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S1 Instrumental Conditions9

The detailed information related to the datasets used in this study are provided in Table S1.10

Table S1: The list samples, ionization mode, vendor, and the associated reference.

nr Sample Type Ionization Mode Vendor Reference
1 Wastewater Influent Positive Sciex 1

2 Wastewater Influent Negative Sciex 2,3

3 Produced Water Positive Waters 4

4 Produced Water Negative Waters 4

5 Surface Water Extract Positive Agilent unpublisheda

6 Surface Water Extract Negative Agilent unpublisheda

7 Biosolids Positive Waters 5

a Samples were prepared following extraction4 and analysis5 procedures detailed

elsewhere.

S2 Self Adjusting Centroiding Algorithm11

S2.1 Centroiding Parameters12

Table S2: The list of parameters, their description, and the used value for centroiding of the
data.

nr Input Description value
1 raw data raw data in mzXML format -
2 min intensity minimum absolute intensity for signal 1000
3 resolution nominal resolution 20000
4 R2 threshold threshold for goodness of fit 0.8
5 signal to background the ratio of the apex to the median signal in the window 1.5
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Figure S1: The workflow of the self adjusting centroiding algorithm.

Figure S2: The signal of a successfully detected and centroided peak.
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Figure S3: The signal of false negative peak where the algorithm fails to detect and centroid the
peak.

Figure S4: The signal of a true negative assessment by the algorithm. The signal does not belong
to a peak, and has been assessed as such.

S5



Figure S5: Shows the signal of a true positive (the main peak) and a false positive (the shoulder
peak) detected by Centroiding algorithm implemented via MzMine2.6
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Figure S6: shows the total number of false detection (i.e. the sum of false positives and false
negatives) as a function of R2 and the signal to background ratio.

Figure S7: shows the random forest model based on 10000 randomly selected retention factors.
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Figure S8: shows the random forest model based on 10000 randomly selected relative intensities.

Figure S9: shows the random forest model based on 10000 randomly selected m/z values.
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Figure S10: shows the prediction error (mDa) distribution of four models using individual variables
as well as all three variables together.

Figure S11: shows the prediction error (%) distribution of four models using individual variables
as well as all three variables together.
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Figure S12: shows (a) the raw signal at scan 1400 and (b) the zoomed in around the set intensity
threshold of 1000 counts per second.
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Figure S13: shows the signal of a successfully detected and centroided scan.
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