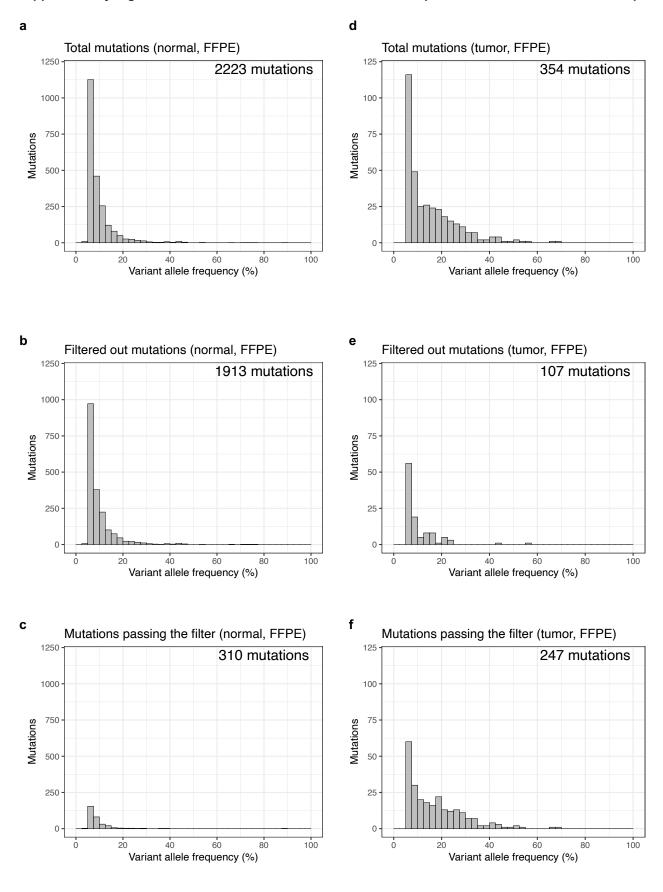
MicroSEC filters sequence errors for formalin-fixed and paraffin-embedded samples

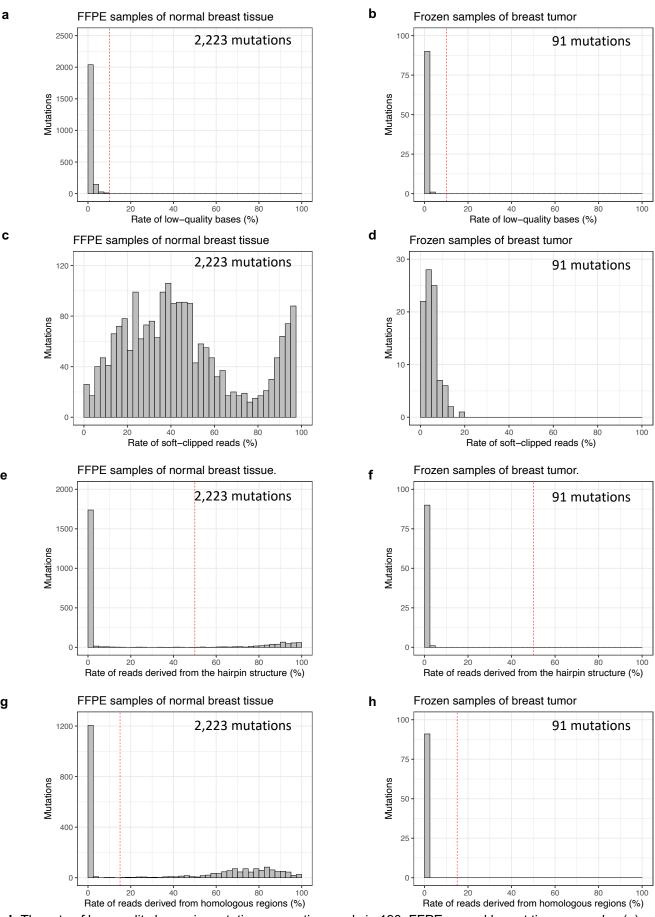
Masachika Ikegami^{1,2,3,*}, Shinji Kohsaka^{1,*}, Takeshi Hirose^{1,4}, Toshihide Ueno¹, Satoshi Inoue¹, Naoki Kanomata⁵, Hideko Yamauchi⁶, Taisuke Mori⁷, Shigeki Sekine⁷, Yoshihiro Inamoto⁸, Yasushi Yatabe^{7,9}, Hiroshi Kobayashi², Sakae Tanaka², and Hiroyuki Mano^{1,*}


¹Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
²Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
³Department of Musculoskeletal Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
⁴Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
⁵Department of Pathology, St Luke's International Hospital, Tokyo, Japan
⁶Department of Breast Surgical Oncology, St Luke's International Hospital, Tokyo, Japan
⁷Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
⁸Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan

*Correspondence should be addressed to: Masachika Ikegami (ikegami-tky@umin.ac.jp), Shinji Kohsaka (skohsaka@ncc.go.jp), or Hiroyuki Mano (hmano@ncc.go.jp).

Contents

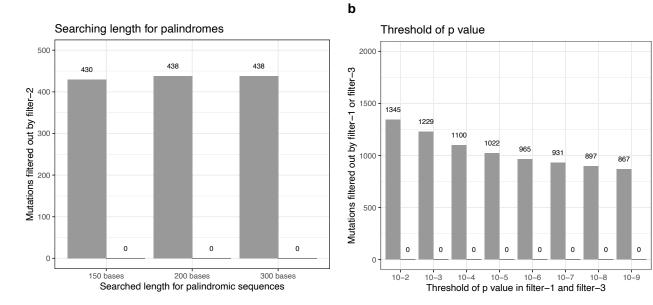
Supplementary figures 1–5 Supplementary tables 1–3


Supplementary Figure 1. The distribution of the variant allele frequencies of the breast tissue samples.

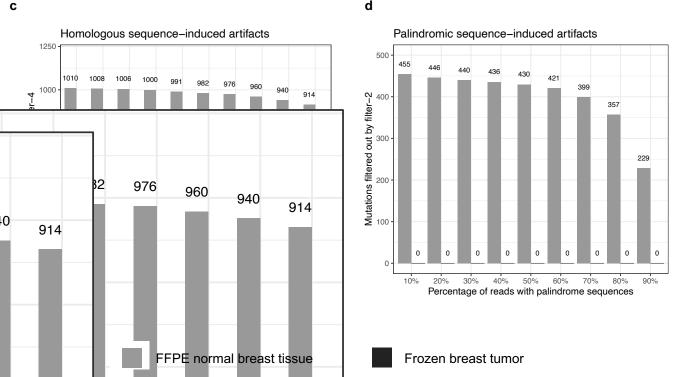
a–c FFPE samples of normal breast tissues (n = 190) with total somatic mutations (**a**), mutations filtered out by MicroSEC filter (**b**), and mutations passing through the filter (**c**).

d–f FFPE samples of breast tumor tissues (n = 33) with total somatic mutations (d), mutations filtered out by MicroSEC filter (e), and mutations passed through the filter (f). The somatic mutations shown represent those present in normal breast tissue but not in normal blood. FFPE, formalin-fixed and paraffin-embedded.

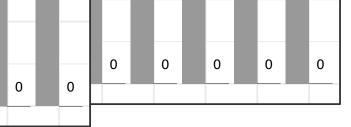
Supplementary Figure 2. The distribution of the mutations in breast tissue samples.


a,b The rate of low-quality bases in mutation-supporting reads in 190 FFPE normal breast tissue samples (a) and 23 frozen breast tumor samples (b). c.d The rate of soft-clipped reads in FFPE samples of normal breast tissue (c) and frozen samples of breast tumor (d). e,f The rate of reads derived from other homologous regions in FFPE samples of normal breast tissue (e) and frozen samples of breast tumor (f). g,h The rate of reads derived from the hairpin structure in FFPE samples of normal breast tissue (g) and frozen samples of breast tumor (h). Dotted red lines represent the thresholds.

е


g

Supplementary Figure 3. The optimal hyperparameters of MicroSEC.


а

d

Detected artifacts with various hyperparameters in 190 FFPE normal breast tissue (gray) and 23 frozen breast tumor (black) samples. The base length to search palindromes (a), P-value thresholds for Filters 1 and 3 (b), Filter 2 (c) and Filter 4 (d) were varied and the number of artifacts detected was counted. FFPE, formalin-fixed and paraffin-embedded.

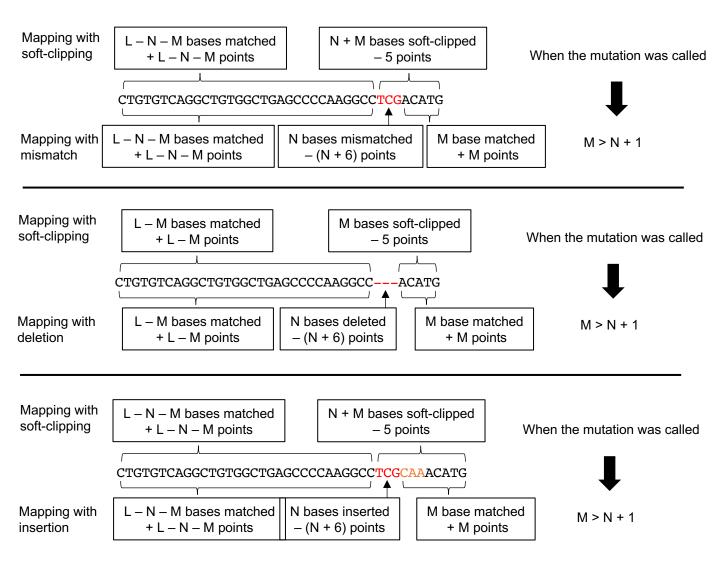
Supplementary Figure 4. Aligned reads in capture-based sequencing visualized by Integrative Genomics Viewer.

41,090,200 bp	41,090,210 bp	1	41,090,220 bp		41,090,230 bp		41,090,240 bp	41,090,250 bp
				C T C T C T C T				
		C					N	
	N			C T C T C T				
				C T C T C T C T				
				C T C T C T		N	N N	N
				C T C T C T C T		т.		
				C T C T C T				
				C T C T C T C T				_
				C T C T C T				
				C T C T C T				N
		N N		N N N		N N		N
TCCAGAC	A C A G C A G C A	GAT	TGCTGT	CCAGO	GACAG	CAAG	TGGCACA	GACTGCTG

a NFYA p.Gln155Pro, chr6;41090226–41090227delinsCT

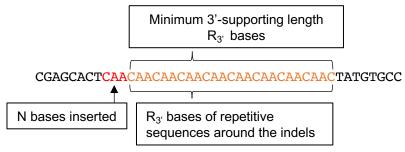
b CENPA p.Leu91Pro, chr2;26792817T>C

	26,792,600 Bp	I	26,792,820 BP	1	26,792,640 Bp	I
N N		N	C G C	N N		
			C C			
			C N	N N		Ξ.
		N N	C N	N N N N N N	N N	
			C C	N N N	N	N
		N N G	N N N N	N N N	N N N	
N		N	N N N N N	N N	N N	
N N	N N N	N N	N N N N	N N N A	N N N	N
	N	N N	N N N A	N N N N N	N	N
N N N N		N N	N N N N	A N	N N	
N	N N	N C	N NNNNNNN	N N N	N	
NN	Ν	N N	N N N	N N		
	N		N N N		N N	
N N	N		N N C N N N	N N N	N N N	N
N			N N	N	N N	
			N N			
			N N	N N		
N N			N N. N	N N N N N N	N N N	G A
		N	N N	N	N	
N			N		N N N N N	N
		N				
				N N	N N N N N	N
N N N			N N N N N	N N N N	N	


a AG-to-CT mutation in the NFYA gene is shown. All reads with mutations have a short supporting length from the mutated base to the end of the read (red line).

b T-to-C mutation in the CENPA gene is shown. Of the 954 reads mapped to the mutated base, 227 reads (24%) were of low quality and failed to call bases, 689 were wild-type (T), 47 were C, and one was A. Low quality bases are indicated by N. The mate-read of the green colored read is mapped to a different chromosome.

Supplementary Figure 5. Limitation on the number of bases to map around a mutation.


a Reference sequence

5' CGAGCACTGTGTCAGGCTGTGGCTGAGCCCCAAGGCCCAAACATGTGCC 3'

b Reference sequence

5' ATCTAGCTCGAGCACTCAACAACAACAACAACAACAACAACAACTATGTGCC 3'

a L was considered to be the read length, N the number of bases mutated, and M the number of bases mapped outside the mutation. When Burrows-Wheeler Aligner were used as a mapper, the penalty due to an N-base mutation was N + 6, the soft-clipping penalty was 5, and the point for mapped M bases was M. When the mutation is called and not soft-clipped, M > N + 1 must be satisfied regardless of the type of mutation. **b** If the number of repetitions changes in a short tandem repeat, only reads containing all the repetitive sequences

b If the number of repetitions changes in a short tandem repeat, only reads containing all the repetitive si can support the presence of indel mutations.

Supplementary Table 1. Filtered mutations with high variant allele frequency in FFPE samples.

Sample	Chr	Position	Dof	Alt	VAF	Mutation	Soft-	clipped	Hairpir	1- R	lead	Supp	orting	g length	Prob	ability	
Sample	Chr	Position	ке	AIL	(%)	depth		read		re ler	ngth	5'	3'	Shorter	5'	3'	Shorter
PT001_012	12	106255381	G	GTGAC	55.4	655	648	(98.9%)	632 (96.5%	6)	150	145	125	10	NA	NA	0
PT102_009	12	106255382	А	Т	70.2	539	477	(88.5%)	524 (97.2%	6)	150	148	136	36	NA	NA	NA
PT107_002	12	106255382	А	Т	74.3	927	818	(88.2%)	897 (96.8%	6)	150	149	136	37	NA	NA	NA
PT107_009	12	106255382	А	Т	53.4	385	341	(88.6%)	372 (96.6%	6)	150	147	139	38	NA	NA	NA
PT107_010	12	106255382	А	Т	75.9	960	889	(92.6%)	937 (97.6%	6)	150	149	136	37	NA	NA	NA
PT112_008	12	106255382	А	Т	65.4	464	411	(88.6%)	449 (96.8%	6)	124	123	121	32	NA	NA	NA
PT107_006	12	106255382	А	Т	56.7	393	345	(87.8%)	372 (94.7%	6)	124	123	110	34	NA	NA	NA

Chr, chromosome; Ref, reference sequence; Alt, altered sequence; VAF, variant allele frequency; NA, not assessed.

Probability is calculated only if the supporting length is <80% of the read length.

Supplementary Table 2. Pathogenic mutations in clinical FFPE samples filtered out by MicroSEC.

Sample Gene		HGVS.c	HGVS.p	VAF	Mutation	Soft-clipped	Read Supporting length				Reads from	MicroSEC
Sample	Gene	HGV3.C	пахэ.р	(%)	depth	read	length	5'	3'	Shorter	distant region	WICTUSEC
BRCA_001	RAD51B	c.1111C>T	p.Gln371*	12.2	41	26 (63.4%)	150	146	39	39	22 (53.7%)	Filter 4
COAD_001	PPP2R1A	c.108delT	p.Leu36fs	13.4	18	5(27.8%)	150	46	141	46	10 (55.6%)	Filter 4
LUAD_016	FAM175A	c.229C>T	p.Arg77*	11.8	18	1 (6.3%)	151	141	68	68	12 (66.7%)	Filter 4
LUAD_016	RAD51B	c.1111C>T	p.GIn371*	10.9	100	65 (65.0%)	151	150	56	56	42 (42.0%)	Filter 4
LUAD_016	PPP2R1A	c.108delT	p.Leu36fs	21.1	25	7 (28.0%)	151	63	145	63	15 (60.0%)	Filter 4
LUAD_021	TP53	c.1021T>G	p.Phe341Val	8.8	74	4 (5.4%)	151	102	150	75	0 (0%)	Filter 3
PDC_001	PPP2R1A	c.108delT	p.Leu36fs	9.3	28	8 (28.6%)	151	62	144	62	15 (53.6%)	Filter 4
PDC_001	ZRSR2	c.283C>T	p.Arg95*	6.0	13	8 (61.5%)	151	149	115	55	7 (53.8%)	Filter 4

Chr, chromosome; Ref, reference sequence; Alt, altered sequence; NA, not assessed.

Probability is calculated only if the supporting length is <80% of the read length.

Supplementary Table 3. MicroSEC filtering summary for whole exome sequencing.

	Matched primary cancer sa	mples				
	Fresh frozen (N = 14)	FFPE $(N = 14)$				
Total reads (in millions)	111.8 (45.2–145.9)	142.7 (83.6–235.4)				
Mapped reads (%)	93.3 (92.8–93.7)	93.4 (85.2–94.1)				
Unique reads (%)	86.3 (83.8–93.0)	86.5 (73.5–92.2)				
Mean coverage	199 (83–261)	255 (134–394)				
Median insert size (base)	223 (197–238)	173 (124–205)				
Somatic mutations	107.0 (81–196)	118.2 (94–167)				
removed by						
Filter 1	0.1 (0-1)	8.2 (0-47)				
Filter 2	0 (0–0)	3.9 (0-23)				
Filter 3	0.1 (0-1)	7.3 (0–42)				
Filter 4	0.4 (0–3)	1.2 (0-4)				
Any of Filter 1–4	0.6 (0-3)	10.3 (0-55)				
Mutations passing the filter	106.4 (81–196)	107.9 (85–138)				
Filtered rate (%)	0.5	8.7				
CG-to-TG potential artifacts	NA	45.8 (14–56)				
Intra ≥10-base homopolymer	0.0 (0-0)	0 (0–0)				
Remaining mutations	106.4 (81–196)	62.1 (45-89)				

Data are shown as mean (range).

NA, not applicable; FFPE, formalin-fixed and paraffin-embedded.