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Supplementary Materials

1 Experimental part

1.1 Standard EPR spectroscopy at 8K

The identification of the impurities present in CaWO4 is achieved using a conventional EPR

spectrometer (Bruker EMX) operating at 9.63GHz. The angular dependence is measured using

an automatic goniometer with a relative resolution < 1◦. The sample is mounted such that 60◦

(150◦) corresponds to B0//a (B0//c). A temperature of 8K is chosen in order to optimise the

signal-to-noise ratio for a range of paramagnetic impurities with varying spin relaxation rates.

Four Kramers rare-earth-ions (Er3+, Ce3+, Yb3+, Nd3+) are identified based on known

anisotropic g-tensors (27), which are simulated with open-circles in Fig. S1. The isotropic

line at B0 = 160mT is attributed to Fe3+ ions (41). The relative concentration of these

species with respect to erbium is estimated within an error of 10%: [Yb]/[Er]=3.9, [Ce]/[Er]=

54, [Nd]/[Er]=17, [Fe]/[Er]=16. At room temperature Gd3+ ions and point defects (vacancies,

Schottky type) are also observed. Note that non-Kramers ions such as Eu3+, Ho3+, Tb3+ cannot

be detected by low field EPR.



Figure S1: EPR spectroscopy of a sample taken from the same CaWO4 boule recorded at
ω0/2π = 9.63GHz and 8 K. We identify four rare-earth ions (open circles): erbium, cerium,
neodymium and ytterbium, whose g-factors in CaWO4 are taken from (27). The strong signal
at 160mT could be iron ions (41).

1.2 Resonator design

Three superconducting micro-resonators are fabricated with similar designs, in order to target

slightly different frequencies. Each resonator consists in two lumped elements: an interdigitated

capacitor C shunted by a central inductance wire L. Table S1 shows the resonator geometric

properties: wire width w, wire length l, finger width W and number of pairs of interdigitated

fingers N .

resonator design reso 1 reso 2 reso 3
w (µm) 2 5 5
l (µm) 630 720 630
W (µm) 10 50 10

N 8 6 8

Table S1: Resonator geometric properties.

Table S2 also indicates the frequency ω0, the coupling quality factor Qc, the internal quality

factor Qi at single photon intra-resonator field, and total quality factor Qt = (1/Qc + 1/Qi)
−1,



Figure S2: Example resonator design (resonator 2) with key tunable design parameters
W , w and l labeled.

all measured at 10mK and zero magnetic field. These parameters were found to slightly vary

from one experimental run to another.

resonator property reso 1 reso 2 reso 3
ω0/2π (GHz) 7.025 7.508 7.881
Qc (/1000) 250 15 29
Qi (/1000) 45 70 100
Qt (/1000) 38 12 22

Table S2: Resonator properties measured at 10 mK and zero magnetic field.

The resonator frequency decreases by approximately 1MHz at 70mT, due to kinetic induc-

tance and an out-of-plane magnetic field component which could not be compensated for.

1.3 EPR spectroscopy at 10mK and rotation pattern in the crystallo-
graphic ab plane

Microwave absorption is detected using Hahn-echo sequences (π/2−τ−π−τ−echo) for a fixed

magnetic field B0, which is generated by two perpendicular home-made Helmholtz coils. Short

delays of τ ∼ 30-40µs are used between pulses to prevent loss of signal due to decoherence

effects (refer to section 1.6 for more details). Spectra are then developed by stepping B0 and

repeating the Hahn-echo measurement at each step.



Figure S3: Hahn-echo spectroscopy at 10 mK. (A) Spectrum recorded with the resonator at
highest frequency ω0/2π = 7.881GHz and with magnetic field angle φ = 47◦. The erbium line
is the peak at 67.2mT. Pairs of broad peaks (b1, b2) and of sharp peaks (s1, s2) are also observed.
This spectroscopy is repeated for the three resonators in order to measure the field-frequency
curves in (B). (B) Resonance frequency as a function of the magnetic field B0 for each of the
five transitions detected in (A), where φ = 47◦. Dashed black lines are linear fits which give the
g-factor shown in the legend within a standard error of 3%. (C) Rotation pattern in the ab plane
with the resonator at highest frequency ω0/2π = 7.881GHz. The erbium line is the smaller
peak at 67.2mT and its resonance frequency is independent of φ as expected. The pairs (b1, b2)
and (s1, s2) demonstrate a strong angular dependence in the ab plane.



For the resonator at frequency ω0/2π = 7.881GHz, the erbium transition is expected at

B0 = 67.2mT. When the magnetic field is approximately aligned with the resonator inductance

wire (φ ∼ 50◦), we detect other electron spin transitions in the vicinity of the erbium transition,

in particular a pair of broad peaks (b1, b2) and sharp peaks (s1, s2), as shown in Fig. S3A. In

order to confirm that the smallest peak at 67.2mT corresponds to erbium, the spectroscopy of

Fig. S3A is repeated for all three resonators. In this way, it is possible to extract the effective

g-factor of each transition from the value of their frequency as a function of B0. As shown in

Fig. S3B, only one peak is consistent (within error) with the g-factor of erbium g⊥=8.38.

Moreover a field rotation in the ab plane is performed with the resonator at frequency

ω0/2π = 7.881GHz in Fig. S3C and shows a strong variation of the gyromagnetic ratios of

the pairs of peaks (b1, b2, s1, s2). These peaks indicate dopants in a non-tetragonal site. The

slight asymmetry of the rotation pattern with respect to φ = 0◦ might be caused by a weak

magnetic field component along the crystal c-axis. Isotropic lines between 90 and 100mT are

also identified, albeit without sufficient spectroscopic information to determine the impurity in

question.

Lastly, a transition at B0 = 37.05mT is also observed with the resonator at ω0/2π =

7.508GHz. This is consistent (within error) with the first hyperfine level of 167Er. The spin-

echo spectroscopy at 10mK is shown in Fig. S4.



Figure S4: Hahn-echo spectroscopy over the first hyperfine transition of 167Er. The
Lorentzian fit (solid line) gives a full-width-at-half-maximum of 0.09 ± 0.01mT which cor-
responds to a linewidth of Γ/2π = 10± 1MHz.

1.4 Angular dependence of absorption linewidth

As explained by Mims and Gillen (26, 27), when the magnetic field B0 is applied in the ab

plane, only the c-axis component Ec of an electric field will lift the degeneracy of the g-factor

g⊥ in the ab plane, such that

δg2
⊥ = 2g⊥δg⊥ = α sin (2φ− 2φ0)Ec, (1)

where α = (11± 0.6)× 10−6 (V/cm)−1 and φ0 = 31± 1◦ for Er3+:CaWO4.

The shift in resonance frequency is then

δω = δg⊥
µB

ℏ
B0, (2)

where µB is the Bohr magneton and the sensitivity of the spin-transition frequency to electric

fields is
∂ω

∂Ec

=
α sin (2φ− 2φ0)

2g⊥

µB

ℏ
B0. (3)

Now, if each of the erbium ion sees a random electric field of the order of ∆Ec along the

c-axis, possibly due to charge defects in the CaWO4 crystal as assumed in (26), the full-width-

at-half-maximum of the transition linewidth of the spin-ensemble broadens such that

Γ ∼ Γmin + | ∂ω
∂Ec

|∆Ec. (4)



Fitting this formula to the data of Fig. 1E leads to ∆Ec = 32.0 ± 0.6 kV/cm. This value

is approximately three times smaller than measured by Mims and Gillen in their ppm doped

crystal (26), a difference that could be attributed to our lower doping concentration, and hence

reduced charge defect density. Moreover, the fit also confirms that the spin transition frequency

becomes insensitive to Ec at φ = φ0 = 31◦.

1.5 Estimation of the erbium concentration

Determining the density of Er3+ ions in the crystal is achieved by measuring the coupling be-

tween the erbium spin-ensemble and the microwave resonator. To do so, a complex microwave

reflection measurement r(ω) was recorded on a Vector Network Analyser (VNA). As explained

in ref. (42), when the microwave resonator is coupled to a spin ensemble of Lorentzian lineshape

with coupling gens, the reflection coefficient can be expressed as

r(ω) =
iκc

(ω − ω0) + iκc+κint
2

− g2ens
(ω−ωs)+iΓ

2

− 1, (5)

where ω0, κc and κint are the frequency, coupling rate and loss rate of the resonator and ωs and

Γ are the spin transition frequency and inhomogeneous linewidth, respectively.

In particular, the spin ensemble broadens the resonance linewidth according to

κ̃int = κint +
g2ensΓ

(ω − ωs)2 + (Γ/2)2
. (6)

The measured internal quality factor is shown in Fig. S5 and the fit with Qi = ω0/κ̃int (43)

yields an ensemble coupling at low input power of gens/2π = 140± 6 kHz.

The concentration ρ of the zero nuclear-spin isotopes of erbium is then estimated by con-

sidering how gens depends on the spatial variation of vacuum magnetic field fluctuations under

the resonator (44)

gens =

µB

2ℏ

√
ρ

∫
V

dr(g∥δB1z(r))2 + (g⊥ cos (∆φ)δB1y(r))2
(7)



Figure S5: Continuous-wave spectroscopy at 10 mK. (A) Internal quality factor Qi as a func-
tion of B0, around 67.2mT, and converted into a frequency detuning ∆ω, measured with input
power Pin at the sample of −157 dBm. φ is set to 30◦. Solid black line is a fit to the data. (B)
Fitted ensemble coupling gens and linewidth Γ as functions of Pin. As the input power decreases,
the ensemble coupling gens saturates at gens/2π = 140± 6 kHz.

where ∆φ = φ− φw = 21◦ is the angle between B0 and the resonator wire axis.

From this equation, we estimate ρ = (0.7 ± 0.1) × 1013 cm−3. This corresponds to a total

trivalent erbium concentration (including all isotopes) of [Er3+] = ρ
0.77

= 0.7± 0.1 ppb.

1.6 Homogeneous phase noise and T2 measurements

We measure spin echoes using homodyne detection and obtain two field quadratures whose

constant offsets are subtracted, yielding I(t) and Q(t). The echo has a phase θ in the IQ plane

which depends ideally only on the phase of the driving pulses. In order to have the best signal-

to-noise ratio, the echo amplitude is often computed using an average of N individual echo

traces as follows

Ae,phase = Re (e−iθ 1

N

N∑
n=1

{
∫
t

[In(t) + iQn(t)]dt}). (8)



However, when using a Hahn-echo sequence (π/2 − τ − π − τ−echo), we observe in our

measurements that the echo phase θ varies from trace to trace when the delay τ becomes larger

than about 1ms. As observed in other related experiments (33), we attribute this to noise in the

applied magnetic field B0 in the 100 Hz-10 kHz frequency band that modulates the ensemble

transition frequency, thus randomizing θ for τ > 2ms.

Therefore, we compute the amplitude of the echo in magnitude, so that it is not sensitive to

the echo phase. We choose to compute this magnitude as

Ae,mag =

√√√√ 1

N

N∑
n=1

{[
∫
t

In(t)dt]2 + [

∫
t

Qn(t)dt]2}. (9)

Fig. S6 shows the decay of the echo amplitude with the two mentioned averaging methods.

When the spin-echo integral Ae is averaged in a phase-sensitive manner, the fitted coherence

time T2,phase is 4.0 ± 0.2ms, whereas phase-insensitive averaging yields the correct coherence

time T2,mag = 23.2± 0.5ms.

Figure S6: Electron spin coherence time measurement at 10 mK and φ = 47◦. The data
are averaged either in a phase-sensitive (squares) or insensitive (circles) manner. Solid black
lines are fits, the phase-sensitive data being fitted with Ae = e−(2τ/T2,phase)

xphase and the phase-
insensitive data with Ae =

√
e−2(2τ/T2,mag)

xmag + C. The offset C is a spurious vertical shift
corresponding to the variance of the noise and which occurs when averaging the data in mag-
nitude. The fits yield T2,phase = 4.0 ± 0.1ms, xphase = 2.6 ± 0.2, T2,mag = 23.2 ± 0.5ms and
xmag = 2.4± 0.1.

It is well known that spin-coherence can be extended using Dynamical-Decoupling (DD)



techniques such as the Carr-Purcell-Meiboom-Gill (CPMG) sequence (45). However, DD se-

quences requires phase-cycled averaging to suppress spurious stimulated echoes which, in-turn,

requires predictable and stable echo signal phase. Therefore, DD measurements were not at-

tempted here due to the observed phase instability in our measurements.

With the exception of coherence time measurements, all data in this article are taken with

phase-sensitive averaging, for sufficiently short delays τ yielding negligible fluctuations of the

echo phase θ.

1.7 Electron spin-echo envelope modulation (ESEEM)

In Fig. S6, the noise of the data averaged in magnitude seems to decay with the delay 2τ .

Complementary measurements record the echo amplitude at short inter-pulse delay τ , with a

sampling time of ∆τ = 1 µs (Fig. S7 and Fig. S8). The time interval for these measurements

is 300 µs and the echo amplitude averaged either in quadrature or magnitude does not decay on

this scale as T2,phase/mag is much larger. The time traces are taken for several field orientations

φ and display a strong modulation which is evidenced by taking the fast Fourier transform of

each trace. This phenomenon originates from ESEEM where the Hahn-echo decay is modulated

by the coupling between the erbium ion and its neighboring tungsten atoms of 183W (46). As

shown on Fig. S7B and Fig. S8B, the modulation frequencies are angular dependent due to the

anisotropy of the dipolar coupling between erbium and tungsten.

Moreover, the data presented in Fig. S7 and Fig. S8 are taken with two resonators which

have slightly different frequencies and more importantly different resonance linewidths. The

resonance linewidth κ combined with the excitation pulse bandwidth ∆ωpulse filters out high

frequencies of the theoretical ESEEM. In Fig. S7, κ/2π = 270 kHz and ∆ωpulse/2π ≈ 250 kHz

so modulation frequencies larger than 125 kHz are filtered out. In Fig. S8, κ/2π = 580 kHz and

∆ωpulse/2π ≈ 1MHz so modulation frequencies larger than 290 kHz are filtered out.



Figure S7: Electron spin echo envelope modulation measured with resonator 3. (A) Echo
amplitude averaged in quadrature as a function of short inter-pulse delay τ , measured at 10mK
and with different field orientations φ. The resonance has a frequency ω0/2π = 7.878GHz and
a linewidth κ/2π = 270 kHz. 4 µs-long square pulses are used such that the pulse bandwidth is
∆ωpulse/2π ≈ 250 kHz. (B) Fast Fourier transform of the data of subplot (A).

1.8 T2 measurements and instantaneous diffusion

Spin coherence is determined by several electric and magnetic interactions which contribute to

the decay of the echo amplitude according to

Ae(2τ) = e
−

∑
i (

2τ
T2,i

)xi
(10)

where T2,i is the coherence time and xi the exponent due to interaction mechanism i.

In this work, we consider three dominant magnetic interactions: spectral diffusion (SD) due

to the nuclear spin bath, SD due to other paramagnetic impurities and instantaneous diffusion

(ID). SD has already been mentioned in the main text and comes from the magnetic interaction

of the erbium ions with all other electron and nuclear spins in the bath. ID is also a common

decoherence mechanism and comes from the magnetic interaction between all erbium spins



Figure S8: Electron spin echo envelope modulation measured with resonator 2. (A) Echo
amplitude averaged in quadrature as a function of short inter-pulse delay τ , measured at 10mK
and with different field orientations φ. The resonance has a frequency ω0/2π = 7.502GHz and
a linewidth κ/2π = 580 kHz. 1 µs-long square pulses are used such that the pulse bandwidth is
∆ωpulse/2π ≈ 1MHz. (B) Fast Fourier transform of the data of subplot (A).

which are resonant with the microwave excitation pulses.

In this section we estimate at φ = 47◦ the decoherence due to ID and compare it with the

measured coherence time presented in Fig. 2.

ID is expected to give an exponential decay Ae,ID(2τ) = e−2τ/T2,ID (6, 47) with

1

T2,ID
=

5

2

µ0

4π

(gµB)
2

ℏ
ρ
∆ω

Γ
sin2 θ2

2
, (11)

where µB is the Bohr magneton, ρ = 0.77[Er3+] is the zero nuclear-spin isotopes erbium con-

centration, ∆ω is the excitation bandwidth, Γ the spin inhomogeneous linewidth, and θ2 the

refocusing angle.

For the measurement of Fig. 2, 4 µs-long pulses were used, giving a excitation pulse

bandwidth of ∆ωpulse/2π ≈ 250 kHz. This is slightly smaller than the resonance linewidth



κ/2π = 350 kHz, which is thereby barely filtering the input pulses and ∆ω ≈ ∆ωpulse.

ID is caused by the fraction of excited erbium ions which has an effective concentration

ρ̃ = ρ∆ω/Γ. As Γ is of the order of 10MHz, ρ̃ ∼ 1.7×1011 cm−3 and the distance between two

excited erbium ions is typically 2 µm. Here, excited spins are in the bulk (few tens of µm away

from the surface) and those within a few µm distance from each other experience approximately

the same Rabi angles. Because spins contributing mostly to the Hahn-echo undergo rotations

of first θ1 ∼ π/2 then θ2 ∼ π, their excited neighbours also rotate with similar angles and

sin (θ2/2)
2 can be approximated to 1.

For φ = 47◦, the inhomogeneous linewidth Γ/2π was measured to be 10MHz (Fig. 1E)

and equation 11 gives T2,ID ∼ 400 ms. This value is more than one order of magnitude larger

than the measured coherence time of Fig. 2 and indicates that ID is not the dominant source of

decoherence at this angle.

However, the contribution of ID increases when the spin linewidth Γ gets narrower or when

the excitation bandwidth ∆ω increases. To evidence the presence of ID, the coherence time

measurement of Fig. 2 can be repeated at φ ∼ 31◦, where the spin linewidth is the narrowest,

and also with a different resonator with a broader resonance linewidth.

Fig. S9 shows this measurement for a resonance linewidth of κ/2π = 580 kHz with two field

orientations φ = 47◦ and φ = 32◦. Here, 1 µs-long pulses where used, giving an pulse band-

width of ∆ωpulse ≈ 1MHz. The resonance linewidth is κ/2π = 580 kHz hence the excitation

bandwidth is limited by κ: ∆ω ≈ κ.

At φ = 47◦, Γ = 11MHz and equation 11 yields T2,ID ∼ 190 ms. At φ = 32◦, Γ = 1.8MHz

and equation 11 yields T2,ID ∼ 31 ms.

The resonance linewidth of this measurement is broader than the one used to measure the

data of Fig. 2 and the pulses are shorter. As a consequence, high frequencies of ESEEM are

less filtered and ESEEM is stronger. Therefore the data are taken in packets of points spaced



Figure S9: Electron spin coherence measurements at 10 mK for two magnetic field orien-
tations. The measurements are performed at φ = 47◦ (circles) and φ = 32◦ (diamonds), with a
resonance at ω0/2π = 7.502GHz and with linewidth κ/2π = 580 kHz. Each packet of points is
sampled with ∆τ = 2 µs in order to account for ESEEM. The data are averaged in magnitude.
The solid black line is a fit with A2

e = e−2[(2τ/T2,n)xn+(2τ/T2,p)
xp ] + C where T2,n = 27.2ms and

xn = 2.74 are taken from the CCE simulation. The fit yields T2,p = 28±1ms and xp = 2.1±0.2.
The dashed black line is a fit which includes ID, A2

e = e−2[(2τ/T2,n)xn+(2τ/T2,p)
xp+2τ/T2,ID]+C. At

φ = 32◦, the CCE simulation predicts T2,n = 24.7ms and xn = 2.74. T2,p and xp are fixed from
the fitted values at φ = 47◦. Fitting the remaining ID contribution yields T2,ID = 33 ± 2ms.
The offset C has been subtracted from data and fits (square roots of negative noise on A2

e are
obviously absent from the plot).

by ∆τ = 2 µs in order to sample the ESEEM properly. The data is fitted in magnitude with the

three mentioned decoherence mechanisms,

A2
e(2τ) = e

−2[( 2τ
T2,n

)xn+( 2τ
T2,p

)xp+ 2τ
T2,ID

]
+ C, (12)

where T2,n and xn correspond to spectral diffusion due to the nuclear spin bath, T2,p and xp to

spectral diffusion due to other paramagnetic impurities and T2,ID to instantaneous diffusion.

At φ = 47◦, ID is negligible as calculated above. The CCE simulation gives T2,n = 27.2ms

and xn = 2.74. Fitting the paramagnetic contribution yields T2,p = 28±1ms and xp = 2.1±0.2.

This value is smaller than what is shown in Fig. 2B where T2,p ∼ 40ms at 10mK and could be

due to the fact that these data were taken in different runs. The data of Fig. S9 yields a total

coherence time of T2 = 20.5± 0.2ms instead of 23.2± 0.5ms.

At φ = 32◦, the CCE simulation gives T2,n = 24.7ms and xn = 2.74. The paramagnetic



contribution can be taken as independent of angle φ because these impurities have a dilute con-

centration and are mostly in tetragonal sites with their g-factor being independent of φ. Hence

we keep the values extracted at φ = 47◦, namely T2,p = 28ms and xp = 2.1. Fitting only the

remaining contribution from ID yields T2,ID = 33± 2ms which is close to the estimation above

and confirms that ID is not negligible at angles where the erbium inhomogeneous linewidth is

the narrowest.

1.9 Longitudinal relaxation (T1) measurements

We measure the relaxation time T1 as a function of cryostat temperature, with sufficient power to

address spins in the bulk of the material (Fig. S10). We observe that the temperature dependence

is well-fitted by the direct-phonon process (38)

T1 = T1,0K tanh
ℏω0

2k0T
, (13)

where T1,0K is the extrapolated relaxation time at zero temperature, confirming that multi-

phonon processes are not relevant at sub-Kelvin temperatures.

Figure S10: Longitudinal relaxation time as a function of temperature. Relaxation time
at high input pulse power as a function of cryostat temperature (squares). The solid line is a
fit with T1 = T1,0K tanh (ℏω0/2kBT ) as is predicted for the spin-lattice relaxation time at low
temperature. The fit yields T1,0K = 4.8± 0.1 s.



1.10 Simulations of spin-relaxation power dependence

The numerical simulations presented in Fig. 3B take into account a distribution of Larmor fre-

quencies δ with respect to the resonator frequency and a distribution of spin-resonator coupling

constants g0, the two distributions being independent (24).

• for the 2 µm wide inductance wire, there are 420 discrete frequency bins taken with uni-

form spacing between −4κ and 4κ, where κ/2π = 185 kHz, and 120 values of coupling

strength g0/2π, equally spaced between 1 and 1000Hz,

• for the 5 µm wide inductance wire, there are 480 discrete frequency bins taken with

uniform spacing between −3.5κ and 3.5κ, where κ/2π = 350 kHz, and 120 values of

coupling strength g0/2π, equally spaced between 0.5 and 500Hz.

Each spin with frequency detuning δ and coupling constant g0 relaxes with rate Γ = ΓP +

Γsl, where Γsl is the spin-lattice relaxation rate and ΓP =
κg20

κ2/4+δ2
is the Purcell relaxation

rate (37). For spins at a distance greater than approximately 15 µm from the inductance wire,

the relaxation is dominated by Γsl, whereas for spins located closer to the indutance wire, it is

dominated by ΓP .

The inhomogeneous absorption linewidth at φ = 30◦ is Γ/2π = 2MHz, which is nearly

one order of magnitude wider than the broadest resonance linewidth. Thus the spin frequency

distribution ρδ is taken as constant. The coupling constant distribution ρg0 behaves approxi-

mately as 1/g30 at low g0 and shows a peak at high g0 due to the spins located close to the wire.

The exact profile is calculated using a COMSOL simulation of the magnetic field B1 generated

around the inductance wire with a 1A current. The simulation result must then be rescaled

by δI = ω0

√
ℏ

2Z0
, the rms vacuum fluctuation of the current in the resonator. The resonator

impedance Z0 ∼ 40 Ω is simulated using the software Ansys HFSS. The computation of the



coupling g0 is shown in Fig. 1C at φ = 51◦ (i.e. when the magnetic field B0 is applied parallel

to the wire) and the g0 histogram at φ = 30◦ used for the simulations is shown in Fig. S11.

Figure S11: Spin-resonator coupling distribution. The coupling distribution is shown in
logarithmic scale for the 2 µm and 5 µm wide inductor resonators simulated at φ = 30◦. The
COMSOL simulation takes into account spins located in a surface Ly × Lz = 400 × 200 µm2

below the inductance wire. Dashed black line is a fit with ρ(g0) ∝ g−3
0 . The peak at high

coupling corresponds to spins located close to the wire.

For simplicity, the simulated pulse sequence for obtaining T1 is the inversion recovery se-

quence (β − T − β/2 − τ − β − τ − echo), even when CPMG sequences have been used to

measure it.



2 Theoretical part

2.1 Model

The spin Hamiltonian can be written

H = HEr +Hn +Hint. (14)

The first term,

HEr = µBB0 · g · S, (15)

is the Zeeman energy of the effective spin-1/2 S of the zero-nuclear-spin isotopes of Er3+ under

a magnetic field B0, where µB is the Bohr magneton and the g-factor tensor g has a diagonal

form in the crystal frame with g⊥ = gaa = gbb and g∥ = gcc.

The second term,

Hn = gnµn

∑
i

B0 · Ii +
∑
i<j

Ii · Dij · Ij, (16)

is the energy of the bath of 183W nuclear spins (Ii = 1/2), where gn is the g-factor of 183W nu-

clear spins, µn is the nuclear magneton, µ is the vaccum permeability, and Dij = µ/(4π)g2
nµ

2
n

(
r−3
ij − 3rijrij/r

5
ij

)
with rij = rj − ri the displacement between the i-th and j-th nuclear spins.

The third term,

Hint =
∑
i

S · Ai · Ii, (17)

is the dipolar hyperfine interaction, where Ai = µ/(4π)µBgnµn [g/r
3
i − 3 (g · ri) ri/r5i ].

We set the z-axis along B0 (in the ab-plane with an angle φ from the a-axis). Since the elec-

tron Zeeman energy is much stronger than the hyperfine interaction and the nuclear Zeeman

energy is much stronger than the nuclear dipolar interaction, we make the secular approxima-

tion, dropping the terms that do not conserve the Zeeman energies, such as the Sx/y terms, the

Ix/y terms, which induce electron spin echo enveloppe modulation (ESEEM), and the I
x/y
i Izj

terms.



Therefore, the Hamiltonian becomes a pure dephasing model

H ≈ |1⟩⟨1| ⊗H(+) + |0⟩⟨0| ⊗H(−), (18)

with the central-spin-conditional bath Hamiltonian

H(±) = ±ω

2
± 1

2

∑
i

ẑ · Ai · ẑIzi +Hn. (19)

The Hahn echo signal is

Ae ∝ L (2τ) =

Tr
(
ρne

iH(−)τeiH
(+)τe−iH(−)τe−iH(+)τ

)
,

(20)

where ρn is the initial bath density matrix (which we choose as the infinite high-temperature

thermalized state since the nuclear Zeeman energy is much less than 10 mK).

2.2 Cluster correlation expansion

The central spin coherence is calculated using the cluster correlation expansion (CCE) (32),

in which the decoherence caused by a cluster of M bath spins (1, 2, . . . ,M) is denoted as

L1,2,...,M . The irreducible correlation of a cluster is defined recursively as L̃j = Lj , L̃i,j ≡

Li,jL̃−1
i L̃−1

j , etc., that is, the decoherence function divided by all irreducible correlations of

all sub-clusters. For the M -order truncation (CCE-M ), the calculation takes into account the

irreducible correlations up to the clusters of M spins, L ≈ L(M), with

L(M) =∏
i1

L̃i1

∏
j1<j2

L̃j1,j2 · · ·
∏

k1<k2···<kM

L̃k1,k2,...,kM .
(21)

With the secular approximation, the CCE-1 contribution (decoherence due to single-spin dy-

namics, which also causes the ESEEM for relatively strongly coupled nuclear spins) vanishes.

In the simulation, we place the 183W nuclear spins (with a natural abundance pn = 0.145)

randomly on the CaWO4 lattice sites of tungsten ions and the Er3+ ions randomly substituting



Ca2+. The bath includes all nuclear spins within a sphere of radius of 11 nm around the central

spin. We numerically checked that a larger bath size produces nearly the same result. The

numerical simulation also show that the simulation using one specific spatial configuration of

183W nuclear spins in the lattice is nearly the same as ensemble average over many (50) different

spatial configurations. We have checked the convergence of the CCE and found that CCE-3 and

CCE-2 produce nearly identical results.

2.3 Simulation results

Fig. S12 compares the CCE-2 simulation in a lattice spin bath according to CaWO4 crystal

structure and in an amorphous bath, where the 183W have same concentration but are placed

randomly in space, in order to compare with (17). In the amorphous case, the decoherence

is significantly faster than in a lattice bath. Such difference can be understood from the fact

that the lattice structure sets a lower bound on the distance between nuclear spins, which has a

sizeable effect when the spin concentration is not too small.

Figure S12: CCE-2 simulation of the spin decoherence. The results are fitted by Ae =
e−(2τ/T2)x , with T2 = 27 ms and x = 2.7 for the decoherence in a lattice spin bath (blue line)
and T2 = 8.05 ms and x = 1.88 for the decoherence in an amorphous bath (pink line). The
parameters of the simulations are the magnetic field B0 = 67 mT, the field orientation φ = 46.5◦

and the temperature T = 10 mK.
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