : 2,000 ul
Acq. Method	: E:\DATA\SC\SC-16-14-15_13-1-2-6-7-22-23 2021-04-06 18-00-44\SC-4-IE-98-2- DAD-1ML-10MIN-2UL.M
Last changed	: 4/6/2021 6:00:45 PM by SYSTEM
Analysis Method	: E:\DATA\SC\SC-16-14-15_13-1-2-6-7-22-23 2021-04-06 18-00-44\SC-4-IE-98-2-
	DAD-1ML-10MIN-2UL.M (Sequence Method)
Last changed	: 4/7/2021 4:47:05 PM by SYSTEM
	(modified after loading)
Additional Info	: Peak(s) manually integrated
DAD1 A, Sig=	20,4 Ref=360,100 (E:/DALA/SC7-22-23 2021-04-06 18-00-44/SC-16-14-15_13-1-2-6-7-22-2318.D)
200 -	
150 -	
100 -	
50 -	
0	
4,,,,,	······································
	Z 3 4 0 0 / 8 9 mil
	àrea Dercent Denort
Sorted By Multiplier Dilution Do not use Multi	: Signal : 1.0000 : 1.0000 plier & Dilution Factor with ISTDs
Signal 1: DADI A	, Sig=220,4 Ref=360,100
Peak RetTime Typ # [min] 1 5.224 BV	e Width Area Height Area [min] [mAU*s] [mAU] % - 0.1150 1859.65515 240.99290 50.2046
2 5.866 VB	0.1298 1844.49805 213.43655 49.7954
2 0.000 (D	
Totals :	3704.15320 454.42946

1260 4/7/2021 4:47:09 PM SYSTEM

Data File E:\DATA\SC...3-1-2-6-7-22-23 2021-04-06 18-00-44\SC-16-14-15_13-1-2-6-7-22-236.D Sample Name: SC-13-1B

1260 4/7/2021 4:50:31 PM SYSTEM

Data File E:\DATA\SC...2-23\SC-13-7-22 2021-04-07 10-09-15\SC-16-14-15_13-1-2-6-7-22-233.D Sample Name: SC-13-7-RAC

Acg. Operator : SYSTEM	Seq. Line : 4				
Acg. Instrument : 1260	Location : 63				
Injection Date : 4/7/2021 10:44:29 AM	Ini: 1				
	Inj Volume : 2.000 ul				
Acq. Method : E:\DATA\SC\SC-16-14-15_13-1 -ID-98-2-DAD-1ML-10MIN.M	-2-6-7-22-23\\$C-13-7-22 2021-04-07 10-09-15\\$C-3				
Last changed : 4/7/2021 10:09:15 AM by SYSTEM					
Analysis Method : E:\DATA\SC\SC-16-14-15_13-1-2-6-7-22-23\SC-13-7-22 2021-04-07 10-09-15\SC-3					
-ID-98-2-DAD-1ML-10MIN.M (S	equence Method)				
Last changed : 4/7/2021 5:07:59 PM by SYST	EM				
(modified after loading)					
Additional Info : Peak(s) manually integrated					
DAD1 A, Sig=220,4 Ret=360,100 (ENDALA(SC13-7-22 2021-0	14-U/ 1U-U9-15\SC-16-14-15_13-1-2-6-7-22-233.U)				
250 -					
	1 h				
200 -					
150 -					
100 -					
50 -					
1 2 3 4	Ś Ś Ż Ś Ś min				
Area Percent Report					
General Dec					
Sorted By : Signal					
Multipiler : 1.0000					
Dilution : 1.0000	Terry				
Do not use Multiplier & Dilution Factor with .	15105				
Signal 1: DADI & Sig-220 4 Def-360 100					
Signal 1. DADI A, Sig-220,4 Ker-300,100					
Peak RetTime Type Width Area Hoight	Area				
# [min] [min] [màll#e] [màll]	* *				
" [min] [min] [moo"o] [moo"o]	·				
1 4.970 BV 0.1605 2866.67163 273.071	32 50.0842				
2 5.969 FN 0.2053 2857.03687 231.892	61 49.9158				
Totals: 5723.70850 504.963	93				

1260 4/7/2021 5:08:02 PM SYSTEM

Data File E:\DATA\SC...-1-2-6-7-22-23 2021-04-06 18-00-44\SC-16-14-15_13-1-2-6-7-22-2325.D Sample Name: SC-13-7B

Acg. Operator : SYSTEM	Seq. Line : 26
Acg. Instrument : 1260	Location: 66
Injection Date : 4/7/2021 1:05:46 AM	Ini: 1
	Ini Volume : 2.000 ul
Acg. Method : E:\DATA\SC\SC-16-14-15 13-1-2-0	6-7-22-23 2021-04-06 18-00-44\SC-3-ID-98-2-
DAD-1ML-10MIN.M	
Last changed : 4/6/2021 8:42:31 PM by SYSTEM	
Analysis Method : E:\DATA\SC\SC-16-14-15_13-1-2-0	6-7-22-23 2021-04-06 18-00-44\\$C-3-ID-98-2-
DAD-1ML-10MIN.M (Sequence Meth	od)
Last changed : 4/7/2021 5:11:48 PM by SYSTEM	
(modified after loading)	
Additional Info : Peak(s) manually integrated	
DAD1 A, Sig=220,4 Ref=360,100 (E:\DATA\SC7-22-23 2021-04-06 1	18-00-44\SC-16-14-15_13-1-2-6-7-22-2325.D)
mAU _	24
1000 -	Ť.
	Δ I
	1
800 -	
600 -	1
400 -	
200	
0+	∠_ _ , ≗_ ,
	·····
1 2 3 4	6 7 8 9 minj
Area Percent Report	
Corted Dr Cianal	
Sorced By : Signal	
Dilution : 1.0000	
Denot use Wultiplier & Dilution Foster with IST	D-
bo not use multiplier « blincion ractor with ish	5
Girmal 1. DADI & Gira-220 4 Def-260 100	
SIGNAL I: DADI A, SIG=220,4 REL=360,100	
Deeb DetTime Tyme Width Aven Weight	dree
rear recurre rype wrach Area neight	ALCO
	ۍ ا
1 4.947 DD 0.1301 1.0341084 1030.69934	77.1107 0.0000
2 3.930 DD 0.1999 93./0141 0.0/330	0.0033
Totals · 1 0614864 1037 37400	
1.0014024 1037.37490	

1260 4/7/2021 5:12:30 PM SYSTEM

Data File E:\DATA\SC...-1-2-6-7-22-23 2021-04-06 18-00-44\SC-16-14-15_13-1-2-6-7-22-2316.D Sample Name: SC-13-2-RAC

1260 4/7/2021 4:51:53 PM SYSTEM

Data File E:\DATA\SC...3-1-2-6-7-22-23 2021-04-06 18-00-44\SC-16-14-15_13-1-2-6-7-22-238.D Sample Name: SC-13-2B

Acq. Operator	: SYSTEM Sec. Line : 9					
Acq. Instrument	: 1260 Location : 88					
Injection Date	• 4/6/2021 7•32•29 PM Thi 1					
Injection pace	T_{n} Y_{n} Y_{n					
Acq. Method	: E:\DATA\SC\SC-16-14-15_13-1-2-6-7-22-23 2021-04-06 18-00-44\SC-4-IE-98-2- DAD-1ML-10MIN-2UL.M					
Last changed	: 4/6/2021 6:00:45 PM by SYSTEM					
Analysis Method	: E:\DATA\SC\SC-16-14-15 13-1-2-6-7-22-23 2021-04-06 18-00-44\SC-4-IE-98-2-					
-	DAD-1ML-10MIN-2UL.M (Sequence Method)					
Last changed	: 4/7/2021 4:47:05 PM by SYSTEM					
	(modified after loading)					
Additional Info	(modified didf fodding) • Deak(s) menually integrated					
DAD1 A Sig=2	20.4 Ref=360.100 (E:\DATA\SC7-22-23 2021-04-06 18-00-44\SC-16-14-15 13-1-2-6-7-22-238.D)					
mAUJ	Ξ. Δ					
1000 -	Note little					
800 -						
600 -						
400 -						
200 -						
0						
<u>+</u> ,,,,						
	2 3 4 0 0 / 8 9 mir					
Avec Devent Devent						
Sorted By	: Signal					
Multiplier	: 1.0000					
Dilution	: 1.0000					
Do not use Multi	nlier & Dilution Factor with ISTDs					
Signal 1: DAD1 A, Sig=220,4 Ref=360,100						
Peak RetTime Typ	e Width Area Height Area					
# [min]	[min] [mAU*s] [mAU] %					
	-					
1 6.021 MF	0.1576 1.05769e4 1118.70166 100.0000					
Totals :	1.05769e4 1118.70166					

1260 4/7/2021 4:53:51 PM SYSTEM

S-49

129.26	~ -02.773

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

Data File E:\DATA\SC...\SC-13-22_16-17 2021-04-07 12-12-43\SC-16-14-15_13-1-2-6-7-22-231.D Sample Name: SC-13-22-RAC-2

Acq. Operator :	SYSTEM		Seq. Line	:	2			
Acq. Instrument :	1260		Location	:	61			
Injection Date :	4/7/2021 12:24:54 P	м	Inj	:	1			
2			Inj Volume	: 2	.000 µl			
Acq. Method :	E:\DATA\SC\SC-16-14	-15 13-1-2-	6-7-22-23\\$	3C-1	3-22 16-17 :	2021-04-07	12-12-4	3
•	\SC-4-IE-98-2-DAD-1ML-10MIN-2UL.M							
Last changed :	Last changed : 4/7/2021 12:12:43 PM by SYSTEM							
Analysis Method : E:\DATA\SC\SC-16-14-15 13-1-2-6-7-22-23\SC-13-22 16-17 2021-04-07 12-12-43								
-	\SC-4-IE-98-2-DAD-1	ML-10MIN-2U	L.M (Sequen	nce)	Method)			
Last changed :	4/7/2021 5:15:55 PM	by SYSTEM			·			
2	(modified after loa	ding)						
Additional Info :	Peak(s) manually in	tegrated						
DAD1 A, Sig=220	.4 Ref=360,100 (E:\DATA\SC2)	2_16-17 2021-04-0	7 12-12-43\SC-16-	14-15	13-1-2-6-7-22-231	.D)		
mAU		9 1 0						
		44						
400 -		11 11						
]		(
		11 N						
		11 H						
300 -		11 (1						
		(11)						
200 -		1173						
1								
100 -		11/1						
		144						
		\ \						
0		~ 1	<u> </u>					
<u>L</u>	· · · · , · · · · , · ·		<u>-</u>	<u> </u>	· · · <u>·</u> · ·	· · · · · · ·		· · ·
1	2 3	4	0	0	(8	9	min
	Area Percent	Report						
	,							
Course & Dec	. <u>Cársa</u> 1							
Sorted By	: 51gnal							
Multiplier	: 1.0000							
Dilution	: 1.0000		_					
Do not use Multipl	ier & Dilution Fact.	or with IST	Ds					
Signal 1: DAD1 A,	Sig=220,4 Ref=360,1	00						
Peak RetTime Type	Width Area	Height	Area					
# [min]	[min] [mAU*s]	[mAU]	*					
		I	I					
1 4.016 BV	0.0998 3114.95044	473.30215	49.7345					
2 4.249 VB	0.1057 3148.20605	443.89285	50.2655					
Totals :	6263.15649	917.19501						

1260 4/7/2021 5:15:57 PM SYSTEM

Data File E:\DATA\SC...-1-2-6-7-22-23 2021-04-06 18-00-44\SC-16-14-15_13-1-2-6-7-22-2312.D Sample Name: SC-13-22B

1260 4/7/2021 5:19:26 PM SYSTEM

Data File E:\DATA\SC...-1-2-6-7-22-23 2021-04-06 18-00-44\SC-16-14-15_13-1-2-6-7-22-2321.D Sample Name: SC-13-23-RAC

```
_____
Acq. Operator : SYSTEM
                                           Seq. Line : 22
                                           Location : 62
Acq. Instrument : 1260
                                                Inj :
                                                      1
Injection Date : 4/7/2021 12:11:00 AM
                                          Inj Volume : 2.000 µl
             : E:\DATA\SC\SC-16-14-15_13-1-2-6-7-22-23 2021-04-06 18-00-44\SC-4-IE-98-2-
Acq. Method
               DAD-1ML-20MIN-2UL.M
             : 4/6/2021 8:40:39 PM by SYSTEM
Last changed
Analysis Method : E:\DATA\SC\SC-16-14-15_13-1-2-6-7-22-23 2021-04-06 18-00-44\SC-4-IE-98-2-
               DAD-1ML-20MIN-2UL.M (Sequence Method)
             : 4/7/2021 5:02:56 PM by SYSTEM
Last changed
                (modified after loading)
Additional Info : Peak(s) manually integrated
DAD1 A, Sig=220,4 Ref=360,100 (E:DATA\SC...7-22-23 2021-04-06 18-00-44\SC-16-14-15_13-1-2-6-7-22-2321.D)
   mAU
   250
   200
   150
                                                  11.620
   100
    50
     D
                                                    12
                                                           14
                                                                   16
                                            10
                                                                           18
                             Ŕ
Area Percent Report
Sorted By
                   :
                         Signal
Multiplier
                         1.0000
                   :
                         1.0000
Dilution
                   :
Do not use Multiplier & Dilution Factor with ISTDs
Signal 1: DAD1 A, Sig=220,4 Ref=360,100
Peak RetTime Type Width
                        Area
                                  Height
                                           Area
 # [min]
                [min]
                      [mAU*s]
                                 [mAU]
                                            *
----|-----|----|-----|-----|-----|-----|
              0.1414 2389.66943 254.73019 50.4425
  1 6.364 BB
  2 11.620 BB 0.3365 2347.74023 105.97092 49.5575
                       4737.40967 360.70111
Totals :
```

1260 4/7/2021 5:02:59 PM SYSTEM

Data File E:\DATA\SC...-1-2-6-7-22-23 2021-04-06 18-00-44\SC-16-14-15_13-1-2-6-7-22-2314.D Sample Name: SC-13-23B

```
_____
Acq. Operator : SYSTEM
                                          Seq. Line : 15
Acq. Instrument : 1260
                                           Location : 64
                                               Inj :
                                                     1
Injection Date : 4/6/2021 9:51:23 PM
                                         Inj Volume : 2.000 µl
             : E:\DATA\SC\SC-16-14-15_13-1-2-6-7-22-23 2021-04-06 18-00-44\SC-4-IE-98-2-
Acq. Method
              DAD-1ML-20MIN-2UL.M
            : 4/6/2021 8:40:39 PM by SYSTEM
Last changed
Analysis Method : E:\DATA\SC\SC-16-14-15_13-1-2-6-7-22-23 2021-04-06 18-00-44\SC-4-IE-98-2-
               DAD-1ML-20MIN-2UL.M (Sequence Method)
             : 4/7/2021 5:02:56 PM by SYSTEM
Last changed
               (modified after loading)
Additional Info : Peak(s) manually integrated
DAD1 A, Sig=220,4 Ref=360,100 (E:DATA\SC...7-22-23 2021-04-06 18-00-44\SC-16-14-15_13-1-2-6-7-22-2314.D)
   mAU
  1200
  1000
   800
   600
   400
                                                     200
                                                     387
    D
                                                   12
                                                           14
                                                                  16
                                            10
                                                                          18
                             Ŕ
Area Percent Report
Sorted By
                   :
                         Signal
Multiplier
                         1.0000
                  :
                         1.0000
Dilution
                  :
Do not use Multiplier & Dilution Factor with ISTDs
Signal 1: DAD1 A, Sig=220,4 Ref=360,100
Peak RetTime Type Width
                        Area
                                 Height
                                           Area
 # [min]
               [min] [mAU*s]
                                 [mAU]
                                           *
----|-----|----|-----|-----|-----|-----|
  1 6.588 VB R 0.1497 1.29850e4 1308.11499 99.9175
  2 12.387 MM 0.3569 10.71871 5.00560e-1
                                          0.0825
                      1.29957e4 1308.61555
Totals :
```

1260 4/7/2021 5:04:27 PM SYSTEM

Data File E:\DATA\SC...-89--14-68RAC 2020-10-21 09-37-14\SC-13-54-55-56-60-61-70-88-8910.D Sample Name: SC-13-88-RAC

```
_____
   Acq. Operator : SYSTEM
                                             Seq. Line : 11
   Acq. Instrument : 1260
                                              Location : 87
                                                  Inj :
   Injection Date : 10/21/2020 1:21:35 PM
                                                        1
                                            Inj Volume : 5.000 µl
                : E:\DATA\SC\SC-13-54-55-56-60-61-70-88-89\SC-13-54-55-56-60-61-70-88-89--14-
   Acq. Method
                  68RAC 2020-10-21 09-37-14\SC-4-IE-90-10-DAD-1ML-15MIN.M
   Last changed
                : 10/21/2020 9:37:15 AM by SYSTEM
   Analysis Method : E:\DATA\SC\SC-13-54-55-56-60-61-70-88-89\SC-13-54-55-56-60-61-70-88-89--14-
                   68RAC 2020-10-21 09-37-14\SC-4-IE-90-10-DAD-1ML-15MIN.M (Sequence Method)
                 : 4/5/2021 10:06:57 PM by SYSTEM
   Last changed
                   (modified after loading)
   Additional Info : Peak(s) manually integrated
         *DAD1, Sig=238,4 Ref=355,90, EXT of SC-13-54-55-56-60-61-70-88-8910.D
      mAU -
      250
                                                                10.849
      200
      150
      100
       50
        D
                                                           10
                                                                     12
                                                                               14
                                                 ģ
   Area Percent Report
   _____
   Sorted By
                      :
                            Signal
   Multiplier
                            1.0000
                      :
                            1.0000
   Dilution
                      :
   Do not use Multiplier & Dilution Factor with ISTDs
   Signal 1: DAD1, Sig=238,4 Ref=355,90, EXT
    Signal has been modified after loading from rawdata file!
   Peak RetTime Type Width
                           Area
                                     Height
                                              Area
     # [min]
                   [min] [mAU*s]
                                    [mAU]
                                              *
   ----|-----|-----|-----|-----|-----|
      1 7.480 BV 0.1759 3355.95093 290.27252 50.3326
      2 10.849 BB 0.2631 3311.59668 191.19852 49.6674
                         6667.54761 481.47104
   Totals :
                                                                      Page 1 of 2
1260 4/5/2021 10:06:59 PM SYSTEM
```

Data File E:\DATA\SC...8-89\SC-13-54-55-56-60-61-70-88-89 2020-10-19 23-54-09\SC-13-7020.D Sample Name: SC-13-88B

```
_____
   Acq. Operator : SYSTEM
                                             Seq. Line : 21
   Acq. Instrument : 1260
                                             Location : 94
                                                  Inj :
   Injection Date : 10/20/2020 7:53:11 AM
                                                       1
                                            Inj Volume : 5.000 µl
                : E:\DATA\SC\SC-13-54-55-56-60-61-70-88-89\SC-13-54-55-56-60-61-70-88-89 2020
   Acq. Method
                  -10-19 23-54-09\SC-4-IE-90-10-DAD-1ML-15MIN.M
                : 10/19/2020 11:54:09 PM by SYSTEM
   Last changed
   Analysis Method : E:\DATA\SC\SC-13-54-55-56-60-61-70-88-89\SC-13-54-55-56-60-61-70-88-89 2020
                  -10-19 23-54-09\SC-4-IE-90-10-DAD-1ML-15MIN.M (Sequence Method)
   Last changed
                : 4/7/2021 5:46:07 PM by SYSTEM
                  (modified after loading)
   Additional Info : Peak(s) manually integrated
         *DAD1, Sig=238,4 Ref=355,90, EXT of SC 13-7020.D
                                                61353
      mAU
      500
                                              -
      400
      300
      200
      100
                                                           8
                                                           ġ
        D
                                                          10
                                                                    12
                                                                              14
                                                 å
   Area Percent Report
   _____
   Sorted By
                      :
                           Signal
   Multiplier
                           1.0000
                     :
                           1.0000
   Dilution
                     :
   Do not use Multiplier & Dilution Factor with ISTDs
   Signal 1: DAD1, Sig=238,4 Ref=355,90, EXT
    Signal has been modified after loading from rawdata file!
   Peak RetTime Type Width
                          Area
                                    Height
                                             Area
     # [min]
                   [min]
                          [mAU*s]
                                    [mAU]
                                              *
   ----|-----|-----|-----|-----|-----|
      1 7.479 MF 0.2016 6133.53320 507.03662 99.4223
      2 10.185 BB
                 0.2142 35.63805
                                   2.36017
                                            0.5777
                         6169.17125 509.39679
   Totals :
                                                                     Page 1 of 2
1260 4/7/2021 5:47:21 PM SYSTEM
```


10.0 -110.5 -111.0 -111.5 -112.0 -112.5 -113.0 -113.5 -114.0 -114.5 -115.5 -116.0 -116.5 -117.0 -117.5 -118.0 -118.5 -119.0 -119.5 -12C f1 (ppm)

Data File E:\DATA\SC...88-89--14-68RAC 2020-10-21 09-37-14\SC-13-54-55-56-60-61-70-88-89.D Sample Name: SC-13-54-RAC

```
_____
   Acq. Operator : SYSTEM
                                              Seq. Line : 1
   Acq. Instrument : 1260
                                               Location : 81
   Injection Date : 10/21/2020 9:38:38 AM
                                                   Inj :
                                                         1
                                             Inj Volume : 2.000 µl
                 : E:\DATA\SC\SC-13-54-55-56-60-61-70-88-89\SC-13-54-55-56-60-61-70-88-89--14-
   Acq. Method
                   68RAC 2020-10-21 09-37-14\SC-4-IE-99-1-DAD-1ML-20MIN-2UL.M
   Last changed
                 : 10/21/2020 9:37:14 AM by SYSTEM
   Analysis Method : E:\DATA\SC\SC-13-54-55-56-60-61-70-88-89\SC-13-54-55-56-60-61-70-88-89--14-
                   68RAC 2020-10-21 09-37-14\SC-4-IE-99-1-DAD-1ML-20MIN-2UL.M (Sequence Method
                   )
                 : 4/5/2021 9:43:40 PM by SYSTEM
   Last changed
                   (modified after loading)
   Additional Info : Peak(s) manually integrated
DAD1 A Sig=220.4 Ref=360.100 (E:DATA\SC...1468RAC 2020-10-2109-37-14\SC-13-54-55-56-60-61-70-88-89.D)
                                     13.1
      mAU
                                  2
       60
                                   se in
                                        80,400 (BAB)
       50
       40
       30
       20
       10
        0
                                                       12
                                                              14
                                                                      16
                                ด่
                                               10
                                                                              18
                                        8
                                                                                     m
   Area Percent Report
   Sorted By
                      :
                            Signal
   Multiplier
                      :
                            1.0000
                            1.0000
   Dilution
                      :
   Do not use Multiplier & Dilution Factor with ISTDs
   Signal 1: DAD1 A, Sig=220,4 Ref=360,100
   Peak RetTime Type Width
                            Area
                                     Height
                                               Area
     # [min]
                    [min]
                           [mAU*s]
                                     [mAU]
                                                *
   0.1992 733.17047
                                     61.33347 49.7883
      1 6.600 MF
                    0.2778 739.40637 44.36321 50.2117
        8.068 MM
      2
                          1472.57684 105.69667
   Totals :
                                                                       Page 1 of 2
1260 4/5/2021 9:43:44 PM SYSTEM
```

Data File E:\DATA\SC...88-89\SC-13-54-55-56-60-61-70-88-89 2020-10-19 23-54-09\SC-13-705.D Sample Name: SC-13-54B

Acq. Operator	: SYSTEM		Seq. Line	:	6			
Acq. Instrument	: 1260		Location	:	73			
Injection Date	: 10/20/2020 2:42	13 AM	Inj	:	1			
			Inj Volume	: 2	.000 µl			
Acq. Method	Acq. Method : E:\DATA\SC\SC-13-54-55-56-60-61-70-88-89\SC-13-54-55-56-60-61-70-88-89 2020						020	
	-10-19 23-54-09\SC-4-IE-99-1-DAD-1ML-20MIN-2UL.M							
Last changed	Last changed : 10/19/2020 11:54:09 PM by SYSTEM							
Analysis Method : E:\DATA\SC\SC-13-54-55-56-60-61-70-88-89\SC-13-54-55-56-60-61-70-88-89 2020)20		
	-10-19 23-54-09	\SC-4-IE-99-1-1	DAD-1ML-20MI	[N-2]	UL.M (Sequer	ice Method	.)	
Last changed	Last changed : 4/7/2021 5:25:37 PM by SYSTEM							
	(modified after	loading)						
Additional Info	: Peak(s) manually	y integrated				D \		
	=220,4 Ret=360,100 (E:\DALA)	SCC-13-04-00-06-60-6	1-70-88-89 2020-10	0-19.2	3-54-09\SC-13-705.	U)		
		iii an						
]		Ĩ″						
175 -		they.						
		1						
150								
		К						
125								
		Ц						
100 -		11						
]								
50 -								
25			1°					
		<u> </u> ୍ ୍ ୬	pe-					
		J V						
				~~				~
	2 4	6 8	10	12	14	16	18	, i min
	Area Per	cent Report						
Sorted By	: Signa	al						
Multiplier	: 1.000	00						
Dilution	: 1.000	00						
Do not use Mult	iplier & Dilution D	Factor with IS	ГDз					
Signal 1: DAD1	A, Sig=220,4 Ref=30	50,100						
Peak RetTime Ty	pe Width Area	Height	Area					
# [min]	[min] [mAU*s]] [mAU]	*					
1 6.603 MF	0.1940 2251.172	212 193.36316	99.7144					
2 8.112 MM	0.2504 6.440	579 4.29162e-1	0.2856					
m 1								
Totals :	2257.610	391 193.79232						

1260 4/7/2021 5:26:33 PM SYSTEM

Data File E:\DATA\SC...8-89--14-68RAC 2020-10-21 09-37-14\SC-13-54-55-56-60-61-70-88-891.D Sample Name: SC-13-55-RAC

```
_____
   Acq. Operator : SYSTEM
                                                 Seq. Line : 2
   Acq. Instrument : 1260
                                                 Location : 82
   Injection Date : 10/21/2020 9:59:58 AM
                                                      Inj :
                                                            1
                                                Inj Volume : 2.000 µl
                  : E:\DATA\SC\SC-13-54-55-56-60-61-70-88-89\SC-13-54-55-56-60-61-70-88-89--14-
   Acq. Method
                    68RAC 2020-10-21 09-37-14\SC-4-IE-99-1-DAD-1ML-20MIN-2UL.M
   Last changed
                  : 10/21/2020 9:37:14 AM by SYSTEM
   Analysis Method : E:\DATA\SC\SC-13-54-55-56-60-61-70-88-89\SC-13-54-55-56-60-61-70-88-89--14-
                    68RAC 2020-10-21 09-37-14\SC-4-IE-99-1-DAD-1ML-20MIN-2UL.M (Sequence Method
                    -)
                  : 4/5/2021 9:47:07 PM by SYSTEM
   Last changed
                    (modified after loading)
   Additional Info : Peak(s) manually integrated
DAD1 A Sig=220.4 Ref=360.100 (E:DATA\SC...468RAC 2020-10-21 09-37-14\SC-13-54-55-56-60-61-70-88-891.D)
                                      -9409A
      mAU
       350
                                    1<sub>45</sub>3
       300
                                         Rectification of the second
       250
       200
       150
       100
        50
        D
                                                                  14
                                  ด่
                                                  10
                                                          12
                                                                           16
                                                                                   18
                                          8
                                                                                          mi
    Area Percent Report
   Sorted By
                        :
                              Signal
   Multiplier
                       :
                              1.0000
                              1.0000
   Dilution
                       :
   Do not use Multiplier & Dilution Factor with ISTDs
   Signal 1: DAD1 A, Sig=220,4 Ref=360,100
   Peak RetTime Type Width
                              Area
                                       Height
                                                 Area
     # [min]
                     [min]
                            [mAU*s]
                                       [mAU]
                                                   ÷
   ----|-----|-----|-----|-----|-----|
                   0.1835 3940.93604 357.94888 50.3001
          6.254 FM
      1
                    0.2757 3893.90527 235.40367 49.6999
         7.836 MM
      2
                           7834.84131 593.35255
   Totals :
                                                                            Page 1 of 2
1260 4/5/2021 9:47:10 PM SYSTEM
```

Data File E:\DATA\SC...88-89\SC-13-54-55-56-60-61-70-88-89 2020-10-19 23-54-09\SC-13-708.D Sample Name: SC-13-55B

```
_____
Acq. Operator : SYSTEM
                                          Seq. Line : 9
                                          Location : 76
Acq. Instrument : 1260
                                                     1
Injection Date : 10/20/2020 3:46:40 AM
                                               Inj :
                                         Inj Volume : 2.000 µl
             : E:\DATA\SC\SC-13-54-55-56-60-61-70-88-89\SC-13-54-55-56-60-61-70-88-89 2020
Acq. Method
               -10-19 23-54-09\SC-4-IE-99-1-DAD-1ML-20MIN-2UL.M
             : 10/19/2020 11:54:09 PM by SYSTEM
Last changed
Analysis Method : E:\DATA\SC\SC-13-54-55-56-60-61-70-88-89\SC-13-54-55-56-60-61-70-88-89 2020
               -10-19 23-54-09\SC-4-IE-99-1-DAD-1ML-20MIN-2UL.M (Sequence Method)
             : 4/7/2021 5:27:49 PM by SYSTEM
Last changed
               (modified after loading)
Additional Info : Peak(s) manually integrated
      DAD1 A, Sig=220,4 Ref=360,100 (E:DATA\SC...C-13-54-55-56-60-61-70-88-89 2020-10-19 23-54-09\SC-13-708.D)
                              1. Seller
   mAU
  1200
                             s<sup>sjoi</sup>
  1000
   800
   600
   400
   200
    D
                                                          14
                                                                  16
                                           10
                                                   12
                                                                         18
                            6
Area Percent Report
Sorted By
                  :
                        Signal
Multiplier
                        1.0000
                  :
                        1.0000
Dilution
                  :
Do not use Multiplier & Dilution Factor with ISTDs
Signal 1: DAD1 A, Sig=220,4 Ref=360,100
Peak RetTime Type Width
                        Area
                                 Height
                                           Area
                                [mAU]
 # [min] [min]
                     [mAU*s]
                                           *
----|-----|-----|-----|-----|-----|
  1 5.977 MF 0.1841 1.38062e4 1250.17249 100.0000
Totals :
                      1.38062e4 1250.17249
```


Data File E:\DATA\SC...8-89--14-68RAC 2020-10-21 09-37-14\SC-13-54-55-56-60-61-70-88-892.D Sample Name: SC-13-56-RAC

```
_____
   Acq. Operator : SYSTEM
                                               Seq. Line : 3
   Acq. Instrument : 1260
                                                Location : 83
   Injection Date : 10/21/2020 10:21:22 AM
                                                     Inj :
                                                           1
                                              Inj Volume : 2.000 µl
                 : E:\DATA\SC\SC-13-54-55-56-60-61-70-88-89\SC-13-54-55-56-60-61-70-88-89--14-
   Acq. Method
                   68RAC 2020-10-21 09-37-14\SC-4-IE-99-1-DAD-1ML-20MIN-2UL.M
   Last changed
                 : 10/21/2020 9:37:14 AM by SYSTEM
   Analysis Method : E:\DATA\SC\SC-13-54-55-56-60-61-70-88-89\SC-13-54-55-56-60-61-70-88-89--14-
                    68RAC 2020-10-21 09-37-14\SC-4-IE-99-1-DAD-1ML-20MIN-2UL.M (Sequence Method
                   -)
                  : 4/5/2021 9:49:19 PM by SYSTEM
   Last changed
                    (modified after loading)
   Additional Info : Peak(s) manually integrated
DAD1 A Sig=220.4 Ref=360.100 (E:DATA\SC...468RAC 2020-10-21 09-37-14\SC-13-54-55-56-60-61-70-88-892.D)
                                      S.
      mAU
       300
                                    Ś
                                          Fast Strick
       250
       200
       150
       100
       50
        D
                                                                14
                                                 10
                                                         12
                                                                         16
                                                                                18
                                 6
                                         Ś.
                                                                                       mi
   Area Percent Report
   Sorted By
                       :
                             Signal
                             1.0000
   Multiplier
                       :
                             1.0000
   Dilution
                       :
   Do not use Multiplier & Dilution Factor with ISTDs
   Signal 1: DAD1 A, Sig=220,4 Ref=360,100
   Peak RetTime Type Width
                             Area
                                      Height
                                                Area
     # [min]
                    [min]
                            [mAU*s]
                                      [mAU]
                                                 *
   ----|-----|-----|-----|-----|-----|
         6.526 MM
                    0.1798 3320.29688 307.72296 50.0245
      1
        8.046 MM
                    0.2691 3317.03979 205.41220 49.9755
      2
                           6637.33667 513.13516
   Totals :
                                                                          Page 1 of 2
1260 4/5/2021 9:49:22 PM SYSTEM
```

Data File E:\DATA\SC...8-89\SC-13-54-55-56-60-61-70-88-89 2020-10-19 23-54-09\SC-13-7011.D Sample Name: SC-13-56B

```
_____
Acq. Operator : SYSTEM
                                          Seq. Line : 12
Acq. Instrument : 1260
                                           Location : 79
Injection Date : 10/20/2020 4:51:16 AM
                                                Inj :
                                                     1
                                         Inj Volume : 2.000 µl
             : E:\DATA\SC\SC-13-54-55-56-60-61-70-88-89\SC-13-54-55-56-60-61-70-88-89 2020
Acq. Method
               -10-19 23-54-09\SC-4-IE-99-1-DAD-1ML-20MIN-2UL.M
             : 10/19/2020 11:54:09 PM by SYSTEM
Last changed
Analysis Method : E:\DATA\SC\SC-13-54-55-56-60-61-70-88-89\SC-13-54-55-56-60-61-70-88-89 2020
               -10-19 23-54-09\SC-4-IE-99-1-DAD-1ML-20MIN-2UL.M (Sequence Method)
Last changed
             : 4/7/2021 5:31:11 PM by SYSTEM
                (modified after loading)
Additional Info : Peak(s) manually integrated
DAD1 A, Sig=220,4 Ref=360,100 (E:DATA\SC...-13-54-55-56-60-61-70-88-89 2020-10-19 23-54-09\SC-13-7011.D)
                                 hose 19219
   mAU
   350
   300
   250
   200
   150
   100
    50
     D
                                                   12
                                                           14
                                                                   16
                                            10
                                                                          18
                             Ġ.
Area Percent Report
Sorted By
                   :
                         Signal
Multiplier
                         1.0000
                   :
                         1.0000
Dilution
                   :
Do not use Multiplier & Dilution Factor with ISTDs
Signal 1: DAD1 A, Sig=220,4 Ref=360,100
Peak RetTime Type Width
                        Area
                                 Height
                                           Area
 # [min]
                [min]
                      [mAU*s]
                                 [mAU]
                                           *
----|-----|-----|-----|------|
  1 6.999 MM 0.2134 4572.18848 357.04721 100.0000
Totals :
                      4572.18848 357.04721
```


Data File E:\DATA\SC...8-89--14-68RAC 2020-10-21 09-37-14\SC-13-54-55-56-60-61-70-88-893.D Sample Name: SC-13-60-RAC

1260 4/5/2021 9:52:16 PM SYSTEM

Data File E:\DATA\SC...8-89\SC-13-54-55-56-60-61-70-88-89 2020-10-19 23-54-09\SC-13-7014.D Sample Name: SC-13-60B

```
_____
Acq. Operator : SYSTEM
                                          Seq. Line : 15
Acq. Instrument : 1260
                                          Location : 83
                                                    1
Injection Date : 10/20/2020 5:55:18 AM
                                               Inj :
                                         Inj Volume : 2.000 µl
             : E:\DATA\SC\SC-13-54-55-56-60-61-70-88-89\SC-13-54-55-56-60-61-70-88-89 2020
Acq. Method
               -10-19 23-54-09\SC-4-IE-99-1-DAD-1ML-20MIN-2UL.M
             : 10/19/2020 11:54:09 PM by SYSTEM
Last changed
Analysis Method : E:\DATA\SC\SC-13-54-55-56-60-61-70-88-89\SC-13-54-55-56-60-61-70-88-89 2020
               -10-19 23-54-09\SC-4-IE-99-1-DAD-1ML-20MIN-2UL.M (Sequence Method)
             : 4/7/2021 5:35:20 PM by SYSTEM
Last changed
               (modified after loading)
Additional Info : Peak(s) manually integrated
      DAD1 A, Sig=220,4 Ref=360,100 (E:\DATA\SC...-13-54-55-56-60-61-70-88-89 2020-10-19 23-54-09\SC-13-7014.D)
                                 BBBB
   mAU -
                               -
   500
   400
   300
   200
   100
                                         ROAD
                                       ě.
    D
                                                          14
                                                                  16
                                           10
                                                   12
                                                                         18
                            Ġ.
Area Percent Report
Sorted By
                  :
                        Signal
Multiplier
                        1.0000
                  :
                        1.0000
Dilution
                  :
Do not use Multiplier & Dilution Factor with ISTDs
Signal 1: DAD1 A, Sig=220,4 Ref=360,100
Peak RetTime Type Width
                        Area
                                 Height
                                          Area
 # [min]
                [min]
                       [mAU*s]
                                 [mAU]
                                           *
----|-----|-----|-----|-----|-----|
  1 6.580 MF
               0.1986 6938.83398 582.45392 99.7406
  2 8.904 MM 0.3685 18.04535 8.16098e-1
                                         0.2594
                      6956.87933 583.27002
Totals :
```

1260 4/7/2021 5:35:24 PM SYSTEM

Data File E:\DATA\SC...-89--14-68RAC 2020-10-21 09-37-14\SC-13-54-55-56-60-61-70-88-8911.D Sample Name: SC-13-89-RAC

```
_____
Acq. Operator : SYSTEM
                                         Seq. Line : 12
Acq. Instrument : 1260
                                          Location : 88
Injection Date : 10/21/2020 1:38:01 PM
                                              Inj :
                                                    1
                                        Inj Volume : 5.000 µl
            : E:\DATA\SC\SC-13-54-55-56-60-61-70-88-89\SC-13-54-55-56-60-61-70-88-89--14-
Acq. Method
               68RAC 2020-10-21 09-37-14\SC-4-IE-90-10-DAD-1ML-15MIN.M
             : 10/21/2020 9:37:15 AM by SYSTEM
Last changed
Analysis Method : E:\DATA\SC\SC-13-54-55-56-60-61-70-88-89\SC-13-54-55-56-60-61-70-88-89--14-
               68RAC 2020-10-21 09-37-14\SC-4-IE-90-10-DAD-1ML-15MIN.M (Sequence Method)
Last changed
             : 4/5/2021 10:10:39 PM by SYSTEM
               (modified after loading)
Additional Info : Peak(s) manually integrated
      *DAD1, Sig=230,4 Ref=355,90, EXT of S C 13-54-55-56-60-61-70-88-8911.D
                                       4
   mAU
   900
   800 -
                                                  700
   600
   500
   400
   300
   200
   100
    ٥
                                                       10
                                                                 12
                                                                           14
                                             ģ
Area Percent Report
Sorted By
                  :
                        Signal
Multiplier
                        1.0000
                  :
                        1.0000
Dilution
                  :
Do not use Multiplier & Dilution Factor with ISTDs
Signal 1: DAD1, Sig=230,4 Ref=355,90, EXT
Signal has been modified after loading from rawdata file!
Peak RetTime Type Width
                       Area
                                 Height
                                          Area
 # [min]
               [min]
                       [mAU*s]
                                [mAU]
                                          *
----|-----|-----|-----|-----|-----|
  1 6.714 BB 0.1581 9551.91406 905.35913 50.3533
  2 9.164 FM 0.2671 9417.87891 587.76190 49.6467
                      1.89698e4 1493.12103
Totals :
```

1260 4/5/2021 10:10:42 PM SYSTEM

Data File E:\DATA\SC...8-89\SC-13-54-55-56-60-61-70-88-89 2020-10-19 23-54-09\SC-13-7022.D Sample Name: SC-13-89B

```
_____
Acq. Operator : SYSTEM
                                         Seq. Line : 23
Acq. Instrument : 1260
                                          Location : 97
                                              Inj :
Injection Date : 10/20/2020 8:26:06 AM
                                                    1
                                        Inj Volume : 5.000 µl
             : E:\DATA\SC\SC-13-54-55-56-60-61-70-88-89\SC-13-54-55-56-60-61-70-88-89 2020
Acq. Method
               -10-19 23-54-09\SC-4-IE-90-10-DAD-1ML-15MIN.M
             : 10/19/2020 11:54:09 PM by SYSTEM
Last changed
Analysis Method : E:\DATA\SC\SC-13-54-55-56-60-61-70-88-89\SC-13-54-55-56-60-61-70-88-89 2020
               -10-19 23-54-09\SC-4-IE-90-10-DAD-1ML-15MIN.M (Sequence Method)
             : 4/7/2021 5:48:47 PM by SYSTEM
Last changed
               (modified after loading)
Additional Info : Peak(s) manually integrated
      *DAD1, Sig=230,4 Ref=355,90, EXT of S C 13-7022.D
   mAU
  1400
  1200
  1000
   800
   600
   400
   200
                                                   9236
    D
                                                       10
                                                                 12
                                                                           14
                                             ģ
Area Percent Report
_____
Sorted By
                  :
                        Signal
Multiplier
                        1.0000
                  :
                        1.0000
Dilution
                  :
Do not use Multiplier & Dilution Factor with ISTDs
Signal 1: DAD1, Sig=230,4 Ref=355,90, EXT
Signal has been modified after loading from rawdata file!
Peak RetTime Type Width
                       Area
                                 Height
                                          Area
 # [min]
                [min]
                       [mAU*s]
                                 [mAU]
                                          *
----|-----|-----|-----|-----|-----|
  1 6.715 BB 0.1645 1.61862e4 1470.06201 97.8054
              0.2234 363.18506 24.30026
  2 9.236 BB
                                         2.1946
                      1.65493e4 1494.36227
Totals :
```

1260 4/7/2021 5:50:16 PM SYSTEM

Data File E:\DATA\SC\SC-13-33\SC-13-33rac-IE-98 2020-06-27 22-01-01\SC-13-33.D Sample Name: SC-13-33Rac

Acg. Operator	: SYSTEM	Seg. Line : 1				
Acq. Instrument	: 1260	Location : 92				
Injection Date	: 6/27/2020 10:02:23 PM	Inj: 1				
		Inj Volume : 2.000 µl				
Acq. Method	: E:\DATA\SC\SC-13-33\SC-13-33ra 1ML-20MIN-2UL.M	ac-IE-98 2020-06-27 22-01-01\SC-4-IE-98-2-DAD-				
Last changed	t changed : 6/27/2020 10:01:01 PM by SYSTEM					
Analysis Method	: E:\DATA\SC\SC-13-33\SC-13-33ra	ac-IE-98 2020-06-27 22-01-01\SC-4-IE-98-2-DAD-				
	1ML-20MIN-2UL.M (Sequence Meth	hod)				
Last changed	: 4/5/2021 9:35:32 PM by SYSTEM					
	(modified after loading)					
Additional Info	Peak(s) manually integrated = 220.4 Patrix 200 (E)DATASCISC 12,223SC, 12,225					
mALI I	-220,4 Nei-300,100 (E. DAI AGE/GE-13-33/3E-13-33/4	m n				
		j na _{nu}				
600 -		1 AP				
		by				
		1				
400						
1						
300						
200-						
100-						
0						
1 1	 	· · · · · · · · · · · · · · · · · · ·				
U	1 2 3 4	1111 e o 1 0 C				
	Area Percent Deport					
Sorted By	: Signal					
Multiplier	: 1.0000					
Dilution	: 1.0000					
Do not use Mult	iplier & Dilution Factor with IST	TDs				
	-					
Signal 1: DAD1 .	A, Sig=220,4 Ref=360,100					
Peak RetTime Ty	pe Width Area Height	Area				
# [min]	[min] [mAU*s] [mAU]	\$				
1 5.083 MM	0.1459 5449.01563 622.31415	49.7544				
2 6.692 MM	0.2461 5502.81201 372.69318	50.2456				
	1 00510-4 005 00500					
iotais :	1.0951864 995.00732					

1260 4/5/2021 9:35:36 PM SYSTEM

Data File E:\DATA\SC\SC-13-33\SC-13-33 2020-06-27 22-26-05\SC-13-331.D Sample Name: SC-13-33B _____ Acq. Operator : SYSTEM Seq. Line : 2 Location : 94 Acq. Instrument : 1260 Inj : Injection Date : 6/27/2020 10:38:55 PM 1 Inj Volume : 2.000 µl : E:\DATA\SC\SC-13-33\SC-13-33 2020-06-27 22-26-05\SC-4-IE-98-2-DAD-1ML-10MIN Acq. Method -2UL.M : 6/27/2020 10:26:05 PM by SYSTEM Last changed Analysis Method : E:\DATA\SC\SC-13-33\SC-13-33 2020-06-27 22-26-05\SC-4-IE-98-2-DAD-1ML-10MIN -2UL.M (Sequence Method) : 4/5/2021 9:39:01 PM by SYSTEM Last changed (modified after loading) Additional Info : Peak(s) manually integrated
DAD1 A Sig=220.4 Re+360.100 (E:DATA:SC\SC-13-33\SC-13-33 2020-06-27 22-26-05\SC-13-331.D) haigh gai mAU 1000 800 600 400 200 5 D ġ Area Percent Report Sorted By : Signal Multiplier 1.0000 : 1.0000 Dilution : Do not use Multiplier & Dilution Factor with ISTDs Signal 1: DAD1 A, Sig=220,4 Ref=360,100 Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] * ----|-----|----|-----|-----|-----|-----| 1 5.072 MF 0.1414 9419.30957 1110.15784 99.8016 2 6.661 BB 0.1508 18.72850 1.51989 0.1984

Totals : 9438.03807 1111.67772

1260 4/5/2021 9:39:04 PM SYSTEM

Data File E:\DATA\SC\SC-15-6\SC-15-6 2020-11-24 09-08-48\SC-15-63.D Sample Name: SC-15-6-RAC

_____ Acq. Operator : SYSTEM Seq. Line : 4 Acq. Instrument : 1260 Location : 97 Injection Date : 11/24/2020 9:46:46 AM Inj : 1 Inj Volume : 2.000 µl : E:\DATA\SC\SC-15-6\SC-15-6 2020-11-24 09-08-48\SC-4-IE-98-2-DAD-1ML-10MIN-Acq. Method 2UL.M : 11/24/2020 9:44:46 AM by SYSTEM Last changed Analysis Method : E:\DATA\SC\SC-15-6\SC-15-6 2020-11-24 09-08-48\SC-4-IE-98-2-DAD-1ML-10MIN-2UL.M (Sequence Method) : 4/7/2021 4:40:37 PM by SYSTEM Last changed (modified after loading) Additional Info : Peak(s) manually integrated *DAD1, Sig=210,4 Ref=355,90, EXT of SC-15-63.D NED SI mAU 1 s. 160 182522 140 120 100 -80 -60 40 20 D 10 Area Percent Report _____ Sorted By : Signal Multiplier 1.0000 : 1.0000 Dilution : Do not use Multiplier & Dilution Factor with ISTDs Signal 1: DAD1, Sig=210,4 Ref=355,90, EXT Signal has been modified after loading from rawdata file! Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] * 1 4.973 MM 0.1708 1820.86536 177.71632 49.7994 2 5.923 MM 0.2377 1835.53308 128.68147 50.2006 3656.39844 306.39780 Totals : Page 1 of 2 1260 4/7/2021 4:40:40 PM SYSTEM

Data File E:\DATA\SC\SC-15-6\SC-15-6 2020-11-24 09-08-48\SC-15-62.D Sample Name: SC-15-6B

Data File E:\DATA\SC...-1-2-6-7-22-23 2021-04-06 18-00-44\SC-16-14-15_13-1-2-6-7-22-2319.D Sample Name: SC-13-6-RAC-2

1260 4/7/2021 4:57:39 PM SYSTEM

Data File E:\DATA\SC...-1-2-6-7-22-23 2021-04-06 18-00-44\SC-16-14-15_13-1-2-6-7-22-2310.D Sample Name: SC-13-6B

```
_____
Acq. Operator : SYSTEM
                                          Seq. Line : 11
Acq. Instrument : 1260
                                           Location : 90
                                                     1
Injection Date : 4/6/2021 8:15:43 PM
                                               Inj :
                                         Inj Volume : 2.000 µl
             : E:\DATA\SC\SC-16-14-15_13-1-2-6-7-22-23 2021-04-06 18-00-44\SC-4-IE-98-2-
Acq. Method
               DAD-1ML-30MIN-2UL.M
             : 4/6/2021 6:00:45 PM by SYSTEM
Last changed
Analysis Method : E:\DATA\SC\SC-16-14-15_13-1-2-6-7-22-23 2021-04-06 18-00-44\SC-4-IE-98-2-
               DAD-1ML-30MIN-2UL.M (Sequence Method)
             : 4/7/2021 4:57:35 PM by SYSTEM
Last changed
               (modified after loading)
Additional Info : Peak(s) manually integrated
      *DAD1, Sig=232,4 Ref=355,90, EXT of SC-18-14-15_13-1-2-8-7-22-2310.D
                                   , 53<sup>1,8,8</sup>
   mAU
                                  ¢<sup>je</sup>
  20.00
  1500
  1000
   500
                                                            2 And 13 240
    ٥
                                                                     25
                               10
                                                        20
                  5
                                           15
Area Percent Report
_____
Sorted By
                   :
                         Signal
Multiplier
                        1.0000
                  :
                         1.0000
Dilution
                  :
Do not use Multiplier & Dilution Factor with ISTDs
Signal 1: DAD1, Sig=232,4 Ref=355,90, EXT
Signal has been modified after loading from rawdata file!
Peak RetTime Type Width
                        Area
                                 Height
                                           Area
 # [min]
                [min]
                       [mAU*s]
                                 [mAU]
                                           *
----|-----|-----|-----|-----|
  1 10.699 MF 0.3782 5.31188e4 2340.82568 99.7635
              0.8464 125.94573 2.47996
  2 21.762 MM
                                          0.2365
                      5.32448e4 2343.30564
Totals :
```

1260 4/7/2021 4:59:28 PM SYSTEM

Data File E:\DATA\SC...-89--14-68RAC 2020-10-21 09-37-14\SC-13-54-55-56-60-61-70-88-8916.D Sample Name: SC-14-68-72-RAC-2

Data File E:\DATA\SC\SC-14-68-72\SC-14-68-72 2020-10-13 19-43-11\SC-14-68-721.D Sample Name: SC-14-72

Acq. Operator	: SYSTEM		Seq. Line	: 2				
Acq. Instrument	: 1260		Location	: 7	3			
Injection Date	: 10/13/2020 8:10:59	PM	Inj	: 1				
			Inj Volume	: 2.0	00 µl			
Acq. Method	: E:\DATA\SC\SC-14-68 -30MIN-2UL.M	-72∖SC-14-6	58-72 2020	10-13	19-43-11\:	3C-4-IE-9	8-2-DAD-1	ML
Last changed	: 10/13/2020 8:07:08	PM by SYSTE	CM .					
Analysis Method	: E:\DATA\SC\SC-14-68	-72∖SC-14-6	58-72 2020	10-13	19-43-11\;	3C-4-IE-9	8-2-DAD-1	ML
	-30MIN-2UL.M (Seque	nce Method)						
Last changed	: 4/5/2021 10:14:47 P	M by SYSTEM	I					
	(modified after loa	ding)						
Additional Info	: Peak(s) manually in	tegrated						
DAD1 A, Sig	=220,4 Ref=360,100 (E:\DATA\SC\SC	-14-68-72\SC-14-6	68-72 2020-10-13 ⁻	19-43-11\9	C-14-68-721.D))		
mAU -		46.2	2 t					
		:	-					
			\ \					
400 -			Į					
		1						
300 -			l					
)					
200 -								
1			ļ					
1 100			1					
			ļ					
			ł					
1]	{		7.56			
0		<i></i>	<u> </u>		<u>~~</u>			
						•••	· · · · · · ·	
	20 0 70	10	12.5	15	17.5	20	22.5	min
					=====			
	Area Percent	Report						
					=====			
Course & Dec								
Sorted By	: Signal							
Multipiler	: 1.0000							
Dilution	: 1.0000		-					
Do not use Mult	iplier & Dilution Fact	or with 151	DS					
Signal 1: DAD1	A, Sig=220,4 Ref=360,1	00						
Peak RetTime Ty	pe Width Area	Height	Area					
# [min]	[min] [mAU*s]	[mAU]	*					
1 11.463 BB	0.2655 8922.01758	504.00177	98.1937					
2 17.558 BB	0.3642 164.12421	5.37574	1.8063					
Totals .	0006 14170	500 27751						
10CHI2 :	9006.141/8	309.37751						

1260 4/5/2021 10:15:26 PM SYSTEM

Data File E:\DATA\SC...8-89--14-68RAC 2020-10-21 09-37-14\SC-13-54-55-56-60-61-70-88-898.D Sample Name: SC-13-70-RAC

1260 4/5/2021 10:04:10 PM SYSTEM

Data File E:\DATA\SC...88-89\SC-13-54-55-56-60-61-70-88-89 2020-10-19 23-54-09\SC-13-701.D Sample Name: SC-13-70B

```
_____
Acq. Operator : SYSTEM
                                          Seq. Line : 2
Acq. Instrument : 1260
                                           Location : 89
                                               Inj :
Injection Date : 10/20/2020 12:47:14 AM
                                                     1
                                         Inj Volume : 5.000 µl
            : E:\DATA\SC\SC-13-54-55-56-60-61-70-88-89\SC-13-54-55-56-60-61-70-88-89 2020
Acq. Method
               -10-19 23-54-09\SC-4-IE-80-20-DAD-1ML-50min.M
             : 10/19/2020 11:54:09 PM by SYSTEM
Last changed
Analysis Method : E:\DATA\SC\SC-13-54-55-56-60-61-70-88-89\SC-13-54-55-56-60-61-70-88-89 2020
               -10-19 23-54-09\SC-4-IE-80-20-DAD-1ML-50min.M (Sequence Method)
             : 4/7/2021 5:40:09 PM by SYSTEM
Last changed
               (modified after loading)
Additional Info : Peak(s) manually integrated
DAD1 A, Sig=220,4 Ref=360,100 (E:DATA\SC...C-13-54-55-56-60-61-70-88-89 2020-10-19 23-54-09\SC-13-701.D)
   mAU
                                                'n
    80
    60
    40
    20
    Û
                                                   30
                                                          35
                                                                  40
                     10
                            15
                                    20
                                           25
                                                                          45
Area Percent Report
_____
Sorted By
                   :
                        Signal
Multiplier
                        1.0000
                   :
                         1.0000
Dilution
                   :
Do not use Multiplier & Dilution Factor with ISTDs
Signal 1: DAD1 A, Sig=220,4 Ref=360,100
Peak RetTime Type Width
                        Area
                                 Height
                                           Area
 # [min]
               [min]
                      [mAU*s]
                                 [mAU]
                                           *
----|-----|-----|-----|-----|
  1 27.779 BB 0.7773 5584.47217 98.52300 100.0000
                      5584.47217 98.52300
Totals :
```


Data File E:\DATA\SC...8-89--14-68RAC 2020-10-21 09-37-14\SC-13-54-55-56-60-61-70-88-894.D Sample Name: SC-13-61-RAC

Data File E:\DATA\SC...8-89\SC-13-54-55-56-60-61-70-88-89 2020-10-19 23-54-09\SC-13-7017.D Sample Name: SC-13-61B

Acq. Operator	: SYSTEM	Seq. Line :	18			
Acq. Instrument	: 1260	Location :	86			
Injection Date	: 10/20/2020 6:59:23 AM	Inj :	1			
		Inj Volume :	2.000 µl			
Acq. Method : E:\DATA\SC\SC-13-54-55-56-60-61-70-88-89\SC-13-54-55-56-60-61-70-88-89 2020						
	-10-19 23-54-09\SC-4-IE	-99-1-DAD-1ML-20MIN	J-2UL.M			
Last changed	: 10/19/2020 11:54:09 PM	by SYSTEM				
Analysis Method	: E:\DATA\SC\SC-13-54-55-	∙56-60-61-70-88-89\S	C-13-54-55-56-60-61-70-88-89 2020			
	-10-19 23-54-09\SC-4-IE	-99-1-DAD-1ML-20MIN	J-2UL.M (Sequence Method)			
Last changed	: 4/7/2021 5:38:43 PM by	SYSTEM				
Laditional Trefs	(modified after loading	f)				
DAD1 A Sig	: Peak(S) manually integr 220.4 Ref=360.100 (EMDATA\SC -13-54-5	ated 5-56-60-61-70-88-89 2020-10-19	23-54-09\SC-13-7017 D)			
mAU J	120,11101 000,100 (2.25/07/000 10/01/0	0 00 00 01 10 00 00 2020 10 10	g			
			₩ ₩			
1 200						
1 200]						
150						
100 -						
1						
50 -						
1						
0						
	· · · · · · · · · ·	<u> </u>				
U	<u> </u>	0 8	10 12 14 min			
	ires Dercent Den	ort				
	Alea Fercenc Kep	,orc 				
Sorted Bv	: Signal					
Multiplier	: 1.0000					
Dilution	: 1.0000					
Do not use Mult:	iplier « Dilution Factor w	vith ISTDs				
	-					
Signal 1: DAD1 A	A, Sig=220,4 Ref=360,100					
Peak RetTime Typ	pe Width Area He	ight Area				
# [min]	[min] [mAU*s] [m	IAU] %				
1 9.259 BB	0.2172 3372.66626 232	.52678 98.1224				
2 10.423 BB	0.2561 64.53595 3	.39007 1.8776				
Totals :	3437.20221 235	.91685				

1260 4/7/2021 5:38:45 PM SYSTEM

Data File E:\DATA\SC\SC-16-33\SC-16-33-RAC 2021-05-13 10-52-29\SC-16-33.D Sample Name: SC-16-33-RAC

_____ Acq. Operator : SYSTEM Seq. Line : 1 Acq. Instrument : 1260 Location : 82 Injection Date : 5/13/2021 10:53:58 AM 1 Inj : Inj Volume : 5.000 µl : E:\DATA\SC\SC-16-33\SC-16-33-RAC 2021-05-13 10-52-29\SC-5-0JH-98-2-DAD-1ML-Acq. Method 20MIN.M : 5/13/2021 10:52:29 AM by SYSTEM Last changed Analysis Method : E:\DATA\SC\SC-16-33\SC-16-33-RAC 2021-05-13 10-52-29\SC-5-0JH-98-2-DAD-1ML-20MIN.M (Sequence Method) : 5/13/2021 11:11:41 AM by SYSTEM Last changed (modified after loading) Additional Info : Peak(s) manually integrated *DAD1, Sig=240,4 Ref=355,90, EXT of SC-16-33.D 18282 mAU ¢. 600 (1888)⁹ 3.¢ 500 400 300 200 100 D 10 12 14 4 ģ Area Percent Report _____ Sorted By : Signal Multiplier 1.0000 : 1.0000 Dilution : Do not use Multiplier & Dilution Factor with ISTDs Signal 1: DAD1, Sig=240,4 Ref=355,90, EXT Signal has been modified after loading from rawdata file! Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] * ----|-----|-----|-----|-----|-----| 1 8.531 MF 0.3179 1.26262e4 661.92004 49.8663 2 9.895 FM 0.4334 1.26939e4 488.19965 50.1337 2.53202e4 1150.11969 Totals :

1260 5/13/2021 11:11:44 AM SYSTEM

Data File E:\DATA\SC\SC-16-33\SC-16-33-RAC-0J-98 2021-05-13 09-47-05\SC-16-332.D Sample Name: SC-16-33B

Acq. Operator : SYSTEM Seq. Line : 3
Acq. Instrument : 1260 Location : 84
Injection Date : 5/13/2021 10:31:08 AM Inj : 1
Injection place : 0,10,2021 10.01.00 mm Inj : 1 Inj Volume : 5.000 ul
Acq. Method : E:\DATA\SC\SC-16-33\SC-16-33-RAC-0J-98 2021-05-13 09-47-05\SC-5-0JH-98-2- DAD-1ML-20MIN.M
Last changed : 5/13/2021 9:47:05 AM by SYSTEM
Analysis Method : E:\DATA\SC\SC-16-33\SC-16-33-RAC-0J-98 2021-05-13 09-47-05\SC-5-0JH-98-2-
DAD-IML-20MIN.M (Sequence Method) Last changed : 5/13/2021 11:01:04 AM by SYSTEM (modified after loading)
Additional Info : Peak(s) manually integrated *DAD1, Sig=240,4 Ref=355,90, EXT of SC 16-332.D
mAU 1 8 🔨
1400
800 -
400 -
Area Percent Report
Sorted By : Signal
Multiplier : 1.0000
Dilution : 1.0000
Do not use Multiplier & Dilution Factor with ISTDs
Signal 1: DAD1, Sig=240,4 Ref=355,90, EXT Signal has been modified after loading from rawdata file!
Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] %
1 8.450 MF 0.3116 2.70047e4 1444.33252 97.3325
2 9.511 FM 0.4116 740.09369 29.96502 2.6675
Totals: 2.77447e4 1474.29754

1260 5/13/2021 11:01:06 AM SYSTEM

S-99

S-108

). O 9.5 9.0 7.5 7.0 6.5 6.0 5.5 5.0 f1 (ppm) 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 8.5 8.0

(a) (e)

*t*BuO₂C CN

 \mathbf{R}^2 \mathbf{R}^1

*t*BuO₂C CN

 \mathbf{R}^1 \mathbf{R}^2

1) [Ir]/(S_a,S,S)-L3, DABCO, THF, 0 °C

2) [Ir]/(*S_a,S,S*)-L3, Cs₂CO₃, DCM, rt

R¹ OCO₂Me

0.0

1) [lr]/(S_a,S,S)-L3, DABCO, THF, 0 °C

R² OCO₂Me

2) [lr]/(S_a,S,S)-L3, Cs₂CO₃, DCM, rt
S-109

S-116

tBuO₂C CN

1) [Ir]/(S_a,S,S)-L3, DABCO, THF, 0 °C

R² OCO₂Me

*t*BuO₂C CN

1) [lr]/(S_a,S,S)-L3, DABCO, THF, 0 °C

R¹ OCO₂Me

S-117

R¹/R²: 3,5-Cl₂-C₆H₄/2-Np

R¹/R²: 3,5-Cl₂-C₆H₄/2-Np

S-128

Data File E:\DATA\SC\SC-15-72\SC-15-72A-RAC 2021-01-07 11-40-39\SC-15-72.D Sample Name: SC-15-72A-RAC

Acg. Operator	: SYSTEM	Seg. Line :	: 1	
Acq. Instrument	: 1260	Location	: 86	
Injection Date	· 1/7/2021 11.42.01 #	M Tri	• 1	
injection bace	. 1,7,2021 11.42.01 2	Tri Volume	· · · · · · · · · · · · · · · · · · ·	
Acq. Method	: E:\DATA\SC\SC-15-72 -20MIN.M	\$\SC-15-72A-RAC 2021-01-	-07 11-40-39\SC-3-ID-80-20-DAD-1M	L
Last changed	: 1/7/2021 11:40:39 #	M by SYSTEM		
Analysis Method	: E:\DATA\SC\SC-15-72	2\SC-15-72A-RAC 2021-01-	-07 11-40-39\SC-3-ID-80-20-DAD-1M	L
	-20MIN.M (Sequence	Method)		
Last changed	: 4/7/2021 6:06:55 PM	I by SYSTEM		
	(modified after los	ading)		
Additional Info	: Peak(s) manually in	tegrated		
DAD1 A, Sig=	210,4 Ref=360,100 (E:\DATA\SC\S/	C-15-72\SC-15-72A-RAC 2021-01-07 1	11-40-39\SC-15-72.D)	
mAU T			,	
	1			
]	l l			
200				
	Ц			
	11			
150	ll l			
		10		
		a shith.		
	}	ĕ, ¢		
]]	مريم. ۲		
100 -		1		
]	1	{}		
		11		
)	()		
50 -		{ }		
	()	{ }		
]	}			
	~ /\	}		
0				
<u>L, , , , , , , , , , , , , , , , , , ,</u>	 			
	<u>2 4 6</u>	<u>ś 10</u>	12 14 16 18	min
	Area Percent	t Report		
		-		
Sorted Bv	: Signal			
Multinlier	: 1.0000			
Dilution	• 1 0000			
Do not uge Wulti	nlier (Dilution Fest	or with ISTDe		
Do not use hurth	prier « princion raco	or with 1910s		
Signal 1: DADI A	., Sig=210,4 Ref=360,1	100		
Peak RetTime Typ	e Width Area	Height Area		
# [min]	[min] [mAU*s]	[mAU] %		
	·-			
1 5.533 BB	0.2107 3381.61597	239.52287 49.8338		
2 8.498 MM	0.5399 3404.17749	105.07890 50.1662		
Totals :	6785.79346	344.60178		

1260 4/7/2021 6:07:00 PM SYSTEM

Data File E:\DATA\SC\SC-15-72\SC-15-72 2021-01-07 10-53-28\SC-15-721.D Sample Name: SC-15-72B _____ Acq. Operator : SYSTEM Seq. Line : 2 Location : 85 Acq. Instrument : 1260 Inj : Injection Date : 1/7/2021 11:16:14 AM 1 Inj Volume : 5.000 µl : E:\DATA\SC\SC-15-72\SC-15-72 2021-01-07 10-53-28\SC-3-ID-80-20-DAD-1ML-Acq. Method 20MIN.M : 1/7/2021 10:53:28 AM by SYSTEM Last changed Analysis Method : E:\DATA\SC\SC-15-72\SC-15-72 2021-01-07 10-53-28\SC-3-ID-80-20-DAD-1ML-20MIN.M (Sequence Method) : 4/7/2021 6:07:34 PM by SYSTEM Last changed (modified after loading) Additional Info : Peak(s) manually integrated
DAD1 A Sig=210.4 Ref=360.100 (E:DATA:SC\SC-15-72\SC-15-72 2021-01-07 10-53-28\SC-15-721.D) mAU -600 500 400 300 200 i an filler 100 D 12 14 16 10 18 Area Percent Report Sorted By : Signal Multiplier 1.0000 : 1.0000 Dilution : Do not use Multiplier & Dilution Factor with ISTDs Signal 1: DAD1 A, Sig=210,4 Ref=360,100 Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] * ----|-----|----|-----|-----|-----|-----| 1 5.548 VB R 0.2162 9727.44336 678.94696 99.0342 2 7.944 MM 0.2569 94.86842 0.9658 6.15471 9822.31178 685.10167 Totals :

1260 4/7/2021 6:08:59 PM SYSTEM

Data File E:\DATA\SC\SC-15-77-87\SC-15-77-87-RAC 2021-01-07 16-36-46\SC-15-77-87.D Sample Name: SC-15-77-87-RAC

_____ Acq. Operator : SYSTEM Seq. Line : 1 Acq. Instrument : 1260 Location : 81 Injection Date : 1/7/2021 4:38:09 PM Inj : 1 Inj Volume : 5.000 µl : E:\DATA\SC\SC-15-77-87\SC-15-77-87-RAC 2021-01-07 16-36-46\SC-4-IE-95-5-DAD Acq. Method -1ML-30MIN.M : 1/7/2021 4:45:42 PM by SYSTEM Last changed (modified after loading) Analysis Method : E:\DATA\SC\SC-15-77-87\SC-15-77-87-RAC 2021-01-07 16-36-46\SC-4-IE-95-5-DAD -1ML-30MIN.M (Sequence Method) : 4/7/2021 6:11:38 PM by SYSTEM Last changed (modified after loading) Additional Info : Peak(s) manually integrated
DAD1 A Sig=220.4 Re#360.100 (E:DATALSCLSC-15-77-87/SC-15-77-87-RAC 2021-01-07 16-36-46\SC-15-77-87.D) mAU 6.579 600 500 400 300 200 100 D 14 ŝ 10 12 6 mi Area Percent Report Sorted By : Signal 1.0000 Multiplier : 1.0000 Dilution : Do not use Multiplier & Dilution Factor with ISTDs Signal 1: DAD1 A, Sig=220,4 Ref=360,100 Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] * ----|-----|-----|-----|-----|-----| 1 6.085 VV 0.1459 6015.66504 621.84479 50.1198 0.1603 5986.90430 561.77594 49.8802 6.579 VV 2 1.20026e4 1183.62073 Totals : Page 1 of 2 1260 4/7/2021 6:11:42 PM SYSTEM

Data File E:\DATA\SC\SC-15-77-87\SC-15-77-87 2021-01-07 15-14-05\SC-15-77-871.D Sample Name: SC-15-87

Acq. Operator	: SYSTEM Seq. Line : 2	
Acg. Instrument	: 1260 Location : 83	
Injection Date	: 1/7/2021 3:31:50 PM Thi: 1	
	The Volume • 5 000 ml	
Acq. Method	: E:\DATA\SC\SC-15-77-87\SC-15-77-87 2021-01-07 15-14-05\SC-4-IE-95-5-DAD-1ML -30MIN.M	
Last changed	: 1/7/2021 3:19:09 PM by SYSTEM	
Analysis Method	F:\DATA\SC\SC-15-77-87\SC-15-77-87_2021-01-07_15-14-05\SC-4-TF-95-5-DAD-1MI.	
marforo meanoa	-30MIN M (Semience Method)	
Last changed	4/7/2021 6:13:23 PM by SYSTEM	
Additional Info	(mourried arcer roading) : Peak(s) manually integrated 20.4 Bace380 100 (ENDATANSCISC.15.77.87)SC.15.77.87 2021.01.07 15.14.05/SC.15.77.871 D)	7
	20,4 NBI-500,100 (C. DATAGO GO - 10-11-01 GO - 10-11-01 2021-01-01 10-11+0430-10-11-01 1.0)	
	f w	
	¶	
1400 -	14 day	
	l.	
1200 -		
1000 -		
800 -	1	
l 1		
400 -		
200 -		
	46	
	2 4 6 8 10 12 14 m	in
		_
	Area Bargent Deport	
a		
Sorted By	: Signal	
Multiplier	: 1.0000	
Dilution	: 1.0000	
Do not use Multi	plier & Dilution Factor with ISTDs	
Signal 1: DAD1 A	, Sig=220,4 Ref=360,100	
Peak RetTime Tur	e Width Area Height Area	
# [min]	[min] [màIII< %	
ж [штн] !	ູພາກເງ ເພດບ່າວງ ເພດບ່ງ ຈ	
1 0.042 MF	0.1390 1.4090484 1334.73291 90.9340	
2 6.467 FM	U.1436 158.35353 2.72323 1.0660	
m 1		
Totals :	1.48548e4 1537.45614	

1260 4/7/2021 6:13:45 PM SYSTEM

Data File E:\DATA\SC\SC-15-131-134\SC-15-131-134-RAC-1 2021-03-12 20-37-22\SC-15-131-134.D Sample Name: SC-15-131-134-RAC

Acq. Operator	: SYSTEM	Seq. Line :	1
Acq. Instrument	: 1260	Location :	81
Injection Date	: 3/12/2021 8:38:43 PM	Inj :	1
		Inj Volume : 5	.000 µl
Acq. Method	: E:\DATA\SC\SC-15-131-13 -5-DAD-1ML-30MIN.M	34\SC-15-131-134-RAC-1	2021-03-12 20-37-22\SC-4-IE-95
Last changed	: 3/12/2021 8:37:22 PM by	Y SYSTEM	
Analysis Method	: E:\DATA\SC\SC-15-131-13	34\SC-15-131-134-RAC-1	2021-03-12 20-37-22\SC-4-IE-95
	-5-DAD-1ML-30MIN.M (Sec	quence Method)	
Last changed	: 4/7/2021 6:16:12 PM by	SYSTEM	
Additional Tufa	(modified after loading	j)	
DAD1 A Sig=	220.4 Ref=360,100 (E:\DATA\SC134\SC	Calced C-15-131-134-RAC-1 2021-03-12 20-3	7-22\SC-15-131-134.D)
mAU -			
		1	
200-		l,	
		1	
''^]			
1.50			
		280	
125		() °	
120 -		LI A	
100		11 11	
75		- 11 - 11	
50			
25	٨		\
	ľ		\
0			<u> </u>
1			
	5 10	15	20 25 min
	Area Percent Rep	port	
			=====
General Dec			
Sorted By Multiplier	: Signal		
Dilution	: 1.0000		
Do not use Multi	inlier & Dilution Factor (rith ISTDs	
20 100 400 1410			
Signal 1: DAD1 A	4, Sig=220,4 Ref=360,100		
Peak RetTime Tur	he Width Ares H	eicht Ares	
# [min]	[min] [mAII*s] [T	nAUl %	
" [min]			
1 13.186 BB	0.4028 5895.11279 223	1.96712 50.1374	
2 18.269 BB	0.6893 5862.80615 126	5.82327 49.8626	
Totals :	1.17579e4 348	3.79038	

1260 4/7/2021 6:16:19 PM SYSTEM

Data File E:\DATA\SC\SC-15-131-134\SC-15-131-134 2021-03-12 17-46-22\SC-15-131-1341.D Sample Name: SC-15-134

Acg. Operator : SY	YSTEM	Seg. Line : 2	
Acg. Instrument : 12	260	Location : 83	
Injection Date : 3	/12/2021 6:14:03 PM	Ini: 1	
	,,	Inj Volume : 5.000 ul	
Acq. Method : E	:\DATA\SC\SC-15-131-134\SC-15 1ML-30MIN.M	-131-134 2021-03-12 1	7-46-22\SC-4-IE-95-5-DAD
Last changed : 3,	/12/2021 5:48:10 PM by SYSTEM	I	
Analysis Method : E	:\DATA\SC\SC-15-131-134\SC-15	-131-134 2021-03-12 1	7-46-22\SC-4-IE-95-5-DAD
	1ML-30MIN.M (Sequence Method)		
Last changed : 4,	/7/2021 6:17:13 PM by SYSTEM		
(1	modified after loading)		
Additional Info : Po	eak(s) manually integrated		
DAD1 A, Sig=220,4	Ref=360,100 (E:\DATA\SC5-131-134\SC-15-13	21-134 2021-03-12 17-46-22\SC-15-13	31-1341.D)
500 -		80 61 	
400 -			
300 -			
200 -			
100 -			a defe
0	~^		
25		125 15 17	5 20 22.5 min
2.0		12.0 10 11.	5 <u>25</u> 22.5 mm
	Area Bargant Denort		
	Alea Percent Report		
Sorted By	: Simal		
Multiplier	: 1.0000		
Dilution	: 1.0000		
Do not use Multipli	er & Dilution Factor with IST	Ъз	
Signal 1: DAD1 A, S:	ig=220,4 Ref=360,100		
Peak RetTime Type	Width Area Height	Area	
# [min]	[min] [mAU*s] [mAU]	*	
1 13.082 BB (0.4177 1.64576e4 595.02911	99.7731	
2 18.842 MM (0.5628 37.43217 1.10849	0.2269	
Totals :	1.64951e4 596.13760		

1260 4/7/2021 6:18:08 PM SYSTEM

Data File E:\DATA\SC\SC-16-33\SC-16-33-RAC 2021-05-13 10-52-29\SC-16-33.D Sample Name: SC-16-33-RAC

_____ Acq. Operator : SYSTEM Seq. Line : 1 Acq. Instrument : 1260 Location : 82 Injection Date : 5/13/2021 10:53:58 AM 1 Inj : Inj Volume : 5.000 µl : E:\DATA\SC\SC-16-33\SC-16-33-RAC 2021-05-13 10-52-29\SC-5-0JH-98-2-DAD-1ML-Acq. Method 20MIN.M : 5/13/2021 10:52:29 AM by SYSTEM Last changed Analysis Method : E:\DATA\SC\SC-16-33\SC-16-33-RAC 2021-05-13 10-52-29\SC-5-0JH-98-2-DAD-1ML-20MIN.M (Sequence Method) : 5/13/2021 11:11:41 AM by SYSTEM Last changed (modified after loading) Additional Info : Peak(s) manually integrated *DAD1, Sig=240,4 Ref=355,90, EXT of SC-16-33.D 18282 mAU ¢. 600 (1892)⁹ 3.¢ 500 400 300 -200 100 D 10 12 14 4 ģ Area Percent Report _____ Sorted By : Signal Multiplier 1.0000 : 1.0000 Dilution : Do not use Multiplier & Dilution Factor with ISTDs Signal 1: DAD1, Sig=240,4 Ref=355,90, EXT Signal has been modified after loading from rawdata file! Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] * ----|-----|-----|-----|-----|-----| 1 8.531 MF 0.3179 1.26262e4 661.92004 49.8663 2 9.895 FM 0.4334 1.26939e4 488.19965 50.1337 2.53202e4 1150.11969 Totals :

1260 5/13/2021 11:11:44 AM SYSTEM

Data File E:\DATA\SC\SC-16-33\SC-16-33-RAC-0J-98 2021-05-13 09-47-05\SC-16-332.D Sample Name: SC-16-33B

Acg. Operator	: SYSTEM Seg. Line : 3
Acg. Instrument	: 1260 Location : 84
Injection Date	: 5/13/2021 10:31:08 AM Thi: 1
,	Inj Volume : 5.000 ul
Acq. Method	: E:\DATA\SC\SC-16-33\SC-16-33-RAC-0J-98 2021-05-13 09-47-05\SC-5-0JH-98-2- DAD-1ML-20MIN.M
Last changed	: 5/13/2021 9:47:05 AM by SYSTEM
Analysis Method	: E:\DATA\SC\SC-16-33\SC-16-33-RAC-0J-98 2021-05-13 09-47-05\SC-5-0JH-98-2-
	DAD-1ML-20MIN.M (Sequence Method)
Last changed	: 5/13/2021 11:01:04 AM by SYSTEM
	(modified after loading)
Additional info	: Peak(s) manually integrated
	10,4 her-303,80, Exit of 312-10-332.0
	1. 10 m m
1400 -	
	he contract of the contract of
1200 -	
1	
1000 -	
1	
1	
600-	
1	
400 -	
1	
200	() , ₍₂)
200 -	- 100
0 	
D	2 4 6 8 10 12 14 mi
	Area Percent Report
Sorted By	: Signal
Sorted By Multiplier	: Signal : 1.0000
Sorted By Multiplier Dilution	: Signal : 1.0000 : 1.0000
Sorted By Multiplier Dilution Do not use Multi	: Signal : 1.0000 : 1.0000 .plier & Dilution Factor with ISTDs
Sorted By Multiplier Dilution Do not use Multi	: Signal : 1.0000 : 1.0000 .plier & Dilution Factor with ISTDs
Sorted By Multiplier Dilution Do not use Multi	: Signal : 1.0000 : 1.0000 .plier & Dilution Factor with ISTDs
Sorted By Multiplier Dilution Do not use Multi Signal 1: DAD1,	: Signal : 1.0000 : 1.0000 .plier & Dilution Factor with ISTDs Sig=240,4 Ref=355,90, EXT
Sorted By Multiplier Dilution Do not use Multi Signal 1: DAD1, Signal has beer	: Signal : 1.0000 : 1.0000 plier & Dilution Factor with ISTDs Sig=240,4 Ref=355,90, EXT modified after loading from rawdata file!
Sorted By Multiplier Dilution Do not use Multi Signal 1: DAD1, Signal has beer	: Signal : 1.0000 : 1.0000 iplier & Dilution Factor with ISTDs Sig=240,4 Ref=355,90, EXT modified after loading from rawdata file!
Sorted By Multiplier Dilution Do not use Multi Signal 1: DAD1, Signal has beer Peak RetTime Typ	: Signal : 1.0000 : 1.0000 iplier & Dilution Factor with ISTDs Sig=240,4 Ref=355,90, EXT modified after loading from rawdata file! Width Area Height Area
Sorted By Multiplier Dilution Do not use Multi Signal 1: DAD1, Signal has beer Peak RetTime Typ # [min]	: Signal : 1.0000 : 1.0000 Iplier & Dilution Factor with ISTDs Sig=240,4 Ref=355,90, EXT modified after loading from rawdata file! Width Area Height Area [min] [mAU*s] [mAU] %
Sorted By Multiplier Dilution Do not use Multi Signal 1: DAD1, Signal has been Peak RetTime Typ # [min]	<pre>: Signal : 1.0000 : 1.0000 uplier & Dilution Factor with ISTDs Sig=240,4 Ref=355,90, EXT modified after loading from rawdata file! e Width Area Height Area [min] [mAU*s] [mAU] % </pre>
Sorted By Multiplier Dilution Do not use Multi Signal 1: DAD1, Signal has been Peak RetTime Typ # [min] 1 8.450 MF	<pre>: Signal : 1.0000 : 1.0000 uplier & Dilution Factor with ISTDs Sig=240,4 Ref=355,90, EXT modified after loading from rawdata file! Width Area Height Area [min] [mAU*s] [mAU] % </pre>
Sorted By Multiplier Dilution Do not use Multi Signal 1: DAD1, Signal has been Peak RetTime Typ # [min] 1 8.450 MF 2 9.511 FM	<pre>: Signal : 1.0000 : 1.0000 uplier & Dilution Factor with ISTDs Sig=240,4 Ref=355,90, EXT modified after loading from rawdata file! Width Area Height Area [min] [mAU*s] [mAU] % </pre>
Sorted By Multiplier Dilution Do not use Multi Signal 1: DAD1, Signal has been Peak RetTime Typ # [min] 1 8.450 MF 2 9.511 FM	<pre>: Signal : 1.0000 : 1.0000 lplier & Dilution Factor with ISTDs Sig=240,4 Ref=355,90, EXT modified after loading from rawdata file! Width Area Height Area [min] [mAU*s] [mAU] % </pre>
Sorted By Multiplier Dilution Do not use Multi Signal 1: DAD1, Signal has been Peak RetTime Typ # [min] 	<pre>: Signal : 1.0000 : 1.0000 uplier & Dilution Factor with ISTDs Sig=240,4 Ref=355,90, EXT modified after loading from rawdata file! Width Area Height Area [min] [mAU*s] [mAU] % </pre>

1260 5/13/2021 11:01:06 AM SYSTEM

XI. X-ray Structures of (S,S)-7j, (S,R,S)-8A, meso-(S,s,R)-7d, and (3S,4S,5R)-(S)-12

Crystal data for (*S*,*S*)-**7j**: C₂₅H₂₅Br₂NO₂, $M_r = 531.28$, T = 296 K, monoclinic, space group *P12₁1*, a = 10.68950(10), b = 11.14220(10), c = 10.92190(10) Å, $\beta = 112.4700(10)$ °, V = 1202.09(2) Å³, Z = 2, 4759 unique reflections, final $R_1 = 0.0192$ and $wR_2 = 0.0498$ for 4773 observed [*I*>2 σ (*I*)] reflections, Flack $\chi = -0.016(6)$. CCDC 2096475 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK; fax: (+44) 1223-336-033; or deposit@ccdc.cam.ac.uk).

Crystal data for (*S*,*R*,*S*)-**8A**: C₂₉H₂₈BrNO₂, $M_r = 502.43$, T = 296 K, orthorhombic, space group $P2_12_12_1$, a = 7.53030(10), b = 8.69550(10), c = 39.2876(3) Å, V = 2572.54(5) Å³, Z = 4, 5020 unique reflections, final $R_1 = 0.0279$ and $wR_2 = 0.0731$ for 5128 observed [*I*>2 σ (*I*)] reflections, Flack $\chi = -0.026(6)$. CCDC 2096476 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK; fax: (+44) 1223-336-033; or deposit@ccdc.cam.ac.uk).

Crystal data for *meso-(S,s,R)*-7d: C₂₅H₂₅Br₂NO₂, $M_r = 531.28$, T = 296 K, monoclinic, space group $P2_1/m$, a = 5.982, b = 20.17050(10), c = 9.655 Å, $\beta = 104.4620(10)$ °, V = 1128.058(8) Å³, Z = 2, 2075unique reflections, final $R_1 = 0.0205$ and $wR_2 = 0.0514$ for 2083 observed [I>2 σ (I)] reflections, CCDC 2096474 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, fax: (+44)1223-336-033; UK: or deposit@ccdc.cam.ac.uk).

Crystal data for (3S, 4S, 5R)-(S)-12: C₂₁H₁₄Cl₄INO₂, $M_r = 581.03$, T = 296 K, triclinic, space group *P1*, a = 8.2099(3), b = 11.6051(4), c = 12.1577(5) Å, $\alpha = 87.954(3)$ °, $\beta = 80.589(3)$ °, $\gamma = 89.897(3)$ °, *V* = 1142.02(7) Å³, Z = 2, 6921 unique reflections, final $R_1 = 0.0738$ and $wR_2 = 0.2072$ for 7558 observed [*I*> $2\sigma(I)$] reflections, Flack $\chi = 0.001(8)$. CCDC 2096478 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK; fax: (+44) 1223-336-033; or deposit@ccdc.cam.ac.uk).