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Supplementary Text 

RNA-sequencing bioinformatics  

RNA-sequencing reads were first mapped to the mm10 or rn6 build of the mouse and rat 

reference genome, respectively, using HISAT v2.1.0 with default settings. FeatureCounts v2.0.0 

from the Subread package was used to count mapped gene-level reads. Gene count matrices were 

uploaded into the edgeR v3.28.1 package and normalized to counts per million (CPM) reads 

using the default Trimmed Mean of M-values (TMM) method. For both INS-1 832/13 β-cell and 

mouse islet samples, genes that were expressed at a level ≥1 CPM in ≥50% of samples were 

included in downstream analysis. To identify circadian transcripts in mouse islet samples, 

normalized count matrices were imported into MetaCycle v1.5.0 and circadian rhythmicity was 

determined by ARSER method with default settings (period=20-28h) (29, 30). ARSER was used 

due to its noted superior performance and normal statistical distribution under equivalent 

experimental design conditions (31). Genes were considered significantly rhythmic at a false 

discovery rate (FDR; Benjamini and Hochberg) ≤ 0.10. Significantly rhythmic genes were 

subjected to biological pathway enrichment using WebGesalt v2019 and HOMER v4.11.1. To 

assess potentially cis-regulatory elements mediating circadian control of transcription, the peak 

phase of rhythmic genes was obtained from ARSER and binned into 4h intervals (± 2h from 

center). Each subset of genes was inputted into i-cisTarget 2015 for cis-regulatory enrichment 

analysis using default settings (±10kb from transcriptional start site). Normalized enrichment 

scores of transcription factor motifs from the Catalog of Inferred Sequence Binding Preferences 

(cis-BP) mouse motif set were retained for analysis. To identify differential expressed genes in 

transfected INS-1 832/13 β-cells, normalized gene count matrices were subjected to differential 

analysis using edgeR’s default Fisher’s exact test and considered statistically significant at a 



 
 

 

FDR<.05 (Benjamini-Hochberg method) and a fold change > 1.2. Differentially expressed genes 

were subjected to biological pathway enrichment using WebGesalt v2019 and HOMER v4.11.1. 

Gene-set enrichment analysis v4.0.1 (GSEA) was used to calculate enrichment of ‘de-novo’ 

gene-sets against a pre-ranked gene list of calculated fold changes in INS-1 832/13 β-cells, using 

default settings. 

 

Bulk ATAC-sequencing bioinformatics  

Bulk ATAC-sequencing reads were first mapped to the mm9 build of the mouse reference 

genome using the Burrows-Wheeler Aligner v0.7.16 with default settings. Picard v2.21.6 was 

used to remove PCR duplicates and which were subsequently removed by Samtools v1.9 along 

with mitochondrial and multi-mapping reads To call peaks, we used MACS2 v2.2.7.1 on merged 

replicates with the following settings: -f BEDPE -g mm --keep-dup all --SPMR -q 0.05. Peaks 

with an FDR <0.05 were retained following removal of peaks overlapping mm9 blacklisted 

regions.  Bedtools v2.27.1 was used to perform genomic arithmetic on called peaks. All samples 

achieved a fraction of reads in peaks (FRIP) score ≥50%. The Integrative Genomics Viewer 

v2.6.3 was used to view ATAC-seq coverage tracks.  Differentially accessible chromatin regions 

of MACS2 called peaks were determined by DiffBind v2.14.0 and considered differentially 

accessible with a fold change > 1.5 and FDR<0.1. Peak classification was performed by 

ChIPseeker v1.22.1, motif enrichment was performed using i-cisTarget 2015 and HOMER’s 

findMotifsGenome.pl function, and gene ontology determined by GREAT 4.0.41 all using 

default settings.  To predict sites of transcription factor binding, ATAC-seq samples were 

corrected for Tn5 bias and transcription factor footprints for each condition were identified by 

TOBIAS v0.11.6 using default settings and subsequently visualized using deepTools v2.0 (37, 



 
 

 
 

45). Diurnal differential transcription factor footprinting was performed by the Bivariate 

Genomic Footprinting R package (BagFootR v0.9.3) following cut bias correction using default 

settings and default cis-BP motif set (36). Transcription factors were considered diurnally active 

at an FDR<0.05 using the Hotelling’s T squared test.  

 

Single cell ATAC-seq bioinformatics  

Raw base cell files (BCL; Illumina) were demultiplexed into FASTQ file format by Cell Ranger 

ATAC v1.2.0 using the cellranger-atac mkfastq function (10X Genomics). ScATAC-seq 

accessibility counts for each library were obtained using the cellranger-atac count function 

against the mm10 reference genome. Aligned sequenced fragment files generated by Cell Ranger 

were then imported into ArchR v1.0.0 for quality control and sample processing (40). Low 

quality cells were filtered if < 1000 unique fragment counts were detected or given a TSS 

enrichment score < 10. Predicted doublets were inferred using ArchR’s addDoubletScores 

algorithm which synthesizes pseudo-doublets by in silico mixing of cellular populations 

followed by comparison with experimental data. Cells were then filtered using both the default 

filterDoublets function and given > 4000 unique fragment counts in TSS regions. Dimensionality 

reduction of the term frequency-inverse document frequency (TF-IDF) normalized scATAC-seq 

data (16470 cells) was performed using iterative Latent Semantic Indexing (LSI) using genome-

wide 500bp tiling of accessible chromatin regions (iterations=2, varFeatures=20000, 

resolution=0.2, dimsToUse=1:15). The data was then clustered using Seurat’s FindClusters 

algorithm (resolution=1.2) and visualized using Uniform Manifold Approximation and 

Projection (UMAP) embedding (nNeighbors=40, minDist=0.5, metric=cosine). Gene activity 

scores were calculated using ArchR’s gene scoring model which considers both the accessibility 



 
 

 
 

within a gene loci and exponentially weighted distal elements based on distance to a gene’s TSS. 

Gene activity scores for individual cell were visualized on UMAP embeddings following markov 

affinity-based graph imputation of cells. Marker features of each cluster were quantified using 

ArchR’s getMarkerFeatures algorithm. Cell-specific clusters were then manually assigned, as 

previously performed for scATAC-seq protocols (38, 41), to endocrine or non-endocrine cell 

type by enrichment of canonical endocrine markers (NK2 homeobox 2 (Nkx2.2), paired box 

protein 6 (Pax6), and Neurod1. Endocrine cell types were sub-classified into β-cell (Ins1, Ins2, 

Nkx6.1, MAF bZip transcription factor A (Mafa), insulin amyloid polypeptide (Iapp)), α-cell 

(Gcg, aristaless Related Homeobox (Arx), iroquois homeobox factor 1 (Irx1), MAF bZip 

transcription factor B (Mafb)), δ-cell (Sst, peptide YY (Pyy) and hematopoietically-expressed 

homeobox protein (Hhex)), and γ-cell clusters (Ppy, tetraspanin 8 (Tspan8), Pyy), while non-

endocrine cells were classified into immune (cluster of differentiation 74 (Cd74),C-C motif 

chemokine ligand 3 (Ccl3),histocompatibility 2, class 2 antigen E beta 2 (H2-Eb2)), endothelial 

(kinase insert domain receptor (Kdr),SRY-box transcription factor 7 (Sox7),cluster of 

differentiation 34 (Cd34)), and stellate cell clusters (heart and neural crest derivatives expressed 

2 (Hand2), collagen type VI alpha 1 chain (Col6a1),anoctamin 1 (Ano1)). Clusters that had 

enrichment of endocrine and non-endocrine markers (e.g. Kdr and Ins1) or multiple endocrine 

cell-specific makers (e.g. Ins1 and Gcg) were considered unclassified as noted in other scATAC-

seq protocols and are likely unfiltered doublets (41). Following cell type identification, peaks 

were called from pseudo-bulk clustered cell-types using MACS2 v2.2.7 with the default ArchR 

settings --shift 75 --extsize 150 --nomodel --nolambda. To identify diurnal differences in β-cell 

transcription factor motif activity, β-cells were diurnally grouped by treatment condition and 

motif deviation score was calculated by ChromVar against a GC-content and fragment depth 



 
 

 

corrected background peak set using ArchR’s default cis-BP motif set (42). Transcription factor 

activity scores were imputed by markov affinity-based graph imputation of cells (39) and 

considered diurnally active at an FDR<0.05 using Wilcoxon Rank sum test. β-cells were then 

classified by mean PAR bZip (DBP, HLF, and TEF) activity Z-score from low activity (0-25th 

percentile) to intermediate (25-75th percentile) and high activity (75-100th percentile). The 

classified cells were then subjected to pseudotime trajectory analysis using ArchR’s 

addTrajectory algorithm with default settings (40). The top 10% of gene scores and top 5% of 

accessible chromatin regions which varied across pseudotime were identified and plotted. Genes 

and chromatin regions with maximal activity/accessibility between pseudotime 5-50 were 

considered enriched in PAR bZip low cells, while pseudotime 70-100 was considered for PAR 

bZip high cells. Genes and chromatin regions were subjected to gene ontology enrichment 

analysis using WebGesalt2019 and GREAT v4.0.4.   

 

ChIP-seq Informatics  

ChIP-sequencing reads were mapped to the rn6 build of the rat reference genome using HISAT 

v2.1.0 with default settings. DBP peaks were called using the MACS2 v2.2.7 algorithm using a 

false discovery rate of 1%. Peak classification, motif enrichment, and gene ontology were 

performed by HOMER v4.11.1 using default settings. For identification of DBP binding sites 

within active enhancer regions, processed H3K27ac ChIP-seq data from INS-1 cells was 

obtained from GSE126556 (44). Bedtools was utilized to identify DBP peaks <3kb from active 

enhancer regions. Peaks ≤3kb from HOMER defined transcriptional start sties were considered 

proximal enhancers, with >3kb considered distal. Processed mouse islet ChIP-seq data of 

FOXO1 and H3K27ac was downloaded from GSE131947 (55). The integrative genomics viewer 



 
 

 

was used to visualize ChIP-seq coverage tracks, while deepTools was used to generate heatmaps 

and profiles of DBP binding (45). To assess the expression of DBP target genes in human islets 

obtained from non-diabetic and type 2 diabetic patients, five gene arrays (GSE38642 (46), GSE 

25724 (47), GSE20966 (48), GSE76894 (49), and GSE76895 (49)) and two RNA-seq studies 

(GSE159984 (51) and GSE164416 (52)) were downloaded from the NIH gene expression 

omnibus, each containing at least 5 non-diabetic and 5 type 2 diabetic donors. The gene arrays 

were processed as described previously (50). For GSE159984, the differential gene expression 

was downloaded from the GEO website, while GSE164416 was processed using edgeR’s default 

Fisher’s exact test as described above. DBP binding sites in active enhancer regions were 

annotated and genes were lifted over from rat to human orthologues using Biomart. DBP target 

genes mapping to KEGG pathways regulating circadian rhythms, insulin secretion, protein 

processing in the endoplasmic reticulum, and protein export were retained, provided they were 

probed in >50% of gene array studies. For the meta-analysis of differentially expressed DBP 

targets in each study, a vote counting approach was utilized with a fold change and false 

discovery rate cutoff of ≥1.2 and ≤0.25, respectively. 

 

  



 
 

 

 

 

Fig. S1. Effects of time-restricted feeding on motor activity in mice exposed to global 

circadian disruption. (A) Overview of study design. Experimental parameters assessed and 

displayed in the figure are highlighted in red. (B) Average 24 hour circadian motor activity 

binned into 30-minute intervals  in CON (black), CD (red), and CD-tRF (blue) mice (repeated 

measures one-way Anova, effect of time; n=3 mice per condition). (C) Total daily (24 hour) 

activity in CON, CD and CD-tRF mice (n=3 per group). All values represent mean ± SEM.  

 

 

 

 

 

 

 

 

 



 
 

 

 



 
 

 

Fig. S2. Effects of time-restricted feeding on body mass and plasma glucose/insulin 

concentrations in mice exposed to global circadian disruption. (A) Overview of study design. 

Experimental parameters assessed and displayed in the figure are highlighted in red. (B) Average 

bi-weekly body mass of CON, CD, and CD-tRF mice over 8-week experimental period. *p<.05 

denotes statistical significance (two-way Anova with Tukey post-hoc test; n=6 per group). (C) 

Average final epididymal white adipose tissue mass (left) and liver mass (right) normalized to 

total body mass of CON, CD, and CD-tRF mice. *p<.05 denotes statistical significance (one-

way Anova with Tukey post-hoc test; n=6 per group).  (D-F) Average plasma glucose (D), 

plasma insulin (E), and insulin-to-glucose ratio (F) sampled every 4h from CT0 to CT20 in CON 

(grey), CD (red) and CD-tRF (blue) mice (repeated measures one-way Anova, effect of time; 

n=9-12 per group). All values represent mean ± SEM.  

 

  



 
 

 
 

 

Fig. S3. Effects of time-restricted feeding on in vitro β-cell function and β/α-cell mass in 

mice exposed to global circadian disruption. (A) Overview of study design. Parameters 

displayed in the figure are highlighted in red. (B) Diurnal glucose-stimulated insulin secretion 

performed at CT4 and CT16 time points in CON (grey/black), CD (pink/red) and CD-tRF 

(light blue/dark blue) islets. Glucose-stimulated insulin secretion is expressed as the ratio of 

insulin secretion at hyperglycemic 16mM glucose to basal insulin secretion at 4mM glucose 

(left). Total diurnal islet insulin content measured at CT4 and CT16 time points in CON 

(grey/black), CD (pink/red) and CD-tRF (light blue/dark blue) islets normalized to total islet 

number (right).  *p<.05 denotes statistical significance (unpaired, two-tailed Student’s t-test for 

intragroup comparison and one-way Anova with Tukey correction for multiple comparison for 

intergroup comparison; n=6-8 independent experiments per group).  (C) Average β-cell (left) 

and α-cell (right) mass of CON, CD, and CD-tRF pancreata. (p>.05; one-way Anova with 

Tukey post-hoc test; n=3 pancreata per group).  All values represent mean ± SEM. 

 



 
 

 
 

 

Fig. S4. Circadian RNA-sequencing of pancreatic islets from CON, CD, and CD-tRF mice. 

(A) Log2 normalized mean gene expression expressed as counts per million reads (CPM) in two 

independent replicates of CON (grey/black), CD (pink/red), and CD-tRF (light blue/dark blue) 

samples collected every 4h starting from CT0 (n=12 samples per group). Values expressed as 

mean ± min/max log2 CPM (top). Principal component analysis (PCA) illustrating principal 

component analysis (1st and 2nd PCs) of global transcriptome for CON (grey/black), CD 

(pink/red), and CD-tRF (light blue/dark blue) samples (bottom). (B) Venn diagram highlighting 

number of transcripts with a significant circadian rhythmicity in CON, CD, and CD-tRF islet 

transcriptomic samples (FDR<.1, Benjamini and Hochberg method).  



 
 

 
 

 

Fig. S5. Cis-regulatory motif enrichment of rhythmic genes from CON and CD-tRF 

pancreatic islets. Graphs representing predicted i-Cis Target enrichment of the top 10 regulatory 

motifs (ranked by Z-normalized enrichment score) in cis-regulatory elements of genes with a 

peak phase centering at the indicated circadian time common to CON and CD-tRF islets (top; 

grey), unique to CON (middle; black), and unique to CD-tRF (bottom; blue). 



 
 

 
 

 

Fig. S6. Diurnal ATAC-sequencing of pancreatic islets from CON, CD, and CD-tRF mice. 

(A) Representative DNA fragment size distribution of CON (grey/black), CD (pink/red), and 

CD-tRF (light blue/dark blue) samples isolated at CT4 and CT16 normalized to a percentage of 

total DNA fragment number (top). Transcription Start Site (TSS) enrichment score (signal-to-

background ratio) of CON (grey/black), CD (pink/red), and CD-tRF (light blue/dark blue) 

samples at CT4 and CT16 (bottom). (B) Annotation of accessible chromatin regions to 

intergenic, coding, intronic, or promoter regions in the genome, normalized to total peak number 

in CON, CD, and CD-tRF samples at CT4 and CT16. (C) Top 10 known HOMER motifs, ranked 

by –log of p-value, enriched globally at accessible chromatin regions in CON (grey/black), CD 

(pink/red), and CD-tRF (light blue/dark blue) samples at CT4 and CT16. 



 
 

 
 

 

Fig. S7. Digital genomic footprinting reveals unique roles for PAR bZip transcription 

factors: DBP, TEF, and HLF, as potential regulators of islet function. (A, C, E) ATAC-seq 

signal in CON, CD, and CD-tRF sampled at CT4 and CT16 from unique DBP (A), TEF (C), 

HLF (E) footprints detected in CON and CD-tRF conditions. Signal is normalized to reads per 

genomic content and is plotted ±0.5kb from motif center. Shaded, dark regions represent areas of 



 
 

 
 

accessible chromatin.  (B, D, F) Enriched GO: Biological Process pathways annotated from 

unique DBP (B), TEF (D), and HLF (F) footprints. Key pathways regulating maintenance of β-

cell function and survival are highlighted. 

 

  



 
 

 
 

 

Fig. S8. Diurnal single cell ATAC-sequencing (scATAC-seq) of pancreatic islets from CON, 

CD, and CD-tRF mice. (A) Representative DNA fragment size distribution of CON 

(grey/black), CD (pink/red), and CD-tRF (light blue/dark blue) islet single cell samples obtained 

at CT4 and CT16 and normalized to a percentage of total DNA fragment number prior to quality 

control adjustment (left). Transcription Start Site (TSS) enrichment score (signal-to-background 

ratio) of CON (grey/black), CD (pink/red), and CD-tRF (light blue/dark blue) scATAC-seq 

samples obtained at CT4 and CT16 prior to quality control adjustment (right). (B) Heatmap 

representing relationship between TSS enrichment and unique DNA fragment number in 

captured cells following quality control adjustment. Each dot represents one cell with the dot 



 
 

 
 

color representing the density of cells (n=16470) associated with a given DNA fragment number 

and TSS enrichment. (C) UMAP of scATAC-seq data from CON, CD, and CD-tRF islet samples 

isolated at CT4 and CT16. Each dot represents a cell (n=16470) with distinct colors for each of 

the 17 identified cell clusters (left). Classification of cell types by cluster and identification with 

corresponding quantification of total cell number per cluster (right). (D) Quantification of the 

proportion of cell types identified by sample normalized to the total number of cells captured per 

sample in CON, CD, and CD-tRF samples from CT4 and CT16. (E) UMAP of gene activity 

scores for canonical cell markers for each cell type identified. Range of gene activity scores 

plotted is noted in the bottom left corner of each UMAP. Yellow represents high activity (open 

chromatin) at noted gene loci, while blue/purple represents low activity (closed chromatin).  

  



 
 

 
 

 

Fig. S9. siRNA knockdown of PAR bZip transcription factor Tef does not modulate 

glucose-stimulated insulin secretion or insulin content in β-cells. (A) Overview of study 

design. PAR bZip TFs (Dbp and Tef) were knocked down using siRNA in INS1(832/13) rat β-

cells. Tef (highlighted) is profiled in the figure. (B) Quantitative PCR analysis of Tef mRNA 

expression in scramble siRNA and Tef siRNA treated β-cells. *p<.05 denotes statistical 

significance (unpaired, two-tailed Student’s t-test; n=3 independent samples per group). (C) 

Representative western blot of TEF and β-actin expression in scramble siRNA (20nM scrambled 

siRNA) and Tef siRNA treated β-cells (n=2 independent experiments).  (D) Glucose-stimulated 

insulin secretion (16mM glucose) and maximal insulin secretion (30mM KCl) of scramble 

siRNA and Tef siRNA treated cells normalized to basal insulin secretion at 4mM glucose (left). 

Total cell insulin content normalized to scramble siRNA control (right; p>.05, unpaired, two-

tailed Student’s t-test; n=8 independent samples per group). All values reported represent mean ± 

SEM. 

 

 



 
 

 
 

Data S1. ARSER analysis of 525 transcripts rhythmic in CON and CD-tRF islets and 

arhythmic under CD. 
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