Electronic Supplementary Material (ESI) for RSC Medicinal Chemistry. This journal is © The Royal Society of Chemistry 2021

Supplementary information

Synthesis of low-molecular weight fucoidan derivatives and their binding abilities to the SARS-CoV-2 spike proteins

Tatsuki Koike, Aoi Sugimoto, Shuhei Kosono, Sumika Komaba, Yuko Kanno, Takashi Kitamura, Itsuki Anzai, Tokiko Watanabe, Daisuke Takahashi* and Kazunobu Toshima*

Contents	Page
General methods for chemical synthesis	S-2
Synthesis of tetrafucoside 16	S-3
Synthesis of tetrafucoside 11	S-9
Synthesis of tetrafucoside 12	S-14
Synthesis of tetrafucosides 13 and 10	S-18
Materials and methods for biological assay	S-22
Expression and purification of recombinant spike proteins	S-22
Binding affinity of heparin to wild type SARS-CoV-2 S protein	S-22
Competitive inhibition assay	S-23
Binding affinities of heparin to mutant SARS-CoV-2 S proteins	S-23
Binding affinities of 10 to mutant SARS-CoV-2 S proteins	S-23
Coagulation (Factor Xa) assay	S-23
References	S-24
NMR spectrum charts	S-25

General methods for chemical synthesis

NMR spectra were recorded on a JEOL ECA-500 (500 MHz for ¹H, 125 MHz for ¹³C) spectrometer or a JEOL Lambda-300 (300 MHz for ¹H) spectrometer. ¹H-NMR data are reported as follows; chemical shift in parts per million (ppm) downfield or upfield from CDCl₃ (δ 7.26), $CD_3OD(\delta 3.31)$, $D_2O(\delta 4.79)$ or tetramethyl silane ($\delta 0.00$), integration, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, and m = multiplet), and coupling constants (Hz). ¹³C-NMR chemical shifts are reported in ppm downfield or upfield from CDCl₃ (δ 77.0), CD₃OD (δ 49.0) or acetone- d_6 (δ 29.8). ESI-TOF MS spectra were measured on a Waters LCT premier XE. Melting points were determined on a micro hot-stage (Yanako MP-S3) and were uncorrected. Optical rotations were measured on a JASCO P-2200 polarimeter. Silica gel TLC was performed on a Merck TLC 60F-254 (0.25 mm). Column chromatography separation was performed on a Silica Gel 60N (spherical, neutral, 63-210 µm or 40-50 µm) (Kanto Chemical Co., Inc.). Reverse phase column chromatography separation was performed on a Wakosil 25C18 (Wako pure chemical industries, Ltd.) or Sep-Pak C18 reversed-phase cartridge (Waters). Gel filtration chromatography separations were performed using a SephadexTM LH-20 (GE Healthcare). Airand/or moisture-sensitive reactions were carried out under an argon atmosphere using oven-dried glassware.

Synthesis of tetrafucoside 16

Compound 19

To a solution of 18^{11} (3.70 g, 5.94 mmol) and 17^{21} (1.47 g, 2.97 mmol) in Et₂O (111 mL) was added MS 5A (3.70 g, 100 wt% to 18) at room temperature. After being stirred at the same temperature for 1 h, the reaction mixture was cooled to -60 °C, and then Yb(OTf)₃ (1.47 g, 2.38 mmol) was added to the reaction mixture. After the reaction mixture was stirred for 4 h at the same temperature, the reaction was quenched with triethylamine (4.0 mL). The resultant mixture was filtered through Celite. And then, water was added to the filtrate. The aqueous layer was extracted with EtOAc (100 mL×3), and then the combined extracts were washed with brine (100 mL), dried over anhydrous Na₂SO₄, and concentrated in vacuo. The residue was subjected to silica gel column chromatography (15/1 PhMe/EtOAc) to give 19 (2.14 g, 2.24 mmol, 75% yield). White foam; $R_f 0.50$ (6/1 PhMe/EtOAc); $[\alpha]^{18}_{D}$ -116.7° (c 1.0, CHCl₃); ¹H-NMR (500 MHz, CDCl₃) & 8.07-8.05 (2H, m, Ar-H), 7.59-7.55 (1H, m, Ar-H), 7.46-7.43 (4H, m, Ar-H), 7.36-7.22 (12H, m, Ar-H), 7.16-7.08 (3H, m, Ar-H), 6.82-6.78 (4H, m, Ar-H), 5.60 (1H, br-d, J_{3',4'} = 3.0 Hz, H-4'), 5.02 (1H, d, *J*_{1',2'} = 3.5 Hz, H-1'), 5.00 and 4.90 (2H, ABq, *J* = 11.0 Hz, Ar*CH*₂), 4.90 and 4.80 (2H, ABq, J = 11.0 Hz, ArCH₂), 4.69-4.57 (5H, m, ArCH₂×2, H-5 or 5'), 4.30 (1H, d, J_{1.2} = 9.0 Hz, H-1), 4.25 (1H, dd, $J_{2',3'} = 10.5$ Hz, $J_{3',4'} = 3.5$ Hz, H-3'), 3.98 (1H, dd, $J_{1',2'} = 3.5$ Hz, $J_{2',3'}$ = 10.5 Hz, H-2'), 3.77 (3H, s, OMe), 3.75 (3H, s, OMe), 3.74 (1H, br-d, J_{3,4} = 3.0 Hz, H-4), 3.67 $(1H, t, J_{1,2} = 9.5 Hz, J_{2,3} = 9.5 Hz, H-2), 3.38 (1H, dd, J_{3,4} = 2.5 Hz, J_{2,3} = 9.0 Hz, H-3), 3.27 (1H, J_{2,3} = 9.0 Hz, H-3), 3.28 (1H, J_{2,3} = 9.0 Hz, H-3),$ br-q, J = 6.0 Hz, H-5 or 5'), 2.58 (6H, s, SPhMe₂), 1.24 (3H, d, J = 6.5 Hz, H-6 or 6'), 0.95 (3H, d, J = 6.5 Hz, H-6 or 6'); ¹³C-NMR (125 MHz, CDCl₃) δ 166.3, 159.0, 144.5, 138.8, 138.5, 132.9, 132.4, 130.4, 130.2, 129.9, 129.7, 129.0, 128.7, 128.3×2, 128.2, 128.1, 127.9×2, 127.5, 127.2, 113.7, 113.6, 100.2, 90.1, 82.3, 78.1, 77.3, 75.5, 75.4, 75.3, 74.5, 73.0, 72.3, 71.9, 71.2. 65.5, 55.2×2, 22.7, 16.9, 16.2; HRMS (ESI-TOF) m/z 955.4108 (955.4091 calcd. for C₅₇H₆₃O₁₁S, $[M+H]^{+}$).

Compound 20

To a solution of 19 (1.21 g, 1.27 mmol) in MeCN (42 mL) and H₂O (228 µL) were added NIS (1.14 g, 5.07 mmol) and Sc(OTf)₃ (63.0 mg, 128 µmol) at -40 °C. After being stirred at the same temperature for 4 h, the reaction mixture was poured into a solution of saturated aq. NaHCO₃ (30 mL) and saturated aq. Na₂S₂O₃ (30 mL) at 0 °C. The aqueous layer was extracted with EtOAc (200 mL \times 3), and then the combined extracts were washed with brine (600 mL), dried over anhydrous Na₂SO₄, and concentrated in vacuo. The residue was subjected to silica gel column chromatography (2/1 PhMe/EtOAc) to give **20** (911 mg, 1.09 mmol, 86% yield, $\alpha/\beta = 1/1$). White foam; $R_f 0.50 (2/1 \text{ PhMe/EtOAc})$; ¹H-NMR (500 MHz, CDCl₃) δ 8.05-8.01 (2H, m, Ar-H), 7.59-7.56 (1H, m, Ar-H), 7.46-7.19 (16H, m, Ar-H), 6.85-6.77 (4H, m, Ar-H), 5.58 (1H, m), 5.34 (1/2H, m), 4.97-4.90 (3/2H, m), 4.86-4.63 (7H, m), 4.56-4.42 (2H, m), 4.13-4.03 (3/2H, m), 3.94-3.86 (3/2H, m), 3.82-3.75 (15/2H, m), 3.61-3.53 (1H, m), 3.44-3.40 (1/2H, m), 3.23 (1/2H, d, J = 7.5 Hz), 2.80 (1/2H, s, OH-1), 1.37 (3/2H, d, J = 6.5 Hz), 1.32 (3/2H, d, J = 6.5 Hz), 0.98-0.93 (3H, m); ¹³C-NMR (125 MHz, CDCl₃) δ 166.3, 166.2, 159.1×2, 159.0×2, 138.5, 138.4, 138.3, 138.1, 133.0, 130.5, 130.4×2, 130.3, 130.1, 129.8, 129.6, 129.5, 129.1×2, 128.5, 128.4, 128.3×2, 128.2×2, 128.1, 127.9, 127.7, 127.6, 127.5, 113.7, 113.6, 113.5, 100.3, 100.1, 97.7, 91.6, 80.0, 79.8, 78.4, 76.4, 76.3, 76.0, 75.4, 74.9, 74.7, 74.5, 73.8×2, 73.0, 72.3, 71.6, 71.2, 71.1, 67.3, 65.5, 65.4, 55.2×2, 17.0, 16.5, 16.2×2; HRMS (ESI-TOF) *m/z* 835.3700 (835.3694 calcd. for C₄₉H₅₅O₁₂, $[M+H]^{+}$).

Compound 21

To a solution of **20** (2.70 g, 3.23 mmol) in CH₂Cl₂ (135 mL) were added DBU (146 μ L, 0.970 mmol) and CCl₃CN (1.95 mL, 19.4 mmol) at room temperature. After being stirred at the same temperature for 17 h, the reaction mixture was concentrated in *vacuo*. The residue was subjected to silica gel column chromatography (2/1 *n*-Hexane/EtOAc, 2% NEt₃) to give **21** (2.90 g, 2.96 mmol, 91% yield, $\alpha/\beta = 5/1$). White foam; R_f 0.60 (α), 0.30 (β) (2/1 *n*-Hexane/EtOAc, 2% NEt₃);

¹H-NMR (300 MHz, CDCl₃) δ 8.63 (1/6H, s, OC(N*H*)CCl₃), 8.50 (5/6H, s, OC(N*H*)CCl₃), 8.06-8.01 (2H, m, Ar-H), 7.60-7.55 (1H, m, Ar-H), 7.47-7.41 (2H, m, Ar-H), 7.39-7.20 (14H, m, Ar-H), 6.83-6.76 (4H, m, Ar-H), 6.60 (5/6H, d, $J_{1,2} = 2.7$ Hz, H-1), 5.72 (1/6H, d, $J_{1,2} = 8.1$ Hz, H-1), 5.57 (1H, m, H-4'), 5.01-4.43 (10H, m, H-1', H-5 or 5', Ar*CH*₂), 4.15-3.73 (12H, m, H-2, 2', H-3, 3', H-4, H-5 or 5', OMe×2), 1.39 (3/6H, d, J = 6.0 Hz, H-6 or 6'), 1.32 (15/6H, d, J = 6.3 Hz, H-6 or 6'), 0.99-0.93 (3H, m, H-6 or 6'); ¹³C-NMR (125 MHz, CDCl₃) α isomer : δ 166.2, 161.3, 159.1, 159.0, 138.4, 138.3, 133.0, 130.4×2, 130.1, 129.8, 129.5×2, 128.4, 128.3, 128.2, 127.6×2, 127.5, 113.6×2, 100.2, 95.1, 91.5, 78.1, 76.3, 75.2, 74.8, 74.7, 73.9, 72.6, 72.3, 71.6, 71.1, 70.1, 65.5, 55.2×2, 16.5, 16.2; HRMS (ESI-TOF) *m*/*z* 976.2656 (976.2633 calcd. for C₅₁H₅₃NO₁₂Cl₃, [M–H]⁻).

Compound 22

To a solution of 21 (2.02 g, 2.06 mmol) in CH₂Cl₂ (61 mL) were added *n*-octanol (979 µL, 6.18 mmol) and MS 5A (2.02 g, 100 wt% to 21) at room temperature. After being stirred at the same temperature for 1 h, the reaction mixture was cooled to -60 °C, and then Yb(OTf)₃ (512 mg, 0.824 mmol) was added to the reaction mixture. After the reaction mixture was stirred for 6 h at the same temperature, the reaction was quenched with triethylamine (4.0 mL). The resultant mixture was filtered through Celite. And then, water was added to the filtrate. The aqueous layer was extracted with EtOAc (200 mL×3), and then the combined extracts were washed with brine (600 mL), dried over anhydrous Na₂SO₄, and concentrated in vacuo. The residue was subjected to silica gel column chromatography (15/1 PhMe/EtOAc) to give 22 (1.41 g, 1.48 mmol, 72% yield). Yellow syrup; $R_f 0.40 (15/1 \text{ PhMe/EtOAc}); [\alpha]^{22} - 93.7^{\circ} (c \ 1.0, \text{ CHCl}_3); ^1\text{H-NMR} (500 \text{ MHz},$ CDCl₃) & 8.04-8.02 (2H, m, Ar-H), 7.58-7.55 (1H, m, Ar-H), 7.46-7.38 (4H, m, Ar-H), 7.35-7.22 (12H, m, Ar-H), 6.82-6.77 (4H, m, Ar-H), 5.56 (1H, br-d, J_{3',4'} = 2.0 Hz, H-4'), 4.97-4.93 (2H, m, H-1', ArCH₂), 4.84-4.62 (6H, m, ArCH₂×3), 4.54-4.49 (2H, m, H-5 or 5', ArCH₂), 4.29 (1H, d, $J_{1,2} = 7.5$ Hz, H-1), 4.17 (1H, dd, $J_{2',3'} = 10.0$ Hz, $J_{3',4'} = 3.0$ Hz, H-3'), 3.99-3.90 (2H, m, H-2', -OCH₂CH₂-), 3.78 (3H, s, OMe), 3.75 (3H, s, OMe), 3.68 (1H, br-d, J_{3,4} = 2.5 Hz, H-4), 3.62 (1H, dd, J_{1,2} = 8.0 Hz, J_{2,3} = 10.0 Hz, H-2), 3.52-3.41 (2H, m, H-5 or 5', -OCH₂CH₂-), 3.37 (1H, dd, *J*_{2,3} = 10.0 Hz, *J*_{3,4} = 2.5 Hz, H-3), 1.73-1.60 (2H, m, -OCH₂*CH*₂-), 1.48-1.23 (13H, m), 0.95 (3H, d, J = 6.5 Hz, H-6 or 6'), 0.88 (3H, t, J = 7.0 Hz, $-OC_7H_{14}CH_3$); ¹³C-NMR (125 MHz, CDCl₃) δ 166.2, 159.0, 158.9, 138.7, 138.5, 132.9, 130.6, 130.5, 130.2, 129.8, 129.6, 129.1, 128.3×3,

128.1×2, 127.5, 127.4, 113.6, 113.5, 104.0, 100.5, 79.8, 78.3, 78.0, 75.9, 74.9, 74.7, 73.2, 72.4, 71.8, 71.2, 70.7, 70.2, 65.5, 55.1×2, 31.8, 29.8, 29.4, 29.2, 26.1, 22.6, 16.6, 16.2, 14.1; HRMS (ESI-TOF) *m/z* 969.4774 (969.4765 calcd. for C₅₇H₇₀O₁₂Na, [M+Na]⁺).

Compound 23

To a solution of 22 (1.26 g, 1.33 mmol) in MeOH/THF (1/1, v/v, 76 mL) was added 28% NaOMe in MeOH (7.92 mL, 39.9 mmol) at room temperature, and then the resultant mixture was stirred at 50 °C. After being stirred at the same temperature for 15 h, the reaction mixture was quenched with Amberlite[®] IR 120 H⁺ form. The resultant suspension was filtered, and then the filtrate was concentrated in vacuo. The residue was subjected to silica gel column chromatography (6/1 PhMe/EtOAc) to give 23 (1.06 g, 1.26 mmol, 94% yield). Yellow syrup; R_f 0.50 (6/1 PhMe/EtOAc); $[\alpha]^{24}_{D}$ -65.1° (c 1.0, CHCl₃); ¹H-NMR (500 MHz, CDCl₃) δ 7.39-7.37 (2H, m, Ar-H), 7.34-7.24 (12H, m, Ar-H), 6.90-6.87 (2H, m, Ar-H), 6.82-6.79 (2H, m, Ar-H), 4.93-4.90 (2H, m, H-1', ArCH₂), 4.81-4.76 (2H, m, ArCH₂), 4.71-4.60 (5H, m, ArCH₂), 4.32 (1H, br-q, J = 6.0 Hz, H-5 or 5'), 4.28 (1H, d, $J_{1,2} = 7.5$ Hz, H-1), 4.01 (1H, dd, $J_{2',3'} = 10.0$ Hz, $J_{3',4'} = 3.0$ Hz, H-3'), 3.97-3.92 (1H, m, -OCH2CH2-), 3.84-3.78 (8H, m, H-2', H-4', OMe×2), 3.64 (1H, br-d, $J_{3,4} = 2.5$ Hz, H-4), 3.59 (1H, dd, $J_{1,2} = 8.0$ Hz, $J_{2,3} = 10.0$ Hz, H-2), 3.51-3.46 (1H, m, -OCH₂CH₂-), 3.42 (1H, br-q, J = 6.0 Hz, H-5 or 5'), 3.35 (1H, dd, $J_{2,3} = 10.0$ Hz, $J_{3,4} = 2.5$ Hz, H-3), 2.40 (1H, br-s, OH-4'), 1.71-1.59 (2H, m, -OCH₂CH₂-), 1.44-1.23 (13H, m), 1.09 (3H, d, J = 7.0 Hz, H-6 or 6'), 0.87 (3H, t, J = 7.0 Hz, $-OC_7H_{14}CH_3$); ¹³C-NMR (125 MHz, CDCl₃) δ 159.3, 159.0, 138.8, 138.5, 130.6, 130.4, 129.5, 129.1, 128.2, 128.1, 128.0, 127.4×2, 113.8, 113.6, 103.9, 100.1, 80.1, 78.5, 78.1, 77.5, 75.9, 74.7, 73.4, 72.2, 71.9, 70.7, 70.2×2, 65.8, 55.2×2, 31.8, 29.8, 29.4, 29.2, 26.1, 22.6, 16.7, 16.1, 14.1; HRMS (ESI-TOF) m/z 865.4527 (865.4503 calcd. for C₅₀H₆₆O₁₁Na, $[M+Na]^{+}$).

Compound 16

To a solution of 21 (26.9 mg, 27.5 µmol) and 23 (11.6 mg, 13.8 µmol) in Et₂O (0.81 mL) was added MS 5A (26.9 mg, 100 wt% to 21) at room temperature. After being stirred at the same temperature for 1 h, the reaction mixture was cooled to -80 °C, and then TMSOTf (2.13 µL, 11.0 μ mol) was added to the reaction mixture. After the reaction mixture was stirred for 5 h at the same temperature, the reaction was quenched with triethylamine (20 μ L). The resultant mixture was filtered through Celite. And then, water was added to the filtrate. The aqueous layer was extracted with EtOAc ($3 \text{ mL} \times 3$), and then the combined extracts were washed with brine (3 mL), dried over anhydrous Na₂SO₄, and concentrated in vacuo. The residue was subjected to silica gel column chromatography (6/1 PhMe/EtOAc) to give 16 (18.1 mg, 10.9 μ mol, 79% yield). White foam; R_f 0.50 (10/1 PhMe/EtOAc); $[\alpha]^{25}_{D}$ -72.5° (c 1.0, CHCl₃); ¹H-NMR (500 MHz, CDCl₃) δ 8.00-7.98 (2H, m, Ar-H), 7.58-7.54 (1H, m, Ar-H), 7.44-7.40 (2H, m, Ar-H), 7.37-7.20 (28H, m, Ar-H), 6.88-6.77 (8H, m, Ar-H), 5.49 (1H, br-d, $J_{3,...,4,...} = 2.0$ Hz, H-4'''), 4.99 (1H, d, J = 3.0 Hz, H-1' or 1" or 1"), 4.94 (1H, d, J = 3.5 Hz, H-1' or 1" or 1"), 4.92-4.89 (1H, m, ArCH₂), 4.82 (1H, d, J = 3.5 Hz, H-1' or 1" or 1"), 4.80-4.59 (14H, m, ArCH₂), 4.42-4.38 (2H, m, H-5 or 5' or 5" or 5^{**}, Ar*CH*₂), 4.28 (1H, d, *J*_{1,2} = 7.5 Hz, H-1), 4.21 (2H, br-q, *J* = 6.5 Hz, H-5 or 5^{*} or 5^{**} × 2), 3.98-3.67 (22H, m, H-2', 2", 2", H-3', 3", 3", H-4, 4', 4", OMe×4, -OCH2CH2-), 3.56 (1H, dd, J_{1,2} = 7.5 Hz, J_{2,3} = 10.0 Hz, H-2), 3.52-3.46 (1H, m, -OCH₂CH₂-), 3.41 (1H, br-q, J = 6.0 Hz, H-5 or 5' or 5'' or 5'''), 3.32 (1H, dd, $J_{2,3} = 10.0$ Hz, $J_{3,4} = 3.0$ Hz, H-3), 1.73-1.59 (2H, m, -OCH₂*CH*₂-), 1.45-1.20 (13H, m), 1.13-1.09 (6H, m, H-6 or 6' or 6'' or 6'''×2), 0.87 (3H, t, *J* = 7.0 Hz, $-OC_7H_{14}CH_3$), 0.81 (3H, d, J = 6.5 Hz, H-6 or 6' or 6'' or 6'''); ¹³C-NMR (125 MHz, CDCl₃) δ 166.3, 159.0, 158.9×2, 138.9, 138.7, 138.5×2, 132.9, 131.1×2, 130.7, 130.6, 130.2, 129.8, 129.4, 129.2, 129.0, 128.9, 128.6, 128.5, 128.3, 128.2, 128.1×2, 127.7, 127.5, 127.4×2, 113.6, 113.5, 103.9, 100.3, 99.7, 99.2, 79.8, 79.5, 78.6, 78.5, 76.6, 76.0, 75.6, 74.8, 74.6, 73.7, 72.9, 72.8, 72.5, 72.1×2, 71.8, 71.2, 70.7, 70.1, 67.6, 67.4, 65.4, 55.2×2, 31.8, 29.8, 29.5, 29.3, 26.2, 22.7, 16.8, 16.4, 16.3, 16.0, 14.1; HRMS (ESI-TOF) m/z 1659.8180 (1659.8193 calcd. for C₉₉H₁₁₉O₂₂, $[M+H]^{+}$).

Synthesis of tetrafucoside 11

To a solution of 16 (29.5 mg, 17.8 µmol) in CH₂Cl₂/PBS (pH 7.2, 30 mM) (1/1, v/v, 6.0 mL) was added DDQ (32.3 mg, 142 µmol) at room temperature. After being stirred at the same temperature for 21 h, the reaction was quenched with saturated aq. NaHCO₃ (6.0 mL). The aqueous layer was extracted with $CHCl_3$ (10 mL×3), and then the combined extracts were washed with brine (30 mL), dried over anhydrous Na₂SO₄, and concentrated in *vacuo*. The residue was subjected to silica gel column chromatography (2/1 PhMe/EtOAc) to give S1 (17.9 mg, 15.1 µmol, 85% yield). White solid; R_f 0.50 (2/1 PhMe/EtOAc); m.p. 130-131 °C; $[\alpha]^{26}_{D}$ -196.5° (c 1.0, CHCl₃); ¹H-NMR (500 MHz, CDCl₃) δ 8.03-8.00 (2H, m, Ar-H), 7.61-7.57 (1H, m, Ar-H), 7.47-7.44 (2H, m, Ar-H), 7.42-7.22 (20H, m, Ar-H), 5.40 (1H, br-d, *J*_{3³,4³,1} = 3.5 Hz, H-4³), 5.00 (1H, d, $J_{1,...,2,...} = 3.5$ Hz, H-1'''), 4.97 (1H, d, J = 3.5 Hz, H-1' or 1''), 4.95 (1H, d, J = 4.0 Hz, H-1' or 1"), 4.89 and 4.78 (2H, ABq, J = 11.5 Hz, ArCH₂), 4.73-4.59 (6H, m), 4.31 (1H, d, J_{1,2} = 7.5 Hz, H-1), 4.22-4.06 (5H, m, H-3, H-3", H-5 or 5" or 5" or 5" ×3), 4.00-3.92 (2H, m, H-3" or 3", -OCH₂CH₂-), 3.85 (1H, dd, J₁, 2, = 3.5 Hz, J₂, 3, = 10.5 Hz, H-2, 3, 3.72-3.54 (8H, m, H-2, 2), H-4, H-4' or 4", H-5 or 5' or 5" or 5", OH×3), 3.51-3.46 (1H, m, -OCH₂CH₂-), 3.26-3.21 (2H, m, H-2, H-3' or 3"), 2.94 (1H, d, J = 6.5 Hz, H-4' or 4"), 2.18 (1H, d, J = 3.0 Hz, OH), 1.71-1.59 (2H, m, -OCH₂*CH*₂-), 1.43-1.22 (16H, m), 1.17 (3H, d, *J* = 6.5 Hz, H-6 or 6' or 6'' or 6'''), 1.07 $(3H, d, J = 6.5 \text{ Hz}, H-6 \text{ or } 6' \text{ or } 6''), 0.88 (3H, t, J = 7.0 \text{ Hz}, -OC_7H_{14}CH_3); {}^{13}C-NMR (125)$ MHz, CDCl₃) δ 166.5, 138.6, 138.1, 137.7, 137.4, 133.2, 129.8, 129.7, 128.6×2, 128.4, 128.2×2, 128.1×2, 127.8×2, 127.5, 104.0, 100.0, 99.8, 99.7, 83.5, 83.4, 82.6, 79.5, 76.5×2, 75.9, 74.4, 73.9, 73.7, 73.2, 72.8, 72.7, 70.5, 70.3, 69.0, 68.9, 67.9×2, 67.7, 66.2, 31.8, 29.7, 29.4, 29.2, 26.1, 22.6, 16.6, 16.4, 16.2×2, 14.1; HRMS (ESI-TOF) m/z 1179.5872 (1179.5892 calcd. for C₆₇H₈₇O₁₈, $[M+H]^{+}$).

To a solution of S1 (233 mg, 198 µmol) in MeOH/THF (1/1, v/v, 23 mL) was added 28% NaOMe in MeOH (787 µL, 3.96 mmol) at room temperature, and then the resultant mixture was stirred at 50 °C. After being stirred at the same temperature for 1 h, the reaction was quenched with Amberlite® IR 120 H⁺ form. The resultant suspension was filtered, and then the filtrate was concentrated in vacuo. The residue was subjected to silica gel column chromatography (10/1 CHCl₃/MeOH) to give S2 (212.8 mg, 198 μ mol, quant.). White solid; R_f 0.60 (7/1 CHCl₃/MeOH); m.p. 173-174 °C; [α]²⁷_D-122.3° (*c* 1.0, CHCl₃); ¹H-NMR (500 MHz, CD₃OD) δ 7.42-7.37 (8H, m, Ar-H), 7.35-7.22 (12H, m, Ar-H), 4.98 (1H, d, J = 3.5 Hz, H-1' or 1" or 1"), 4.95 (1H, d, J = 3.5 Hz, H-1' or 1" or 1"), 4.90 (1H, d, J = 4.0 Hz, H-1' or 1" or 1"), 4.86-4.66 (8H, m, ArCH₂), 4.34 (1H, d, J_{1.2} = 7.0 Hz, H-1), 4.22-4.17 (3H, m, H-5 or 5' or 5'' or 5'''×3), 4.03 (1H, dd, J = 10.5 Hz, J = 3.0 Hz, H-3' or 3" or 3"), 3.93-3.86 (3H, m, H-3' or 3" or 3"×2, -OCH₂CH₂-), 3.76-3.63 (8H, m, H-2', 2", 2", H-4, 4', 4", 4", H-5 or 5' or 5" or 5"), 3.57 (1H, dd, J_{2,3} = 9.5 Hz, J_{3,4} = 3.5 Hz, H-3), 3.53-3.48 (1H, m, -OCH₂CH₂-), 3.28 (1H, dd, J_{1,2} = 7.5 Hz, J_{2,3} = 10.0 Hz, H-2), 1.63-1.59 (2H, m, -OCH₂CH₂-), 1.45-1.22 (13H, m), 1.16 (9H, d, J = 6.5 Hz, H-6 or 6' or 6" or 6"×3), 0.88 (3H, t, J = 7.0 Hz, $-OC_7H_{14}CH_3$); ¹³C-NMR (125 MHz, CD₃OD) δ 140.1, 140.0, 139.8, 139.7, 129.5, 129.4, 129.3×3, 129.2×2, 128.8, 128.7×2, 128.6, 105.1, 101.3, 101.1, 101.0, 84.1, 83.8, 83.5, 80.4, 78.0, 77.8, 77.5, 75.4, 74.4, 74.0, 73.9, 73.7, 72.0, 70.9, 70.6, 70.3, 70.0, 69.2, 69.1, 68.5, 33.0, 30.9, 30.5, 30.4, 27.4, 23.7, 17.1, 17.0×2, 16.7, 14.4; HRMS (ESI-TOF) m/z 1075.5580 (1075.5630 calcd. for C₆₀H₈₃O₁₇, [M+H]⁺).

To a solution of S2 (5.2 mg, 4.84 µmol) in DMF (0.52 mL) was added SO₃ • NEt₃ (65.7 mg, 363 µmol) at room temperature. After being stirred at the same temperature for 24 h, 3 M NaOH aq. (240 µL, 725 µmol) was added to the reaction mixture and the mixture was stirred for 1 h. And then, the resultant mixture was subjected to reverse phase silica gel column chromatography (100/0 to 0/100 H₂O/MeOH) and gel filtration chromatography to give S3 (7.1 mg, 4.45 μ mol, 92% yield). White solid; $R_f 0.60 (10/10/1 \text{ CHCl}_3/\text{MeOH/H}_2\text{O})$; m.p. >300 °C; $[\alpha]^{31}_D$ -99.6° (c 1.0, H₂O); ¹H-NMR (500 MHz, D₂O) δ 7.51-7.31 (20H, m, Ar-H), 5.09 (1H, d, J = 4.0 Hz, H-1' or 1" or 1""), 5.05 (1H, d, *J* = 4.0 Hz, H-1' or 1" or 1""), 4.95 (1H, d, *J* = 4.0 Hz, H-1' or 1" or 1""), 4.86-4.51 (12H, m, H-1, H-3' or 3", H-3"", H-4"", Ar*CH*₂), 4.45 (1H, dd, *J* = 3.0 Hz, *J* = 11.0 Hz, H-3' or 3"), 4.33 (1H, dd, $J_{2,3} = 10.5$ Hz, $J_{3,4} = 3.0$ Hz, H-3), 4.07 (1H, br-d, $J_{3,4} = 3.0$ Hz, H-4), 4.04-3.99 (2H, m, H-4' or 4", H-5 or 5' or 5" or 5"), 3.96-3.61 (10H, m, H-2, 2', 2", 2", H-4' or 4", H-5 or 5" or 5" or 5"×3, -OCH2CH2-), 1.67-1.60 (2H, m, -OCH2CH2-), 1.44-1.37 (16H, m), 1.22 (3H, d, *J* = 6.5 Hz, H-6 or 6' or 6'' or 6'''), 1.15 (3H, d, *J* = 6.5 Hz, H-6 or 6' or 6'' or 6"), 0.86 (3H, t, J = 7.0 Hz, $-OC_7H_{14}CH_3$); ¹³C-NMR (125 MHz, D₂O) δ 138.2, 137.8, 137.6×2, 130.6×2, 130.1, 129.8, 129.3, 129.2, 128.9×2, 103.3, 99.8, 99.6, 99.3, 80.5, 80.4, 79.9, 79.3, 78.5, 76.0, 75.7, 75.4, 75.3, 75.0, 74.6, 73.8, 73.5, 72.8, 72.3, 71.6, 71.4, 68.6, 68.5, 67.1, 31.8, 29.6, 29.2, 26.0, 22.7, 16.5, 16.0×2, 15.8, 14.1; HRMS (ESI-TOF) m/z 1585.2616 (1585.2568 calcd. for $C_{60}H_{78}O_{32}S_5Na_5$, $[M+H]^+$).

Compound 11

To a solution of S3 (7.7 mg, 4.86 µmol) in MeOH/H₂O (1/1, v/v, 1.4 mL) were added AcOH (14 μ L, 2% to MeOH) and Pd(OH)₂/C (23.0 mg, 300wt% to **S3**) under H₂ atmosphere at room temperature. After being stirred for 16 h, the reaction mixture was filtered through Celite, and then the filtrate was concentrated in *vacuo*. The residue was subjected to reverse phase silica gel column chromatography (100/0 to $0/100 \text{ H}_2\text{O}/\text{MeOH}$) and gel filtration chromatography to give **11** (4.6 mg, 3.79 μ mol, 78% yield). White solid; $R_f 0.40 (10/10/1 \text{ CHCl}_3/\text{MeOH/H}_2\text{O})$; m.p. >300 °C; $[\alpha]^{28}_{D}$ –131.7° (*c* 1.0, H₂O); ¹H-NMR (500 MHz, D₂O) δ 5.16 (1H, d, *J* = 3.5 Hz, H-1' or 1'' or 1^{***}), 5.12 (2H, m, H-1^{*} or 1^{***} or 1^{***} ×2), 4.92 (1H, br-d, *J* = 2.0 Hz, H-4^{*} or 4^{***} or 4^{***}), 4.69-4.61 (4H, m, H-3', 3", 3", H-5 or H-5' or H-5" or H-5"), 4.58-4.51 (3H, m, H-1, H-5 or 5' or 5" or 5"×2), 4.35 (1H, dd, $J_{2,3} = 10.0$ Hz, $J_{3,4} = 3.0$ Hz, H-3), 4.27 (1H, br-d, J = 2.0 Hz, H-4' or H-4" or H-4"), 4.25 (1H, br-d, *J* = 2.0 Hz, H-4' or H-4" or H-4"), 4.19 (1H, br-d, *J*_{3,4} = 2.5 Hz, H-4), 4.16-4.10 (2H, m, H-2' or 2" or 2"×2), 4.01 (1H, dd, *J* = 10.5 Hz, *J* = 3.5 Hz, H-2' or 2" or 2""), 3.93-3.87 (2H, m, H-5 or 5' or 5" or 5", -OCH2CH2-), 3.76-3.66 (2H, m, H-2, - OCH_2CH_2 -), 1.66-1.60 (2H, m, - OCH_2CH_2 -), 1.43-1.27 (22H, m), 0.87 (3H, t, J = 7.0 Hz, -OC₇H₁₄CH₃); ¹³C-NMR (125 MHz, D₂O) δ 102.7, 100.6, 100.3, 100.1, 79.9, 79.7, 78.2, 78.0, 77.0, 76.6, 76.5, 75.4, 71.3, 71.2, 69.2, 68.5, 68.4, 67.2×2, 67.1, 31.5, 29.2, 28.8, 28.7, 25.4, 22.4, 16.4, 15.9, 13.8; HRMS (ESI-TOF) *m/z* 1225.0746 (1225.0690 calcd. for C₃₂H₅₄O₃₂S₅Na₅, [M+H]⁺).

Synthesis of tetrafucoside 12

To a solution of S1 (18.2 mg, 15.4 µmol) in pyridine (0.3 mL) was added DMAP (0.376 mg, 3.08 µmol) at 0 °C. And then, Ac₂O (0.3 mL) was dropwisely added to the reaction mixture at the same temperature. After being stirred at room temperature for 0.5 h, the reaction was quenched with 1 M HCl aq. (0.5 mL) at 0 °C. The aqueous layer was extracted with EtOAc (5 mL×3), and then the combined extracts were washed with brine (15 mL), dried over anhydrous Na₂SO₄, and concentrated in vacuo. The residue was subjected to silica gel column chromatography (6/1 PhMe/EtOAc) to give S4 (20.4 mg, 15.1 μ mol, 98% yield). White solid; R_f 0.50 (6/1 PhMe/EtOAc); m.p. 135-136 °C; $[\alpha]_{D}^{26}$ -150.5° (c 1.0, CHCl₃); ¹H-NMR (500 MHz, CDCl₃) δ 8.03-8.00 (2H, m, Ar-H), 7.64-7.60 (1H, m, Ar-H), 7.50-7.46 (2H, m, Ar-H), 7.35-7.22 (20H, m, Ar-H), 5.51 (1H, br-d, *J*₃, *J*^{**}, *J*^{**} = 3.0 Hz, H-4^{***}), 5.42 (1H, dd, *J*₂, *J*^{**}, *J*^{**} = 10.5 Hz, *J*₃, *J*^{**}, *J*^{***} = 3.5 Hz, H-3"), 5.27-5.21 (2H, m, H-3', 3"), 4.89 (1H, d, J_{1",2"} = 3.5 Hz, H-1"), 4.87-4.83 (3H, m, ArCH₂, H-1', 1"), 4.80 (1H, dd, J_{2,3} = 10.5 Hz, J_{3,4} = 3.0 Hz, H-3), 4.68-4.55 (7H, m, ArCH₂), 4.37 (1H, d, *J*_{1,2} = 7.5 Hz, H-1), 4.25-4.12 (3H, m, H-5 or 5' or 5"×2, H-5""), 4.00-3.90 (6H, m, H-2', 2", 2", H-4', 4", -OCH₂CH₂-), 3.82 (1H, br-d, J_{3.4} = 3.0 Hz, H-4), 3.63-3.57 (2H, m, H-2, H-5 or 5' or 5"), 3.51-3.46 (1H, m, -OCH₂CH₂-), 2.03 (3H, s, OAc), 2.02 (3H, s, OAc), 1.99 (3H, s, OAc), 1.94 (3H, s, OAc), 1.70-1.58 (2H, m, -OCH₂CH₂-), 1.43-1.22 (16H, m), 1.17 (3H, d, J= 6.5 Hz, H-6 or 6' or 6'' or 6'''), 1.06 (3H, d, *J* = 6.5 Hz, H-6 or 6' or 6'' or 6'''), 0.87 (3H, t, *J* = 7.0 Hz, -OC₇H₁₄CH₃); ¹³C-NMR (125 MHz, CDCl₃) δ 171.0, 170.7, 170.2, 166.0, 138.6, 138.2, 137.8, 137.7, 133.3, 129.8, 128.5×2, 128.4×2, 128.3, 128.2×2, 128.0, 127.9, 127.6, 127.5, 103.8, 100.4, 100.0, 99.7, 80.1, 79.5, 78.7, 76.2, 74.6, 74.5, 74.2, 73.6, 73.5, 73.3, 73.0, 72.2, 72.1, 71.9, 70.6, 70.4, 70.1, 66.9, 65.2, 31.8, 29.7, 29.4, 29.3, 26.1, 22.7, 21.5×2, 21.3, 20.9, 16.7, 16.6, 16.3, 14.1; HRMS (ESI-TOF) *m/z* 1347.6273 (1347.6315 calcd. for C₇₅H₉₅O₂₂, [M+H]⁺).

To a solution of S4 (14.3 mg, 10.6 µmol) in MeOH/EtOAc (1/1, v/v, 2.8 mL) was added Pd(OH)₂/C (14.3 mg, 100 wt% to S4) under H₂ atmosphere at room temperature. After being stirred for 0.5 h, the reaction mixture was filtered through Celite, and then the filtrate was concentrated in vacuo. The residue was subjected to silica gel column chromatography (10/1 CHCl₃/MeOH) to give S5 (9.7 mg, 9.8 µmol, 92% yield). White solid; R_f 0.60 (10/1 CHCl₃/MeOH); m.p. 127-128 °C; $[\alpha]^{24}_{D}$ – 193.1° (*c* 1.0, CHCl₃); ¹H-NMR (500 MHz, CD₃OD) δ 8.08-8.06 (2H, m, Ar-H), 7.67-7.63 (1H, m, Ar-H), 7.54-7.51 (2H, m, Ar-H), 5.54 (1H, br-d, J₃, 4, 4) = 1.5 Hz, H-4""), 5.29-5.21 (3H, m, H-3', 3", 3""), 5.07 (1H, d, J = 3.5 Hz, H-1' or 1" or 1""), 5.02 (1H, d, *J* = 3.5 Hz, H-1' or 1" or 1"), 4.99 (1H, d, *J* = 3.5 Hz, H-1' or 1" or 1"), 4.90 (1H, dd, *J*_{2,3} = 10.5 Hz, *J*_{3,4} = 3.0 Hz, H-3), 4.67 (1H, q, *J* = 7.0 Hz, H-5 or 5' or 5'' or 5'''), 4.49-4.42 (2H, m, H-5 or 5' or 5'' or 5''' ×2), 4.36 (1H, d, $J_{1,2}$ = 7.5 Hz, H-1), 4.15-4.02 (5H, m, H-2', 2'', 2", H-4', 4"), 3.98-3.97 (1H, m, H-4), 3.90-3.86 (1H, m, -OCH₂CH₂-), 3.81 (1H, q, J = 6.5 Hz, H-5 or 5' or 5'' or 5'''), 3.66 (1H, dd, $J_{1,2} = 7.5$ Hz, $J_{2,3} = 10.0$ Hz, H-2), 3.61-3.56 (1H, m, -OCH2CH2-), 2.17 (3H, s, OAc), 2.17 (3H, s, OAc), 2.15 (3H, s, OAc), 1.95 (3H, s, OAc), 1.68-1.62 (2H, m, -OCH₂*CH*₂-), 1.42-1.27 (19H, m), 1.18 (3H, d, *J* = 6.5 Hz, H-6 or 6' or 6'' or 6'''), 0.90 (3H, t, J = 7.0 Hz, $-OC_7H_{14}CH_3$); ¹³C-NMR (125 MHz, CD₃OD) δ 172.7, 172.6, 172.4, 172.3, 167.6, 134.7, 130.9, 130.7, 129.8, 104.9, 102.4, 102.2, 102.0, 79.4, 78.6, 77.6, 76.1, 73.6, 73.4, 72.3, 72.2, 71.6, 70.2, 68.7×2, 68.4, 68.2, 68.1, 66.4, 33.0, 30.9, 30.6, 30.4, 27.1, 23.7, 21.5×2, 21.4, 20.8, 17.5, 17.4, 16.9, 14.4; HRMS (ESI-TOF) *m/z* 987.4412 (987.4437 calcd. for C₄₇H₇₁O₂₂. $[M+H]^{+}$).

Compound 12

To a solution of **S5** (9.4 mg, 9.52 µmol) in DMF (0.5 mL) was added SO₃·NEt₃ (104 mg, 571 µmol) at room temperature. After being stirred at the same temperature for 24 h, 3 M NaOH aq. (46 µL, 1.14 mmol) was added to the reaction mixture and the mixture was stirred for 1 h. And then, the resultant mixture was subjected to reverse phase silica gel column chromatography (100/0 to 0/100 H₂O/MeOH) and gel filtration chromatography to give **12** (9.8 mg, 8.76 µmol, 92% yield). White solid; R_f 0.40 (10/10/1 CHCl₃/MeOH/H₂O); m.p. >300 °C; [α]²⁵_D –127.2° (*c* 0.79, H₂O); ¹H-NMR (500 MHz, D₂O) δ 5.26-5.24 (3H, m, H-1', 1", 1"'), 4.57-4.42 (7H, m, H-1, H-2', 2", 2"', H-5 or 5' or 5" or 5"'×3), 4.23-4.18 (3H, m, H-2, H-3' or 3" or 3"'×2), 4.15 (1H, dd, *J* = 10.5 Hz, 3.5 Hz, H-3' or 3" or 3"'), 4.01-3.98 (2H, m, H-4' or 4" or 4"'×2), 3.94 (1H, br-d, *J* = 3.0 Hz, H-4' or 4" or 4"' or 4"'), 3.88-3.83 (4H, m, H-3, H-4, H-5 or 5' or 5" or 5", -OCH₂CH₂-), 3.68-3.61 (1H, m, -OCH₂CH₂-), 1.64-1.58 (2H, m, -OCH₂CH₂-), 1.41-1.26 (19H, m), 1.22 (3H, d, *J* = 6.5 Hz, H-6 or 6' or 6"'), 0.86 (3H, t, *J* = 7.0 Hz, -OC₇H₁₄CH₃); ¹³C-NMR (125 MHz, D₂O) δ 101.0, 99.7×2, 99.4, 83.4, 83.0, 81.6, 79.2, 76.0, 75.9, 72.5, 72.4, 71.3, 71.0, 68.9, 68.8, 68.6, 68.0, 67.6, 67.5, 67.4, 31.5, 29.1, 28.8×2, 25.3, 22.4, 15.9, 15.8×2, 15.6, 13.8; HRMS (ESI-TOF) *m/z* 1145.1085 (1145.1122 caled. for C₃₂H₅₄O₂₉S₄Na₅, [M+Na]⁺).

Synthesis of tetrafucosides 13 and 10

To a solution of 16 (31.0 mg, 18.7 µmol) in MeOH/EtOAc (1/1, v/v, 6.2 mL) was added Pd(OH)₂/C (31.0 mg, 100 wt% to 16) under H₂ atmosphere at room temperature. After being stirred for 1.5 h, the reaction mixture was filtered through Celite, and then the filtrate was concentrated in vacuo. The residue was subjected to silica gel column chromatography (6/1 CHCl₃/MeOH) to give S6 (14.2 mg, 17.3 μ mol, 93% yield). White solid; R_f 0.60 (6/1 CHCl₃/MeOH); m.p. 189-190 °C; $[\alpha]^{25}_{D}$ –96.7° (*c* 1.0, CHCl₃); ¹H-NMR (500 MHz, CD₃OD) δ 8.08-8.06 (2H, m, Ar-H), 7.64-7.60 (1H, m, Ar-H), 7.51-7.47 (2H, m, Ar-H), 5.43 (1H, br-d, J₃, 4, 4) = 3.0 Hz, H-4""), 4.99 (1H, d, *J*_{1",2"} = 4.0 Hz, H-1""), 4.92 (1H, d, *J* = 4.0 Hz, H-1' or 1"), 4.88-4.81 (2H, m, H-1' or 1", H-5 or 5' or 5" or 5"), 4.65-4.58 (2H, m, H-5 or 5' or 5" or 5"×2), 4.26 $(1H, d, J_{1,2} = 7.5 \text{ Hz}, H-1), 4.10 (1H, dd, J_{2}, J_{3}, H=11.0 \text{ Hz}, J_{3}, J_{3}, H=3.0 \text{ Hz}, H=3.0$ m, H-2' or 2" or 2" × 2, H-3', 3", H-4', 4", -OCH₂CH₂-), 3.74-3.70 (3H, m, H-2' or 2" or 2", H-4, H-5 or 5' or 5'' or 5'''), 3.60-3.54 (2H, m, H-3, -OCH₂CH₂-), 3.42 (1H, dd, J_{1,2} = 7.5 Hz, J_{2,3} = 10.0 Hz, H-2), 1.68-1.62 (2H, m, -OCH₂CH₂-), 1.45-1.27 (19H, m), 1.09 (3H, d, J = 6.0 Hz, H-6 or 6' or 6'' or 6'''), 0.91 (3H, t, J = 6.5 Hz, $-OC_7H_{14}CH_3$); ¹³C-NMR (125 MHz, CD₃OD) δ 168.0, 134.2, 131.5, 130.7, 129.5, 105.1, 102.7, 102.5×2, 82.1, 81.9, 80.8, 76.4, 74.4, 72.5, 72.3, 71.4, 71.2, 71.0×2, 70.9, 70.8, 69.9, 68.9, 68.8, 67.0, 33.0, 30.9, 30.6, 30.4, 27.1, 23.7, 16.7×2, 16.6, 14.4; HRMS (ESI-TOF) m/z 819.3989 (819.4014 calcd. for C₃₉H₆₃O₁₈, [M+H]⁺).

Compound 13

S-19

To a solution of S6 (14.2 mg, 17.3 µmol) in MeOH (1.4 mL) was added 28% NaOMe in MeOH (380 µL, 34.6 µmol) at room temperature, and then the resultant mixture was stirred at 50 °C. After being stirred at the same temperature for 2 h, the reaction was quenched with Amberlite® IR 120 H⁺ form. The resultant suspension was filtered, and then the filtrate was concentrated in vacuo. The residue was subjected to silica gel column chromatography (4/1 CHCl₃/MeOH) to give 13 (11.2 mg, 15.7 μ mol, 91% vield). White solid; R_{f} 0.40 (4/1 CHCl₃/MeOH); m.p. 142-143 °C; $[\alpha]^{29}_{D}$ –77.9° (c 0.53, MeOH); ¹H-NMR (500 MHz, D₂O) δ 4.99-4.97 (2H, m, H-1' or 1" or 1["]x2), 4.95 (1H, d, *J* = 3.5 Hz, H-1['] or 1["] or 1["]), 4.58-4.50 (3H, m, H-5 or 5['] or 5["] or 5["]×3), 4.40 (1H, d, $J_{1,2} = 8.0$ Hz, H-1), 4.03-4.00 (2H, m, H-3' or 3" or 3" × 2), 3.92 (1H, dd, J = 3.0 Hz, 10.5 Hz, H-3' or 3" or 3"), 3.88-3.77 (9H, m, H-2', 2", 2", H-4, 4', 4", 4", H-5 or 5' or 5" or 5["], $-OCH_2CH_2$ -), 3.71 (1H, dd, $J_{2,3} = 10.0$ Hz, $J_{3,4} = 3.0$ Hz, H-3), 3.68-3.63 (1H, m, $-OCH_2CH_2$ -), 3.47 (1H, dd, *J*_{1,2} = 8.0 Hz, *J*_{2,3} = 10.0 Hz, H-2), 1.64-1.58 (2H, m, -OCH₂*CH*₂-), 1.37-1.24 (19H, m), 1.17 (3H, d, J = 6.5 Hz, H-6 or 6' or 6'' or 6'''), 0.86 (3H, t, J = 7.0 Hz, $-OC_7H_{14}CH_3$); $^{13}C-$ NMR (125 MHz, D_2O , acetone- d_6) δ 103.1, 100.9, 100.8, 100.7, 80.6, 80.5, 79.6, 72.7, 72.3, 71.1, 70.9, 69.7, 69.2×2, 69.1×2, 69.0, 67.9, 67.8, 67.2, 31.5, 29.3, 28.9, 28.8, 25.5, 22.4, 15.8, 15.6, 15.5, 13.8; HRMS (ESI-TOF) *m/z* 737.3563 (737.3572 calcd. for C₃₂H₅₈O₁₇Na, [M+Na]⁺).

Compound 10

To a solution of **13** (2.4 mg, 3.36 µmol) in DMF (0.24 mL) was added SO₃ · NEt₃ (82.2 mg, 453 µmol) at room temperature. After being stirred at the same temperature for 24 h, 3 M NaOH aq. (302 µL, 907 µmol) was added to the reaction mixture and the mixture was stirred for 1 h. And then, the resultant mixture was subjected to reverse phase silica gel column chromatography (H₂O) and gel filtration chromatography to give **10** (4.6 mg, 2.82 µmol, 84% yield). White solid; R_f 0.30 (10/10/3 CHCl₃/MeOH/H₂O); m.p. >300 °C; [α]²⁸_D –89.1° (*c* 1.0, H₂O); ¹H-NMR (500 MHz, D₂O) δ 5.33-5.31 (2H, m, H-1' or 1" or 1""×2), 5.28 (1H, d, *J* = 3.5 Hz, H-1' or 1" or 1""), 4.95 (1H, br-d, J_{3} ^{...,4}^{...} = 3.0 Hz, H-4""), 4.83-4.77 (3H, m, H-3', 3", 3""), 4.70-4.65 (2H, m, H-2' or 2" or 2"×2), 4.60-4.45 (5H, m, H-1, H-2' or 2" or 2"", H-5 or 5' or 5" or 5"×3), 4.39-4.37

(2H, m, H-2, H-3), 4.31-4.27 (2H, m, H-4', 4"), 4.24-4.22 (1H, m, H-4), 3.88-3.78 (2H, m, H-5 or 5" or 5", -OCH₂CH₂-), 3.66-3.60 (1H, m, -OCH₂CH₂-), 1.62-1.55 (2H, m, -OCH₂CH₂-), 1.44-1.22 (22H, m), 0.83 (3H, t, J = 7.0 Hz, -OC₇H₁₄CH₃); ¹³C-NMR (125 MHz, D₂O) δ 101.8, 99.4, 80.9, 80.5, 80.3, 79.1, 78.2, 76.5, 74.2, 73.5, 73.4, 73.3, 73.0, 71.6, 71.4, 68.9, 67.6, 31.8, 29.4, 29.2, 29.1, 25.6, 22.7, 16.4×2, 16.1×2, 14.1; HRMS (ESI-TOF) *m*/*z* 1654.8132 (1654.8060 calcd. for C₃₂H₄₉O₄₄S₉Na₁₀, [M+Na]⁺).

Materials and methods for biological assay

His-tagged SARS-CoV-2 S1+S2 protein was purchased from Sino Biological Inc. (China). Streptavidin-coated biosensor was purchased from Fortebio (U.S.A.). Biolayer interferometry system was measured by BLItz (Fortebio). Biotinylated heparin (11 kDa) was purchased from PG Research (Japan). Bovine serum albumin (BSA) and fondaparinux were purchased from Sigma-Aldrich Co. LLC. (Japan). BIOPHENTM ANTI-Xa (2 Stages Heparin Assay) kit was purchased from Hyphen BioMed (France).

Expression and purification of recombinant spike proteins

The codon-optimized gene of SARS-CoV-2 S protein (GenBank: QHD43416) was designed for expression in mammalian cells and synthesized from GeneArt DNA Synthesis (Thermo). For expression of recombinant S protein, the sequence encoding the S ectodomain (residues 1 - 1208) with proline substitutions at residues 986 and 987, a "GSAS" substitution at furin cleavage site (residues 682 - 685), and C-terminal foldon trimerization motif followed by an octa-histidine tag was cloned into a pcDNA3.1 expression vector (Invitrogen). Further, S protein mutations occurring in the B.1.1.7 variant (Δ 69-70, Δ 144, N501Y, A570D, D614G, P681H, T716I, S982A, D1118H), B.1.351 variant (D80A, D215G, K417N, E484K, N501Y, D614G, A701V), and P.1 variant (L18F, T20N, P26S, D138Y, R190S, K417T, E484K, N501Y, H655Y, T1027I) were introduced by inverse PCR method.

Recombinant S proteins were transiently expressed in Expi293f cells (Thermo) maintained in HE400AZ medium (Gmep, Japan). The expression vector was transfected by using Gxpress 293 Transfection Kit (Gmep, Japan) as following manufacturer's protocol. After 5 days post transfection, culture supernatants were harvested, and His-tagged S proteins were purified by Ni²⁺ affinity chromatography using Ni Sepharose 6 Fast Flow (Cytiva), followed by size exclusion chromatography using Superdex 200 Increase 10/300 GL (Cytiva).

Binding affinity of heparin to wild type SARS-CoV-2 S protein

Streptavidin-coated biosensor was hydrated in phosphate buffered saline (PBS, 137 mM NaCl, 8.1 mM Na₂HPO₄, 2.68 mM KCl, 1.47 mM KH₂PO₄, pH 7.4) containing 0.02% BSA for 10 minutes. Next, biotinylated heparin (0, 22.7, 45.5, 90.9, and 181.8 nM in 0.02% BSA/PBS) was loaded on streptavidin biosensors for 120 s placed in the drop holder. The loaded sensor tips were dipped into the solution of SARS-CoV-2 S protein (1 μ M in 0.02% BSA/tris buffered saline (TBS, 20 mM Tris, 150 mM NaCl, pH 7.4)) for 300 s from the drop holder position. Finally, biosensor was exposed to 0.02% BSA/TBS for 120 s from the tube position. The dissociation constant (*K*_d) was generated by fitting 1:1 Langmuir model.

Competitive inhibition assay

Streptavidin-coated biosensor was hydrated in 0.02% BSA/PBS for 10 minutes. Next, biotinylated heparin (181.8 nM in 0.02% BSA/PBS or 0 nM as control) was loaded on streptavidin biosensors for 120 s placed in the drop holder. The loaded sensor tips were dipped into the solution of SARS-CoV-2 S protein (1 μ M) and fuccidan derivatives **1-13**, or fondaparinux (**24**) (50 μ M) in 0.02% BSA/TBS for 300 s from the drop holder position. Finally, biosensor was exposed to 0.02% BSA/TBS for 120 s from the tube position. The inhibition rate was evaluated by the decrease of signal.

Binding affinities of heparin to mutant SARS-CoV-2 S proteins

Streptavidin-coated biosensor was hydrated in 0.02% BSA/PBS for 10 minutes. Next, biotinylated heparin (181.8 nM in 0.02% BSA/PBS or 0 nM as control) was loaded on streptavidin biosensors for 120 s placed in the drop holder. Next, the loaded sensor tips were dipped into the solution of mutant SARS-CoV-2 S protein derived from B.1.1.7, B.1.351 and P.1 (0.125, 0.25, 0.5, and 1 μ M) in 0.02% BSA/TBS for 300 s (for P.1) or 120 s (for B.1.1.7 and B.1.351) from the drop holder position. Finally, biosensor was exposed to 0.02% BSA/TBS for 120 s from the tube position. Global fitting of these data to a 1:1 binding model using the BLItz Pro 1.3 software gave dissociation constant (*K*_d) for heparin to several mutant SARS-CoV-2 S proteins.

Binding affinities of 10 to mutant SARS-CoV-2 S proteins

Streptavidin-coated biosensor was hydrated in 0.02% BSA/PBS for 10 minutes. Next, biotinylated heparin (181.8 nM in 0.02% BSA/PBS or 0 nM as control) was loaded on streptavidin biosensors for 120 s placed in the drop holder. Next, the loaded sensor tips were dipped into the solution of several SARS-CoV-2 S protein derived from wild type, B.1.1.7, B.1.351 and P.1 (1 μ M) and **10** (0-500 μ M) in 0.02% BSA/TBS for 300 s (for wild type and P.1) or 120 s (for B.1.1.7 and B.1.351) from the drop holder position. Finally, biosensor was exposed to 0.02% BSA/TBS for 120 s. IC₅₀ values were calculated based on the decrease of signal using GraphPad Prism software. Inhibition constant (*K*_i) of **10** to several SARS-CoV-2 S proteins were calculated based on the IC₅₀ values according to the Cheng-Prusoff equation³.

Coagulation (Factor Xa) assay

The anti-factor Xa activity were measured using BIOPHENTM ANTI-Xa (2 Stages Heparin Assay) kit containing R1, R2 and R3 solutions. 40 μ L of R1 solution containing 0.5 IU mL⁻¹ antithrombin III and 40 μ L of **10** or fondaparinux (**24**) (0.001-10 μ g mL⁻¹) in Tris-EDTA buffer (50 mM Tris, 175 mM NaCl, 7.5 mM EDTA, 0.1% PEG, 0.9 g/L NaN₃, pH 8.4) were mixed in 96-well plate and incubated for 2 min at 37 °C. And then, 40 μ L of R2 solution containing 4 μ g

mL⁻¹ factor Xa was added into the plate and incubated for 2 min at 37 °C. After incubation for 2 min, 40 μ L of R3 solution containing 0.4 mg mL⁻¹ factor Xa specific chromogenic substrate was added and incubated exactly 2 min at 37 °C, and then the reaction was stopped by adding 80 μ L of citric acid (20 g L⁻¹). The absorbance was measured at 405 nm using SpectraMax i3 (Molecular Devices) micro plate reader.

References

- A. Kasai, S. Arafuka, N. Koshiba, D. Takahashi and K. Toshima, *Org. Biomol. Chem.*, 2015, 13, 10556.
- 2) S. Arafuka, N. Koshiba, D. Takahashi and K. Toshima, Chem. Commun., 2014, 50, 9831.
- 3) Y. Cheng and W. H. Prusoff, *Biochem. Pharmacol.*, 1973, 22, 3099.

NMR spectrum charts

Fig. S2 ¹³C-NMR spectrum of 19

Fig. S3 ¹H-NMR spectrum of 20

Fig. S4 ¹³C-NMR spectrum of 20

Fig. S6 ¹³C-NMR spectrum of 21

Fig. S7 ¹H-NMR spectrum of 22

Fig. S8 ¹³C-NMR spectrum of 22

100.0 90.0

110.0

113.813

25217 2000

50.0 40.0

31.788 2.29.752 2.29.718 2.29.

10.0 0

abundance

190.0 180.0 170.0

X : parts per Million : 13C

160.0 150.0

159.263

140.0

Fig. S11 ¹H-NMR spectrum of 16

Fig. S12 ¹³C-NMR spectrum of 16

Fig. S13 ¹H-NMR spectrum of S1

Fig. S14 ¹³C-NMR spectrum of S1

Fig. S15 ¹H-NMR spectrum of S2

Fig. S16¹³C-NMR spectrum of S2

Fig. S17 ¹H-NMR spectrum of S3

Fig. S18 ¹³C-NMR spectrum of S3

Fig. S20 ¹³C-NMR spectrum of 11

Fig. S21 ¹H-NMR spectrum of S4

Fig. S22 ¹³C-NMR spectrum of S4

Fig. S23 ¹H-NMR spectrum of S5

Fig. S24 ¹³C-NMR spectrum of S5

Fig. S26¹³C-NMR spectrum of 12

Fig. S27 ¹H-NMR spectrum of S6

Fig. S28 ¹³C-NMR spectrum of S6

Fig. S30 ¹³C-NMR spectrum of 13

Fig. S32 ¹³C-NMR spectrum of 10