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Figure S1 Schematic presentation of Arabidopsis root meristem organization, quantification of cell proliferation and root growth variability
(A) Transversal confocal section through the center of a representative 7-day-old Arabidopsis root meristem, oriented from phloem pole to phloem
pole, merged with cell outlines (red) for one half. (B) Schematic presentation of the tissues in the root shown in (A), labeled for cell types, and a
corresponding schematic of their radial arrangement. (C) Primary root length of indicated genotypes at 5, 7 and 9 days after germination (dag). Box
plots display 2nd and 3rd quartiles and the median, bars indicate maximum and minimum. Statistical significance was determined by ordinary one-
way ANOVA. Statistically significant different groups are indicated by different lowercase letters. (D) Estimated number of cells per cell file of indicated
tissue or total root mature root cell number, calculated from the average root length (C) and the average cell lengths obtained for mature cells or
average cell number per mature segment (Figure 1B). (E-G) Confocal microscopy images of root meristems from indicated genotypes, stained with
anti-KN antibody (red fluorescence), showing the maximum projection of the 3D stacks from an entire meristem each. Cell plates of dividing cells are
recognizable as sharp KN signal accumulations. (H) Dividing cells per meristem as deduced from cell plates detected by anti-KN immunostaining.
Bars indicate the mean and standard deviation. Differences between genotypes were not significant (one-way ANOVA). (1) As in E-G, for a single
slice from a 3D stack. The arrowhead points out a late periclinal division. (J-L) Cell length as a function of distance from the QC, for cortex (J),
endodermis (K) and pericycle (L) cell files for a few selected individual roots, obtained through the PlantSeg-MorphoGraphX-3DCellAtlas pipeline.
Note the substantial variability within and between genotypes.



A longitudinal cell length B radial cell length C circumferential cell length

[os'0) Z

[ooL'08] Z

N
15 =
E
10 P
S
5
40
30 N| O
- 3
20 g Q
S| =
10 8 %
Q
o o
30 =
=1
N o
20 B~
o1
8 £
10 &
3
0 28
40 @
o
30 N | P
20 5 2
@ o
10 8| »
3
o 3
=
8
40 23S
=)
s @
20 2| Il
k=)

(]

[oov'05€] 2

[osv'007] Z

[00g'0s¥] Z

sliding 10um window (central axis=0) sliding 10um window (central axis=0) sliding 10um window (central axis=0)

W orire B8 Wild type [l briTREsCUE

Figure S2 Comparative radial sliding window analysis of standardized root models 1 Quantitative features of each simplified root meristem
model using concentric 10 um thick and 50 pm high cylindrical shells with increasing radius (x-axis) fixed z-position (indicated on the right). Average
parameters were calculated by taking into account cells whose centers fell into the corresponding shell. The graphs indicate average longitudinal cell
length (um) (A), cell width in the radial dimension (um) (B) and cell width in the circumferential dimension (um) (C) for 11-12 roots per genotype
combined. The shaded regions indicate +/- standard error of the mean. Note the displacement of the bri"®P'F measurements as compared to wild
type on the x axes, due to the increased diameter of bri"™?PLE meristems.
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Figure 83 Comparative radial sliding window analysis of standardized root models 2 Continuation of the analysis presented in Figure S2,
indicating cell volume (um?3) (A), cell wall area (um?) (B), and cell density (cells/um?) (C) for 11-12 roots per genotype combined. The +/- standard
error of the mean is indicated where applicable. Note the displacement of the bri"RPLE measurements as compared to wild type on the x axes, due to
the increased diameter of bri"RIPLE meristems.
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Figure S4 Comparative longitudinal sliding window analysis of standardized root models 1 Sliding window analysis similar to Figure S2, for a
10 um thick and 50 ym high cylindrical shell (centered on the z-axis) with fixed radius (indicated on the right) and z-position sliding from the QC to
the elongation-differentiation zone (x-axis). The graphs indicate average longitudinal cell length (um) (A), cell width in the radial dimension (um) (B)
and cell width in the circumferential dimension (um) (C) for 11-12 roots per genotype combined. Shaded regions indicate the +/- standard error of the
mean. Note that curves within single panels are not always representing similar tissues, because of the wider stele of bri"RPLE meristems.
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Figure S5 Comparative longitudinal sliding window analysis of standardized root models 2 Continuation of the analysis presented in Figure
S4, indicating cell volume (um?3) (A), cell wall area (um?) (B), and cell density (C) for 11-12 roots per genotype combined. Shaded regions indicate
the +/- standard error of the mean where applicable. Note that curves within single panels are not always representing similar tissues, because of
the wider stele of bri"™RPLE meristems.
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Figure S6 Stele width in wild-type, bri’RIPLE and briT-RESCUE root meristems Average distance of pericycle cells from the central axis, for selected
distances from the QC. Box plots display 2nd and 3rd quartiles and the median, bars indicate maximum and minimum. Statistical significance was
determined by ordinary one-way ANOVA. Statistically significant different groups are indicated by different lowercase letters.
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Figure S7 Examples of cell files in wild-type, bri"RIPLE and bri™RESCUE root meristems (A-D) Examples of isolated cell files for cortex (A),
endodermis (B), protoxylem (C), and pericycle (D), obtained from segmentations via the PlantSeg-MorphoGraphX-3DCellAtlas pipeline. Note the
frequently oblique cell division planes in bri"RPLE mutants and the “ballooning effect”, highlighted by inlays.
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Figure S8 Quantification of cell files in wild-type, bri™?PLE and bri™-RESCUE roots (A) Quantification of cell file numbers in the different root tissues,
obtained from histological cross sections taken at the level of differentiated protoxylem. Statistically significantly different groups are indicated by
lower case letters. (B) Cumulative cell file number in root meristems, counted in 12.5 pm slices from the QC to the elongation-differentiation zone,
with +/- standard error of the mean. (C) Cumulative cell number in mature root area segmentation spanning 800 um in length and starting ~1 cm
above the root meristem, with +/- standard error of the mean.
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Figure S9 Assignment of cell identities Expression of known cell-type marker genes across cells for the three different genotypes. Dot diameter

indicates the proportion of cluster cells expressing a given gene, color indicates the mean expression across cells in a cluster.
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Figure S10 Comparison of scRNAseq cell type clusters with an outside reference data set (A) Dot plot of validated marker genes confirms
identity of each annotated cell type cluster. Dot diameter indicates proportion of cells within the cluster that express the given gene; dot color indicates
average expression value across the cells within the cluster. (B) Uniform Manifold Approximation and Projection (UMAP) of bri™-RESCUE | priTRIPLE gngd
the Denyer et al. 2019 reference dataset, with cell type annotations based on the Wendrich et al. 2020 dataset. (C) UMAP of bri™RESCUE  pjTRIPLE gnd
the Denyer et al. 2019 reference dataset, with cell type annotations based on the Denyer et al. 2019 dataset.
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Figure S11 Cell type abundance in the scRNAseq datasets (A) Absolute cell numbers per cluster in wild-type, bri"TRPLE and bri"™RESCUE root
meristem single cell transcriptomes, based on identity assignment with cell type-specific and stage-specific marker genes (Wendrich et al., 2020)
(see Tables S1-S3). (B) As in (A), for the 13 principal cell types (see Table S4).
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Figure S12 Dendrogram of identified cell types in all samples and overview of scRNAseq cell type clusters (A) Phylogenetic tree relating the
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of the Seurat object. (B-D) Uniform Manifold Approximation and Projection (UMAP) of wild-type (B), bri"RIPLE (C), and bri’"RESCUE (D) single cell
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Figure S13 Comparison of scRNAseq data with known brassinosteroid-responsive genes (A-B) Venn diagram illustrating the overlap between
genes that were differentially expressed between genotypes in the scRNA-seq dataset, and genes that were found to be downregulated (A) or
upregulated (B) in response to brassinolide treatment in the root (Chaiwanon and Wang, 2015) (see also Table S5 and Table S6). (C-D) As in (A-B),
but with the cortex cells removed from the scRNA-seq dataset. (E-F) As in (A-B), for a different reference set of genes that are considered high
confidence brassinosteroid-downregulated (E) or upregulated (F) (Liu et al., 2020).
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Figure S14 Brassinosteroid response in the scRNAseq profiles (A-B) Heatmap representing the expression of genes that were found to be
upregulated (A) or downregulated (B) in response to brassinolide treatment in the root (Chaiwanon and Wang, 2015). The scRNA-seq dataset (Table
S4) comprised 576 of 1,385 downregulated (Table S5) and 1,218 of 2,312 upregulated (Table S6) genes. Color scales with a fixed range from -2 to
2 indicate the expression score (logFC x percentage of cells expressing gene in cluster X in genotype a / percentage of cells expressing gene in
cluster X in genotype b). Genes that were not detected in the cluster or had an adjusted p value >0.05 are displayed in grey.
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Figure S15 Brassinosteroid response in the scRNAseq profiles (A-B) Heatmap representing the expression of genes that are considered high
confidence brassinosteroid-upregulated (A) or downregulated (B) (Liu et al., 2020). The scRNA-seq dataset comprised 380 of 1,280 upregulated and
738 of 1,721 downregulated genes. Color scales with a fixed range from -2 to 2 indicate the expression score (logFC x percentage of cells expressing
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an adjusted p value >0.05 are displayed in grey.
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Figure S16 Core cell cycle marker gene expression Heatmap indicating the differential gene expression score of core cell cycle marker genes

(Vandepoele et al., 2002) in scRNAseq subclusters and ordered with respect to stage-specific markers in increasing distance from the QC. Known

brassinosteroid-responsive gene family members (Chaiwanon and Wang, 2015) are highlighted in purple.
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Figure S$17 Spatial distribution of brassinosteroid response in the scRNAseq profiles (A) Heatmap representing the expression of genes that
were found to be upregulated (A) or downregulated (B) in response to brassinolide treatment in the root (Chaiwanon and Wang, 2015), similar to

Figure S14, but for subclusters and ordered with respect to stage-specific markers in increasing distance from the QC.
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Figure S18 AGP gene expression in the scRNAseq profiles (A) Heatmap indicating the gene expression score of the 32 arabinogalactan proteins
or peptides (AGPs) in the 13 general cell types. Note that AGPs show a consistent downregulation in the stele tissues and frequently also in ground
tissues of bri"RIPLE meristems, which is largely normalized in bri™RESCUE meristems. (B) Expansins are a gene family of comparable size to AGPs (35
genes in Arabidopsis) and are associated with cell expansion. Note that compared to AGPs, their expression is affected less frequently and expression
profiles are more varied between the different genotypes.
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Figure $19 Quantification of cellular parameters upon AGP perturbation (A) Confocal sections of representative wild-type primary roots, ~1 cm
above the root meristem, 4 days after transfer of 3-day-old seedlings on media containing a-galactosyl (control treatment) or B-glucosyl (a specific
AGP inhibitor) Yariv reagents, illustrating reduced anisotropy of mature cells upon exposure to p-glucosyl Yariv reagent. (B) Quantitative comparison
of cellular anisotropy in roots treated with a-galactosyl or B-glucosyl Yariv reagent, obtained by processing of 3D stacks with the PlantSeg-
MorphoGraphX-3DCellAtlas pipeline and expressed as anisotropy index [longitudinal cell length * 2 / (radial cell length * circumferential cell length].
Whiskers indicate mean and standard deviation. Differences between treatments were statistically significant for all tissues (p<0.001).
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Figure S20 Brassinosteroid receptor gene expression in the scRNAseq profiles Feature plots of BR/1, BRL1 and BRL3 expression in the
different genotypes. Note the overall low expression levels, and the presence of background mutant BR/T mRNA.
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1 Description

1.1 Straightening & restoring radial symmetry
1.1.1 Input data

For each sample, a table exported from MorphoGraphX [1] with the following properties for each cell:

= Positions of cell centers {r; = (x;, yi, 2:)}.

Identity: Quiescent center cells should have identity “QC", a series of selected xylem cells perpendicular to the
main axis should have identity “xylem_axis”. Positions of these quiescent center and xylem axis cells will be
used to perform initial alignment of the root.

= Volume, longitudinal length, radial length, circumferential length, ...: these properties will be used for visual-
ization (e.g. size of spheres or ellipsoid) and will be aggregated and reported in the analysis section.

Cells satisfying any of the following properties are considered as outliers and ignored:

v [P =15 (PG = P) P 15 (PR — A7)

vi # [Péy) - L5 (ng) - Péy)) PY +15 (pgén _ Péy))]

¢ [P - 15 (PG - PY) P + 15 (P - PO

where P{”), P{¥) and P.* denote the n-th percentile of all {z;}, {y;} and {z;} respectively.
For each sample, a mesh in Stanford ASCII ply format (optionally compressed with gzip).
1.1.2 Initial alignment

Let us denote by @Q the centroid of the quiescent center cells (QC) and by X the centroid of the selected “xylem
axis” cells. The xylem axis direction (denoted v) is then obtained as the direction of largest variance® of the xylem
axis cell centers projected onto the plane perpendicular to X — @ (i.e. ~ root axis direction). Finally, the unit
vectors in direction x, y and z are denoted by e,, e, and e, respectively.

The following transformations are performed to align the root with the coordinate system:

= All cells are rotated to bring X — Q parallel to e, and v parallel to e,.
= All cell centers are translated by —@Q) to bring the quiescent center centroid to the origin.

Figure 1 shows cell centers after initial alignment.

Leigenvector of the covariance matrix corresponding to largest eigenvalue (could also be done with PCA).



1.1.3 Main axis estimation

The main axis of the root is evaluated using a sliding window weighted average (using cell volume as weight) along
the z axis (figure 2a and b), with the n-th window is defined as

{(z,y,2) e Rz € [(n — 1)w/2,(n+ 1)w/2)]}

where w = (max({z;}) — min({z;})) /4 is the window width and n =1,2,--- , 7.

The main axis is then smoothed and extrapolated (it is extended by 20% on each side) using a fit to a cubic spline?
(figure 2¢).

The resulting main axis is then divided into 8 segments by choosing 9 equidistant points (denoted {p1,p2, - ,po})
on the axis (figure 3 left). For each point p; (with j =2,3,---,8), the local distribution of cell centers is summarized
by two vector a; and as (principal axes) perpendicular to the main axis at p;, obtained with the following procedure:

= Consider all cell centers lying between the planes (1) perpendicular to the main axis at p;_; and passing
through p;_1 and (2) perpendicular to the main axis at p;41 and passing through p;;1. Example: figure 3a,
the selected region for pg is shown in light blue.

= Project the selected cell centers on the plane perpendicular to the main axis at p; and passing through p;.

= Evaluate eigenvectors (v1,vs and v3) and eigenvalues (A; > Ay > A3 = 0%) of the weighted (with cell volume
as weight) covariance matrix of the projected cell centers.

= Choose vector a; parallel to v; with length /A1 and vector as parallel to ve with length /A2 (figure 3b).
The principal axes are then smoothed using a fit to a cubic spline* weighted by total cell volume of cell centers used
at each point po, ps,- -, ps (figure 3c).
1.1.4 Straightening and restoring radial symmetry

The smoothed main axis is divided into 1000 segments by choosing 1001 equidistant points (denoted {p1, pa, - -+ ,p1001}).
At each point p; (with j = 1,3,---,1000), consider all cell centers lying between the planes (1) perpendicular to
the main axis at p; and passing through p; and (2) perpendicular to the main axis at p;+; and passing through p;41
(the selected region for p; is illustrated by a light blue in figure 4a). Let a; and a3 denote the principal axes at point

p; (figure 4b and f)). The following transformations are applied to all considered cell centers:

= Scaling from point p; by a factor f; = \/|a1] - |az2|/|a1] in direction fo = a1 and by a factor \/|a1| - |az|/|az|

in direction as.
= Rotation to bring the main axis tangent parallel to e,

= Translation to bring p; at position d- e, with d the signed distance between p; and the point of the main axis
with z = 0, measured along the main axis curve.

This operation is repeated for all p; with j =1,3,---,1000.

1.1.5 Final alignment

After straightening and restoration of the radial symmetry, the main axis pass through the origin of the coordinate
system. However, the centroid of the quiescent center cells is not necessarily exactly on the main axis and therefore
not on the origin. In addition, the non-isotropic scaling might changes the orientation of the xylem axis, resulting in
xylem axis not parallel to the zz plane anymore.

Therefore a final alignment is performed:

= All cells are rotated to bring v parallel to e,.
= All cell centers are translated by —Q) to bring the quiescent center centroid to the origin.

As in section “initial alignment”, @ denotes the centroid of the quiescent center cells and v denotes the xylem axis
direction evaluated using cell centers after straightening and restoration of the radial symmetry.

2using R function stats: :smooth.spline() with default parameters.
3due to the projection on the plane
4using R function stats: :smooth.spline() with default parameters and df=5.



1.1.6 Mesh

Mesh vertices are transformed using the same transformations as the cell centers (i.e. initial alignment as well as local
translation, rotation and scaling to straighten and restore radial symmetry and final alignment). The parameters of
the transformations are estimated on the cell centers, but the resulting transformations are applied to all positions
(cell centers and mesh vertices).

Each mesh is then smoothed using the following operations in meshlab [2] (version 2020.07):

= "Merge close vertices" (with default parameters).

= "Laplacian Smooth" (with default parameters).

1.2 Analysis
1.2.1 Cells data

Various cell properties are summarized using sliding windows along radial direction (r) and along the main axis
direction z. In this analysis, original cell properties exported from MorphoGraphX are used (cell volume, cell wall
area, longitudinal length, radial length and circumferential length). These properties are not transformed together
with cell center positions when straightening and restoring radial symmetry. For this analysis, all cells from all sample
in the group (genotype) are pooled together. Cells with volume below 10um? or above 50000um3 are ignored.
Each window is a cylindrical shell (figure 5) defined as the set of points (z,y, z) € R such that z € [zmin, Zmaz) and
LY, x? + y2 € [rminv rmaz)-

For a given window, the distribution of a cell property (e.g. radial cell length) is summarized by evaluting the
average and standard deviation over all cells with center® inside the window. The standard error of the mean (sem)
is evaluated as (standard deviation)/y/n with n the number of cell centers inside the window. In the limit of large
n, the sem can be used to estimate a 95% confidence interval for the average: [average-2*sem,average+2*sem].

In addition to sliding window averages of cell properties, the sliding window cell density per sample is evaluated as the
total number of cell centers in each window divided by (volume of the window)*(number of samples in the group).
Note that the cell density is measured after straightening and restoring radial symmetry.

Sliding windows along the radial direction: For a given z range [Zmin, Zmaz), @ window of size Ar = 10um
centered on r (i.e. with rym = — Ar/2 and rpe. = 7+ Ar/2) is used to evaluate average and sem of a gvien
cell property. This operation is repeated by placing the windows at regularly spaced r positions. As an example, the
average radial cell length obtained with sliding windows with z € [250, 300) is shown in figure 6. Figure 7 shows an
example of cell density for the same set of windows.

Sliding windows along the z direction: For a given r range [I'min, Tmaz), @ Window of size Az = 50um centered
on z (i.e. with 2, = 2— Az/2 and zpe, = 2+ Az/2) is used to evaluate average and sem of a gvien cell property.
This operation is repeated by placing the windows at regularly spaced z positions. As an example, the average radial
cell length obtained with sliding windows with r € [20, 30) is shown in figure 8. Figure 9 shows an example of cell
density for the same set of windows.

1.2.2 Meshes

The goal of this analysis is to estimate the distribution of triangle directions (weighted by triangle area) per unit of
solid angle

Each mesh is first transformed using the same transformations as the corresponding cell centers (i.e. initial alignment
as well as local translation, rotation and scaling to straighten and restore radial symmetry and final alignment).
Triangles with z coordinate of the centroid above 300um or below Oum are ignored.

Let us denote by m; the unit vector perpendicular to the plane containing the i-th triangle of the mesh, and by A;
its area. m; = (N4, My, Ni,z) can be expressed with spherical coordinates (figure 10)

nix = sin(6;)cos(¢;)
niy = sin(f;)sin(p;)
n,. = cos(b;)

To evaluate the distribution of triangle directions (i.e. {n;}), the spherical coordinates (6 and ¢) are partitioned into
bins of size A = Ap = 7/200.

Safter straightening and restoring radial symmetry



For each triangle, the area A; is assigned to the bin corresponding to its normal vector n; falls. The area A; is also
assigned to the bin corresponding to the opposite vector —n;. The distribution of triangle directions is then obtained

by

summing all areas assigned to each bin, and normalizing by the bin area® (i.e. solid angle covered by the bin).

Note that with this normalization, an isotropic distribution of triangle directions will produce a flat distribution (same

val

ue for all bins).

The resulting distribution of triangle directions (weighted by triangle area) per unit of solid angle can be visualized on
a sphere (figure 11), in the ©@ plane (figure 12) or in polar coordinates with 6 as radial coordinate and ¢ as angular
coordinate (figure 12).

To

focus on the dependence on 6, one can integrate over ¢, i.e. sum all area per unit of solid angle with a given 6

(figure 14). Note that with the chosen normalization, an isotropic distribution of triangle directions will produce a
flat distribution (same value for all bins).

2

All

Implementation
methods were implemented in R [3], using the following packages

= rgl [4].

= geomorph [5].

data.table [0].

= ggplot2 [7].

= cowplot [8].

Meshes were smoothed using meshlab [2] (version 2020.07).
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Figure 1: Cell centers after initial alignment. Cell centers are represented as spheres with volume
proportional to cell volumes. Quiescent center cells (red) and selected xylem axis cells (blue) are shown
with colored circles.
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Figure 2: Main axis evaluation using sliding windows (a-b) and spline smoothing (c).
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Figure 3: Evaluation of principal axes along the main axis (a-b and e-f) and spline smoothing (c and
g). Top and bottom rows present the same plots with different view points.
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Figure 4: Cell centers after initial alignment (a,e) with selected region in light blue, main axis (blue)
with principal axes (red) in the selected region (b,f). Cell centers after straightening and radial symmetry
restoration (c,g).
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Figure 5: Cylindrical shell region.

Figure 6: Average (colored lines) radial cell length versus radial position of the window, colored by
group (genotype). Radial cell length, = and z are in um. Shaded regions extend by +2(standard error
of the mean) around the average and correspond approximately to the 95% confidence interval for the
average. The standard error of the mean (sem) is obtained as (standard deviation)/+/n, with n the
number of cell centers inside the window.

Figure 7: Cell density (number of cells/(window volume * number of samples in the group), in um~2)
versus radial position of the window (um), colored by group (genotype).



Figure 8: Average (colored lines) radial cell length versus z position of the window, colored by group
(genotype). Radial cell length, r and z are in um. Shaded regions extend by +2(standard error of
the mean) around the average and correspond approximately to the 95% confidence interval for the
average. The standard error of the mean (sem) is obtained as (standard deviation)/y/n, with n the
number of cell centers inside the window.

Figure 9: Cell density (number of cells/(window volume * number of samples in the group), in um=3)
versus z position of the window (m), colored by group (genotype).
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Figure 10: Spherical coordinates.
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Figure 11: Distribution of triangle directions (weighted by triangle area) per unit of solid angle.
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Figure 12: Distribution of triangle directions (weighted by triangle area) per unit of solid angle.
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Figure 13: Distribution of triangle directions (weighted by triangle area) per unit of solid angle.
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Figure 14: Distribution of triangle directions (weighted by triangle area) per unit of solid angle (sum
over ), normalized so as to have a total area of one.
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