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Fig. S1. NOX4 is induced by exercise (Related to Fig. 1). 12-week-old C57BL/6 male mice
were subjected to an acute bout of exercise on multi-lane treadmill for 50 min at moderate
intensity (70% VOomax). After 4 h tissues were collected from sedentary controls and
exercised mice and soleus muscles processed for a) quantitative real time PCR (qPCR) and b)
immunoblotting. 12-week-old C57BL/6 male mice were subjected to an acute bout of exercise
on multi-lane treadmill for 50 min at high intensity (90-100% VO2max). After 4 h, tissues were
collected from sedentary controls and exercised mice and gastrocnemius and soleus muscles
processed for ¢) qPCR. Representative and quantified results are shown (means + SEM) for

the indicated number of mice; significance determined using a Student’s t-test.
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Fig. S2. NOX4 deletion does not affect muscle development (Related to Fig. 1). a-q) 12-
week-old Nox4™" and Mck-Cre; Nox4#"" male mice were fed a standard chow diet. a) Tissues
[including gastrocnemius (Gastroc), soleus, quadriceps (Quad), triceps and tibialis anterior
(TA) skeletal muscles, epididymal (Epi) and inguinal (Ing) white adipose tissues, interscapular
brown adipose tissue (BAT), heart and liver] were extracted and weighed. b-p) Transverse
sections (10 nm) were prepared from frozen b-h) soleus and i-p) gastrocnemius muscles and
stained with b, i) haematoxylin and eosin (H&E) or immunostained for ¢, j) dystrophin, or d,
k, 1) fibre types I, or Ila, IIb, IIx. For k, I, P represents the location of plantaris inside
gastrocnemius muscle. e, m) The minimum Feret’s diameter (closest distance between two
parallel tangents of the muscle fibre perimeter), f, n) the variability coefficient (the standard
deviation of the minimum Feret’s diameter) and both g, o) fibre size and h, p) fibre types were
determined. Representative and quantified results are shown (means = SEM) for the indicated

number of mice.
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Fig. S3. Isolation and generation of NOX4-deficient muscle cells (Related to Fig. 2). a)
FACS gating strategy for Nox4™" myoblast isolation. Skeletal muscle was digested with
collagenase D and dispase II and myoblasts stained with fluorophore-conjugated antibodies to
CD45, CD31, CD11b, Scal and a7-integrin. CD45°CD31 CD11b Scal a7-integrin’ cells
were purified by flow cytometry; dead cells were excluded with propidium iodide (PI). b-g)
FACS-purified Nox4"" myoblasts were transduced with B-galactosidase (LacZ) control or Cre
recombinase-expressing adenoviruses to delete Nox4 and the resultant LacZ or Cre myoblasts
used for further experiments. b) Nox4 mRNA levels in myoblasts were assessed by qPCR. ¢)
LacZ and Cre myoblasts were differentiated into myotubes. Myotube differentiation was
assessed by brightfield microscopy; representative images are shown. d) Myotube
differentiation was assessed by immunoblotting for myogenin and myosin heavy chain (MHC)
proteins. In d) myotube micrographs derived from three independent adenoviral myoblast
transductions are shown. In (d) individual lanes on immunoblots correspond to independent
adenoviral transductions and cell isolations. Quantified results (means £ SEM) are from the
indicated number of independent adenoviral transductions and are representative of at least

three independent experiments.
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Fig. S4. NOX4 deficiency in Mck-Cre;Nox4 mice impairs exercise performance but not
heart function (Related to Fig. 3). a) 12-week- old Nox4"" and Mck-Cre;Nox4™" male mice
fed a chow-diet were subjected to an exercise-stress-test in an enclosed treadmill connected to
a Comprehensive Lab Animal Monitoring System (CLAMS) for respiratory assessments and
the determination of heat produced during exercise. b) 10-12-week-old Nox4™" and Mck-
Cre;Nox4™" male mice fed a chow-diet were sedated and subjected to echocardiography.
Fractional shortening (%FS) and left ventricle (LV) thickness assessed. Representative M-
mode images were also acquired through a short-axis view at the papillary muscle level.
Representative and quantified results are shown (means £ SEM) for the indicated number of

mice; significance in (a) determined using a two-way ANOVA.
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Fig. S5. NOX4 deletion in adult mice impairs exercise performance (Related to Fig. 3). a-g)
9-week-old Nox4" and HSA-MCM:Nox4"" male mice fed a standard chow diet were treated
with tamoxifen (80 mg/kg) for 5 consecutive days and analysed at 12 weeks. a) Cardiac muscle
and gastrocnemius skeletal muscle were extracted for qPCR analysis to monitor Nox4 mRNA
levels. b) Body weight, ¢) body composition (Echo-MRI) and d) tissue weights [including
gastrocnemius (Gastroc), soleus, quadriceps (Quad), triceps and tibialis anterior (TA) skeletal
muscles, epididymal (Epi) and inguinal (Ing) white adipose tissues, interscapular brown
adipose tissue (BAT), heart and liver] were determined. Mice were subjected to an e)
endurance-test (time till fatigue assessed) and f) to an exercise-stress-test; Umax, VO2, RER
and Heat were assessed. g) 9-week-old Nox4™" and HSA-MCM;Nox4"" male mice fed a
standard chow diet were treated with tamoxifen (80 mg/kg) for 5 consecutive days and analysed
at 24 weeks. Mice were subjected to insulin tolerance tests (ITTs; 0.5 mU insulin/g body
weight); areas under ITT curves were determined and arbitrary units (AU) shown.
Representative and quantified results are shown (means + SEM) for the indicated number of

mice; significance determined using (a, e, f, g) a Student’s t-test or (f) a two-way ANOVA.
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Fig. S6. Muscle development and proteomic analysis in 6 month-old Mck-Cre;Nox4™" mice
(Related to Fig. 4). a-b) Gastrocnemius muscles from 6-month-old male Nox4™" and Mck-
Cre;Nox4"" mice fed a chow diet (4.8% fat ) were collected. a) Transverse sections (10 nm)
were prepared from frozen gastrocnemius muscles and stained with haematoxylin and eosin
(H&E) or co-immunostained for dystrophin, or fibre types (I, Ila, IIb, or 1Ix). b) Alternatively,
transverse sections were processed for f) SDH staining and either PDH or Tomm20
immunostaining along with dystrophin immunostaining to define mitochondria within
individual muscle fibres. ¢-d) Gastrocnemius muscle was homogenised and proteins digested
with trypsin and analysed on a QExactive HF mass spectrometer. ¢) Volcano plot
representation of differentially expressed muscle proteins between Mck-Cre;Nox4™ and

Nox4™ mice considering a p-value and log2 fold-change cut-off of <0.05 and > [0.3],

respectively. Upregulated proteins in Mck-Cre;Nox4™" versus Nox4™" mice are shown in
orange and downregulated proteins in blue. d) Differentially expressed proteins were subjected
to a gene set enrichment analysis (GSEA). The table shows significantly regulated KEGG and

Reactome pathways using a normalised enrichment score (NES) >|1.5| and a qValue <0.05.
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Fig. S7. Improved mitochondrial biogenesis and endurance capacity in GpxI”~ mice
(Related to Fig. 4). a-¢) 12-week-old GpxI*'* and GpxI~~ male mice were fed a chow diet
(4.8% fat) and gastrocnemius muscle processed for qPCR to assess a) Gpx/ and b)
mitochondrial biogenesis gene expression. ¢) Mice were subjected to an endurance-test and the
time until fatigue determined. Quantified results are shown (means + SEM) for the indicated

number of mice; significance determined using a Student’s t-test.
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Fig. S8. Reduced mitochondrial biogenesis and antioxidant defence in NOX4-deficient
myoblasts (Related to Fig. 5). a-b) FACS-purified Nox4"" myoblasts were transduced with p-
galactosidase (LacZ) control or Cre recombinase-expressing adenoviruses to delete Nox4. a)
The resultant LacZ or Cre myoblasts were processed for qPCR to assess the expression of
mitochondrial biogenesis genes. b) Mitochondrial respiration was assessed in live myoblasts
by performing a Seahorse XF Cell Mito Stress Test and measuring the oxygen consumption
rate (OCR); basal and maximal respiration were assessed after inhibiting ATP synthase with
oligomycin and uncoupling respiration with FCCP, ¢-d) LacZ or Cre myoblasts were processed
for qPCR to assess the expression of antioxidant defence genes. Quantified results (means +
SEM) are from the indicated number of independent adenoviral transductions and are
representative of at least three independent experiments; significance was determined using a

Student’s t-test (a, c, d) or (b) a two-way ANOVA.
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Fig. S9. Skeletal muscle NOX4 is essential for NFE2L2-mediated anti-oxidant defence
(Related to Fig. 6). a-¢) Gastrocnemius skeletal muscles from 6-month-old Nox4"" and Mck-
Cre;Nox4"" male chow-fed were processed for immunoblotting. a) NFE2L2 and b) KEAP1
and antioxidant defence proteins were quantified by densitometry and normalised to vinculin
(see Fig. 6¢) or (see Fig. 6e). d) Gastrocnemius muscle from 6-month-old Nox4™" and Mck-
Cre;Nox4™" male chow (4.8% fat)-fed mice was processed for proteomics analysis. A heatmap
of significantly regulated proteins (log2 fold-change > |1]; p-value < 0.05 or FDR <0.1)
associated with the KEGG term “ROS Metabolism” is shown. e) Gastrocnemius skeletal
muscle from 6-month-old Nox4™" and Mck-Cre;Nox4™" male chow-fed mice was processed for
immunoblotting to assess 4-HNE levels and compared to that in 20-week high fat fed Nox4™"
mice (last lane). Representative and quantified results are shown (means = SEM) for the

indicated number of mice; significance was determined using Student’s t-test.
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Fig. S10. Skeletal muscle NOX4-deficiency promotes insulin resistance in chow-fed mice
without affecting body weight (Related to Fig. 7). a) Body weight, b) body composition
(Echo-MRI) and c¢) skeletal muscle [gastrocnemius (Gastroc), soleus, quadriceps (Quad),
triceps and tibialis anterior (TA)] tissue weights in 3-, 6- and 20-month-old Nox4™" and Mck-
Cre:Nox4™"male chow-fed mice. d) Gastrocnemius skeletal muscle from 6-month-old Nox4™"
and Mck-Cre;Nox4™" male chow-fed male mice was processed for immunoblotting; insulin
receptor (IR) substrate-1 (IRS-1), IR B subunit (IRB), AKT and PI3K p85 subunit levels were
quantified by densitometry and normalised to vinculin or GAPDH. e-f) 6-month-old male
Nox#™ and Mck-Cre;Nox4™" male chow-fed mice were fasted for 6 h and conscious and
unrestrained mice were subjected to hyperinsulinaemic-euglycaemic clamps. Blood glucose
levels during the clamp as well as basal and clamped insulin levels were determined.
Representative and quantified results are shown (means £ SEM) for the indicated number of

mice.
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Fig. S11. NOX4 deletion in skeletal muscle reduces energy expenditure, wheel running and
Jood intake (Related to Fig. 7). a, f) Oxygen consumption, b, g) energy expenditure, ¢, h)
respiratory exchange ratio (RER), d, i) voluntary wheel running and e, j) diurnal food intake
in a-e) 12-week-old and f-j) 20-month-old Nox4™" and Mck-Cre;Nox4""'chow-fed male mice.
Quantified results are shown (means + SEM) for the indicated number of mice; significance

determined using a-j) two-way ANOVA.
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Fig. S12. Nox4 deletion does not alter muscle development in obesity (Related to Fig. 8). a-
i) 8-week-old Nox4™" and Mck-Cre;Nox4"" male mice were fed a high fat diet (HFD; 23% fat)
for 20 weeks and a) body composition (DEXA) and b) tissue [including gastrocnemius
(Gastroc), soleus, quadriceps (Quad), triceps and tibialis anterior (TA) skeletal muscles,
epididymal (Epi) and inguinal (Ing) white adipose tissues, interscapular brown adipose tissue
(BAT), heart and liver] weights were determined. c-i) Transverse sections (10 nm) were
prepared from frozen soleus muscle and stained with ¢) haematoxylin and eosin (H&E) or
immunostained for d) dystrophin, or ) co-immunostained for dystrophin and fibre type (I and
IIa) and f) the minimum Feret’s diameter, g) the variability coefficient and both h) fibre size
and i) fibre types were determined. Representative and quantified results are shown (means +

SEM) for the indicated number of mice.
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Fig. S13. Nox4 deletion in muscle exacerbates obesity-associated insulin resistance (Related
to Fig. 8). a-c) 8- week-old Nox4™" and Mck-Cre;Nox4™" male mice were fed a high fat diet
(23% fat ) for 20 weeks. Gastrocnemius muscle was processed for a-b) immunoblotting. a)
PGCla protein levels quantified via densitometry (See Fig. 8h). b) NFE2L2 protein levels
were assessed and quantified via densitometry. ¢) Gastrocnemius muscle was processed for
qPCR to assess antioxidant defence gene expression. d-h) 8-week-old Nox4"" and Mck-
Cre;Nox4"" male mice were fed a high fat diet (23% fat) for 20 weeks and d) fed (satiated; 11
pm) and fasted (6 h) blood glucose levels and insulin levels were assessed. Mice were subjected
to e) insulin tolerance tests (ITTs; 0.65 mU insulin/g body weight) and f) glucose tolerance
tests (GTTs; 1 mg glucose/g body weight); areas under ITT and GTT curves were determined
and arbitrary units (AU) shown. g-h) After a 6 h fast, conscious and unrestrained mice were
subjected to hyperinsulinaemic-euglycaemic clamps. g) Blood glucose levels during the clamp
and h) basal and clamped insulin levels were determined. i) 8-week-old Nox4™" and Mck-
Cre;Nox4"" male mice were fed a high fat diet (23% fat) for 12 weeks, fasted for 6 h and
administered insulin (0.65 mU/g insulin intraperitoneal). Gastrocnemius muscle was extracted
after 10 min and processed for immunoblotting. Representative and quantified results are
shown (means = SEM) for the indicated number of mice; significance determined using (a-f) a

Student’s t-test.
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Fig. S14. Diminished insulin signalling in NOX4-deficient myotubes (Related to Fig. 9).
FACS-purified Nox#"" myoblasts were transduced with B-galactosidase (LacZ) or Cre-
expressing (Cre) adenoviruses and differentiated into myotubes. a) Laz or Cre myotubes were
processed for immunoblotting. b) Laz or Cre myotubes were serum-starved (6 h) and either
left unstimulated or stimulated with 1 nM insulin for the indicated time points and processed
for immunoblotting. Representative and quantified results are shown (means + SEM) for the

indicated number of experiments; significance determined using (b) a two-way ANOVA.
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