Exploration of Photophysical and Nonlinear Properties of Salicylaldehyde Based Functionalized Materials: A Facile Synthetic and DFT Approach

Muhammad Imran¹, Muhammad Khalid*², Rifat Jawaria², Asif Ali², Muhammad Adnan Asghar,³ Zahid Shafiq⁴, Mohammed A. Assiri¹, Hafiza Munazza Lodhi², Ataualpa Albert Carmo Braga⁵

¹Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia

²Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan

³Department of Chemistry, Division of Science and Technology, University of Education Lahore, Pakistan

⁴Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan

⁵Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo,

Avenida Professor LineuPrestes, 748, São Paulo 05508-000, Brazil

*Corresponding authors E-mail addresses:

Dr. Muhammad Khalid: khalid@iq.usp.br; muhammad.khalid@kfueit.edu.pk

Supplementary Information

Donor	Туре	Acceptor	Туре	E(2)	E(j)-E(i)	F(i,j)
(<i>i</i>)		(j)	. –	[kcal/mol]	[a.u.]	[a.u.]
C1-C6	π	C2-C3	π^{*}	21.84	0.30	0.073
C1-C6	π	C4-C5	π^{*}	22.24	0.30	0.073
C2-C3	π	C1-C6	π^{*}	22.07	0.30	0.073
C2-C3	π	C4-C5	π^{*}	21.37	0.30	0.072
C4-C5	π	C1-C6	π^{*}	21.62	0.30	0.072
C4-C5	π	C2-C3	π^{*}	22.86	0.30	0.075
N15-H16	σ	C17-S18	π^{*}	5.12	0.92	0.062
C17-S18	σ	C17-S18	σ^{*}	7.61	0.35	0.051
C17-S18	π	C17-S18	π^{*}	0.57	0.90	0.020
C17-C19	σ	N19-H20	σ^{*}	0.52	1.21	0.023
C22-H23	σ	N19-N21	σ^{*}	9.09	0.92	0.082
C24-C26	σ	C28-Cl35	σ^{*}	5.14	0.87	0.060
C24-C26	π	C25-C27	π^{*}	23.48	0.29	0.075
C24-C26	π	C28-C30	π^{*}	19.56	0.29	0.069
C25-C27	σ	C24-C25	σ^{*}	5.49	1.29	0.075
C25-C27	π	C24-C26	π^{*}	18.78	0.31	0.068

Table S1. Natural bond orbital (NBO) analysis of Compound 1 by using M06/6-311G(d,p).

C25-C27	π	C28-C30	π^{*}	26.43	0.30	0.080
C27-C30	σ	C28-Cl35	σ^{*}	5.49	0.87	0.062
C28-C30	π	C24-C26	π^{*}	23.95	0.31	0.078
C28-C30	π	C25-C27	π^{*}	17.42	0.31	0.066
N15	LP(1)	C12-H14	σ^{*}	7.80	0.66	0.069
N15	LP(1)	C17-S18	σ^{*}	51.48	0.29	0.112
S18	LP(2)	N15-C17	σ^{*}	12.93	0.64	0.083
S18	LP(2)	C17-N19	σ^{*}	15.37	0.60	0.087
N19	LP(1)	C17-S18	σ^{*}	36.13	0.30	0.095
N19	LP(1)	N21-C22	π^{*}	31.04	0.33	0.093
N21	LP(1)	N19-H20	σ^{*}	9.46	0.74	0.076
N21	LP(1)	C22-H23	σ^{*}	5.52	0.78	0.059
N21	LP(1)	C22-C24	σ^{*}	12.34	0.84	0.092
O33	LP(1)	C25-C27	σ^{*}	6.38	1.20	0.078
O33	LP(2)	C25-C27	π^{*}	31.77	0.37	0.103
Cl35	LP(3)	C28-C30	π^{*}	13.0	0.34	0.065
Cl35	LP(2)	C24-C26	σ^{*}	0.52	0.89	0.019
C17-S18	σ^{*}	C17-S18	π^{*}	17.89	0.25	0.121
C24-C26	π^*	N21-C22	π^*	52.48	0.02	0.056

Table S2. Natural bond orbital (NBO) analysis of **Compound 2** by using M06/6-311G(d,p).

Donor	Tumo	Accorton	Tumo	F(3)		
Donor	гуре	Acceptor	гуре	E(2)	E(J)-E(I)	г(1,j) [ан]
(1)		<u>()</u>	*			
C1-C6	π	C2-C3	π $$	24.17	0.30	0.076
C1-C6	π	C4-C5	π^*	20.94	0.29	0.070
C2-C3	π	C1-C6	π^{*}	20.05	0.30	0.070
C2-C3	π	C4-C5	π^{*}	24.94	0.29	0.077
C3-C4	σ	C4-C5	σ^{*}	5.33	1.30	0.074
C3-C11	σ	C11-H13	σ^{*}	0.54	1.04	0.021
C4-C5	σ	C3-C4	σ^{*}	5.61	1.30	0.077
C4-C5	π	C1-C6	π^*	22.91	0.31	0.076
C4-C5	π	C2-C3	π^*	20.85	0.31	0.072
C4-C5	π	C4-C5	π	0.51	0.30	0.011
C16-S17	σ	C16-S17	σ^{*}	6.93	0.32	0.047
C21-H22	σ	N18-N20	σ^{*}	9.09	0.92	0.082
C23-C25	σ	C27-Cl34	σ^{*}	5.13	0.87	0.060
C23-C25	π	N20-C21	π^*	10.07	0.32	0.053
C23-C25	π	C24-C26	π^*	23.52	0.29	0.075
C23-C25	π	C27-C29	π^*	19.58	0.29	0.069
C24-C26	σ	C23-C24	σ^{*}	5.49	1.29	0.075
C24-C26	π	C23C25	π^*	18.73	0.31	0.068
C24-C26	π	C27-C29	π^{*}	26.37	0.30	0.080
C26-C29	σ	C27-Cl34	σ^{*}	5.47	0.87	0.062
C27-C29	π	C23-C25	π^{*}	23.93	0.31	0.078

C27-C29	π	C24-C26	π^{*}	17.45	0.31	0.066
N14	LP(1)	C11-H13	σ^{*}	7.26	0.66	0.066
N14	LP(1)	C16-S17	σ^{*}	57.49	0.27	0.115
N14	LP(1)	C16-S17	π^{*}	0.61	0.55	0.017
S17	LP(2)	N14-C16	σ^{*}	12.94	0.65	0.083
S17	LP(2)	C16-N18	σ^{*}	15.29	0.60	0.087
N18	LP(1)	C16-S17	σ^{*}	40.32	0.28	0.098
N18	LP(1)	N20-C21	π^{*}	31.14	0.33	0.093
N20	LP(1)	N18-H19	σ^{*}	9.49	0.74	0.076
N20	LP(1)	C21-H22	σ^{*}	5.52	0.78	0.059
N20	LP(1)	C21-C23	σ^{*}	12.35	0.84	0.092
O32	LP(1)	C24-C26	σ^{*}	6.37	1.20	0.078
O32	LP(2)	C24 -C26	π^{*}	31.69	0.37	0.103
C134	LP(3)	C27-C29	π^{*}	13.06	0.34	0.065
F35	LP(2)	C3-C4	π^{*}	6.32	1.01	0.071
F35	LP(2)	C4-C5	σ^{*}	6.23	1.01	0.071
F35	LP(3)	C4-C5	π^{*}	20.12	0.46	0.093
C16-S17	σ^{*}	C16-S17	π^{*}	11.72	0.28	0.104
C23-C25	π^{*}	N20-C21	π^{*}	53.91	0.02	0.056

Table S3. Natural bond orbital (NBO) analysis of **Compound 3** by using M06/6-311G(d,p).

Donor	Туре	Acceptor	Туре	E(2)	E(j)-E(i)	F(i,j)
(i)		(j)		[kcal/mol]	[a.u.]	[a.u.]
C1-C6	π	C2-C3	π^*	22.84	0.32	0.076
C1-C6	π	C4-C5	π^*	20.30	0.31	0.071
C2-C3	π	C1-C6	π^*	20.56	0.29	0.070
C2-C3	π	C4-C5	π^*	23.61	0.30	0.075
C4-C5	π	C1-C6	π^*	24.58	0.29	0.077
C4-C5	π	C2-C3	π^{*}	20.41	0.31	0.071
N12-H13	σ	C14-S15	π^{*}	5.13	0.91	0.062
C14-S15	σ	C14-S15	σ^{*}	7.77	0.37	0.053
C14-S15	π	C14-S15	π^{*}	0.75	0.89	0.023
C19-H20	σ	N16-N18	σ^{*}	9.06	0.92	0.082
C21-C23	σ	C25-Cl32	σ^{*}	5.14	0.87	0.060
C21-C23	π	N18-C19	π^*	10.00	0.32	0.052
C21-C23	π	C22-C24	π^*	23.43	0.30	0.075
C21-C23	π	C25-C27	π^*	19.54	0.29	0.069
C22-C24	σ	C 21-C 22	σ^{*}	5.49	1.29	0.075
C22-C24	π	C 21-C23	π^*	18.80	0.31	0.068
C22-C24	π	C25-C27	π^*	26.47	0.30	0.080
C24-C27	σ	C25-Cl32	σ^{*}	5.47	0.87	0.062
C25-C27	π	C21-C23	π^*	23.99	0.31	0.078
C25-C27	π	C22-C24	π^{*}	17.44	0.31	0.066
С27-Н29	σ	C24-H28	σ^{*}	0.80	0.93	0.024
N12	LP(1)	C3-C9	σ^{*}	0.65	0.73	0.021

N12	LP(1)	C9-H11	σ^{*}	7.85	0.66	0.069
N12	LP(1)	C14-S15	σ^{*}	48.81	0.30	0.111
S15	LP(2)	N 12-C14	σ^{*}	13.01	0.64	0.083
S15	LP(2)	C14-N16	σ^{*}	15.37	0.61	0.088
N16	LP(1)	C14-S15	σ^{*}	34.19	0.31	0.093
N16	LP(1)	N18-C19	π^{*}	30.86	0.33	0.093
N18	LP(1)	N16-H17	σ^{*}	9.45	0.74	0.076
N18	LP(1)	C19-H20	σ^{*}	5.50	0.78	0.059
N18	LP(1)	C19-C21	σ^{*}	12.32	0.85	0.092
O30	LP(1)	C 22-C24	σ^{*}	6.39	1.20	0.078
O30	LP(2)	C22-C24	π^*	31.80	0.37	0.103
Cl32	LP(3)	C25-C27	π^*	13.00	0.34	0.065
F35	LP(2)	C1-C6	σ^{*}	6.38	1.01	0.072
F35	LP(2)	C5-C6	σ^{*}	6.41	1.01	0.072
F35	LP(3)	C1-C6	π^{*}	20.25	0.46	0.093
C1-C6	π^{*}	C2-C3	π^{*}	281.67	0.01	0.084
C14-S15	σ^{*}	C14-S15	π^{*}	21.21	0.23	0.128
C21-C23	π^*	N18-C19	π^{*}	53.40	0.02	0.056

Table S4. Natural bond orbital (NBO) analysis of **Compound 4** by using M06/6-311G(d,p).

		· · · · ·	2	1 5	e	()1)
Donor (i)	Туре	Acceptor (j)	Туре	E(2) [<i>kcal/mol</i>]	E(j)-E(i) [a.u.]	F(i,j) [a.u.]
C1-C2	π	C3-C4	π^{*}	21.80	0.31	0.073
C1-C2	π	C5-C6	π^{*}	22.80	0.30	0.074
C2-C3	σ	C3-C4	σ^{*}	5.27	1.30	0.074
C2-H7	σ	C3-C4	σ^{*}	5.08	1.11	0.067
C3-C4	π	C1-C2	π^{*}	23.80	0.29	0.075
C3-C4	π	C5-C6	π^{*}	21.54	0.29	0.072
C5-C6	π	C1-C2	π^{*}	22.05	0.30	0.072
C5-C6	π	C3-C4	π^{*}	23.44	0.30	0.076
N19-C20	π	N19-C20	π^{*}	1.01	0.39	0.018
C20-H21	σ	N1-N19	σ^{*}	8.85	0.92	0.081
C20-C22	σ	C20-H21	σ^{*}	0.58	1.08	0.022
C22-C24	σ	C26-Cl33	σ^{*}	5.19	0.87	0.060
C22-C24	π	N19-C20	π^{*}	9.53	0.32	0.051
C23-C25	σ	C22-C23	σ^{*}	5.54	1.29	0.076
C25-C28	σ	C26-Cl33	σ^{*}	5.46	0.87	0.062
N13	LP(1)	C10-H12	σ^{*}	7.59	0.66	0.068
N13	LP(1)	C15-S16	σ^{*}	69.80	0.23	0.118
S16	LP(2)	C3-C10	σ^{*}	0.53	0.63	0.017
S16	LP(2)	N 3-C15	σ^{*}	12.56	0.65	0.082
S16	LP(2)	C15-N17	σ^{*}	14.97	0.61	0.087
N17	LP(1)	C15-S16	σ^{*}	56.61	0.25	0.110
N17	LP(1)	N19-C20	π^{*}	29.39	0.33	0.091
N19	LP(1)	N17-H18	σ^{*}	9.12	0.74	0.074
N19	LP(1)	C20-H21	σ^{*}	5.30	0.78	0.058

N19	LP(1)	C 20-C22	σ^{*}	12.04	0.85	0.091
C23	LP(1)	C22-C24	π^{*}	64.69	0.15	0.109
C23	LP(1)	C25-C28	π^{*}	65.08	0.15	0.110
C26	LP(1)	C22-C24	π^{*}	70.47	0.17	0.115
C26	LP(1)	C 25-C28	π^{*}	69.66	0.17	0.115
O31	LP(1)	C23-C25	σ^{*}	6.43	1.19	0.078
C22-C24	π^{*}	N19-C20	π^{*}	47.60	0.02	0.054

Table S5. Natural bond orbital (NBO) analysis of **Compound 5** by using M06/6-311G(d,p).

Donor	Туре	Acceptor	Туре	E(2)	E(j)-E(i)	F(i,j)
<i>(i)</i>		(j)		[kcal/mol]	[a.u.]	[a.u.]
C1-C2	π	C3-C4	π^*	24.60	0.30	0.077
C1- C2	π	C5-C6	π^{*}	21.07	0.30	0.071
C1-H34	σ	C1-C2	σ^{*}	0.69	1.11	0.025
C3-C4	π	C1-C2	π^{*}	21.44	0.30	0.071
C 3-C4	π	C5 -C6	π^{*}	24.29	0.30	0.077
C5-C6	π	C1-C2	π^{*}	24.70	0.29	0.076
C5-C6	π	C3-C4	π^{*}	21.95	0.29	0.072
N12-H13	σ	C14-S15	π^{*}	5.11	0.93	0.063
N18-C19	π	N18-C19	π^{*}	1.12	0.39	0.019
C14-S15	σ	C14-S15	σ^{*}	7.39	0.34	0.049
C21-C23	σ	C25-Cl32	σ^{*}	5.16	0.87	0.060
C21-C23	π	N18-C19	π^{*}	9.75	0.32	0.052
C21-C23	π	C22-C24	π^{*}	23.47	0.29	0.075
C21-C23	π	C25-C27	π^{*}	19.61	0.29	0.069
C22-C24	σ	C21-C22	σ^{*}	5.50	1.29	0.075
C22-C24	π	C21-C23	π^{*}	18.83	0.31	0.068
C22-C24	π	C25-C27	π^{*}	26.43	0.30	0.080
C24-C27	σ	C25-Cl32	σ^{*}	5.50	0.87	0.062
C25-C27	π	C21-C23	π^{*}	23.93	0.31	0.078
C25-C27	π	C22-C24	π^{*}	17.40	0.31	0.066
N12	LP(1)	C 9-H11	σ^{*}	7.87	0.66	0.069
N12	LP(1)	C14 -S15	σ^{*}	54.13	0.28	0.114
S15	LP(1)	C14-S15	σ^{*}	0.79	0.69	0.023
S15	LP(2)	N12-C14	σ^{*}	12.89	0.64	0.083
S15	LP(2)	C14-N16	σ^{*}	15.35	0.60	0.087
N16	LP(1)	C14-S15	σ^{*}	38.20	0.29	0.096
N16	LP(1)	N18-C19	π^{*}	31.23	0.33	0.093
N18	LP(1)	N16-H17	σ^{*}	9.49	0.74	0.076
N18	LP(1)	С19-Н 20	σ^{*}	5.48	0.78	0.059
N18	LP(1)	C19-C21	σ^{*}	12.29	0.84	0.092
O30	LP(1)	C22-C24	σ^{*}	6.39	1.19	0.078
O30	LP(2)	C22-C24	π^{*}	31.80	0.37	0.103
C132	LP(2)	C21-C23	σ^{*}	0.52	0.89	0.019
Cl32	LP(3)	C25-C27	π^{*}	12.94	0.34	0.065
C14-S15	σ^{*}	C 14-S15	π^{*}	15.0	0.26	0.114

C21-C23	π^*	N18-C19	π^*	50.46	0.02	0.056

Donor	Туре	Acceptor	Туре	E(2)	E(j)-E(i)	F(i,j)
(i)		(j)		[kcal/mol]	[a.u.]	[a.u.]
<u> </u>		<u> </u>		22.51	0.30	0.075
C1-C6	π	$C_2 - C_3$	π^*	21.01	0.30	0.073
C1-C0	π	C2 H8	π π*	0.76	0.30	0.071
$C1-\Pi/C2$	0 7	C2-H8	0 _ *	0.70	0.93	0.024
C_2 - C_3	π	C1-C0	π _*	20.40	0.31	0.071
C_2 - C_3	п —	C4-C3	π _*	21.87	0.30	0.075
C4-C3	π	C1-C0	π_*	22.43	0.31	0.073
C4-C5	π	C_2 - C_3	$\pi_{_*}$	21.58	0.30	0.073
N14-H15	σ	C16-S1/	$\pi_{_*}$	5.10	0.93	0.062
N20-C21	π	N20-C21	$\pi_{_*}$	1.13	0.39	0.019
C16-S17	σ	C16-S1/	σ_{*}	/.36	0.33	0.049
C21-H22	σ	N18-N20	σ_*	9.08	0.92	0.082
C23-C25	σ	C27-CI34	σ^*	5.14	0.87	0.060
C23-C25	π	N 20-C21	π^*	10.02	0.32	0.053
C23-C25	π	C24-C26	$\pi^*_{.}$	23.41	0.29	0.075
C23-C25	π	C27-C29	π^{*}	19.62	0.29	0.069
C24-C26	σ	C23-C24	σ^{*}	5.48	1.29	0.075
C24-C26	π	C23-C25	π^*	18.77	0.31	0.068
C24-C26	π	C27-C29	π^{*}	26.42	0.30	0.080
C26-C29	σ	C27-Cl34	σ^{*}	5.48	0.87	0.062
C27-C29	π	C23-C25	π^{*}	23.87	0.31	0.078
C27-C29	π	C24-C26	π^{*}	17.43	0.31	0.066
N14	LP(1)	C3-C11	σ^{*}	0.52	0.73	0.019
N14	LP(1)	C11-H13	σ^{*}	7.69	0.66	0.068
N14	LP(1)	C16-S17	σ^{*}	54.80	0.28	0.114
S17	LP(2)	N14-C16	σ^{*}	12.88	0.65	0.083
S17	LP(2)	C16-N18	σ^{*}	15.42	0.60	0.087
N18	LP(1)	C16-S17	σ^{*}	39.43	0.29	0.098
N18	LP(1)	N20-C21	π^{*}	31.36	0.33	0.094
N20	LP(1)	N18-H19	σ^{*}	9.50	0.74	0.076
N20	LP(1)	C21-H22	σ^{*}	5.55	0.78	0.059
N20	LP(1)	C21-C23	σ^{*}	12.40	0.84	0.092
O32	LP(1)	C24-C26	σ^{*}	6.38	1.20	0.078
O32	LP(2)	C24-26	π^*	31.80	0.37	0.103
C134	LP(3)	C27-C29	π^*	12.98	0.34	0.065
C16-S17	σ^*	C16- S17	π^*	14.41	0.27	0.112
C23-C25	π^{*}	N20-C21	π^{*}	53.22	0.02	0.057

Table S6. Natural bond orbital (NBO) analysis of Compound 6 by using M06/6-311G(d,p).

E(2) means energy of hyper conjugative interaction (stabilization energy in kcal/mol); Energy difference between donor & acceptor *i* & *j* NBO orbitals.; F(i,j) is the Fock matrix element between *i* & *j* NBO orbitals.

Comp	EXP	DFT	E	f	MO transitions
•	$\lambda(nm)$	$\lambda(nm)$	(eV)	0	
1	241	390	3.1803	0.001	$H \rightarrow L (86\%) H \rightarrow L+1 (3\%), H \rightarrow L+4 (9\%)$
		322	3.8499	0.2131	H-1→L (95%) H-2→L (3%)
		309	4.0101	0.0013	$H \rightarrow L$ (13%), $H \rightarrow L+1$ (38%), $H \rightarrow L+4$ (33%)
					$H \rightarrow L+2$ (6%), $H \rightarrow L+3$ (3%), $H \rightarrow L+7$ (2%),
					H→L+8 (2%)
		286	4.3299	0.0846	H-2→L (78%) H-7→L+1 (2%), H-3→L (6%), H- 2→L+1 (2%) H-1→L (3%) H-1→L+1 (4%)
		278	1 1598	0.0145	$H \rightarrow I + 1 (51\%) H \rightarrow I + 2 (25\%) H \rightarrow I + 4 (16\%)$
		270	т.т.ууб	0.0145	$H \rightarrow L + 7 (2\%)$
		272	4 5583	0.0819	$H^{-2} \rightarrow L$ (64%) $H^{-2} \rightarrow L$ (10%) $H^{-6} \rightarrow L$ (4%) $H^{-4} \rightarrow L$
		2,2	1.0000	0.0017	(5%) H-2 \rightarrow L+1 (3%) H-1 \rightarrow L+1 (7%)
2	240	388	3.1962	0.0005	$\begin{array}{c} H \rightarrow L (86\%) H \rightarrow L + 1 (2\%) H \rightarrow L + 4 (8\%) \end{array}$
	-	323	3.8421	0.2103	$H-1 \rightarrow L (94\%) H-2 \rightarrow L (3\%)$
		307	4.0376	0.0009	$H \rightarrow L (12\%), H \rightarrow L+1 (27\%), H \rightarrow L+2 (13\%),$
					$H \rightarrow L + 4 (31\%) H \rightarrow L + 3 (8\%), H \rightarrow L + 5 (2\%),$
					H→L+9 (4%)
		287	4.3177	0.029	H-2→L (20%), H→L+1 (37%), H→L+2 (34%)
		286	4.3287	0.093	H-2→L (60%), H→L+1 (10%), H→L+2 (14%) H-
					3→L (4%), H-1→LUMO (3%)
		277	4.4831	0.0025	H→L+1 (19%), H→L+2 (34%), H→L+3 (22%),
					$H \rightarrow L + 4 (16\%) H \rightarrow L + 7 (2\%)$
3	220	388	3.19230	0.001	$H \rightarrow L (85\%), H \rightarrow L+4 (10\%) H \rightarrow L+1 (4\%)$
		321	3.86280	0.2259	$H-1 \rightarrow L (94\%) H-2 \rightarrow L (3\%)$
		309	4.01490	0.002	$H \rightarrow L (13\%), H \rightarrow L+1 (44\%), H \rightarrow L+4 (34\%)$
		206	1 2260	0.072	$\Pi \rightarrow L + \delta (2\%)$ $\Pi \rightarrow $
		280	4.3308	0.075	$\Pi^{-2} \rightarrow L (770) \Pi^{-3} \rightarrow L (770), \Pi^{-1} \rightarrow L (570), \Pi^{-1} \rightarrow L (570), \Pi^{-1} \rightarrow L (770), \Pi^{-1} \rightarrow L $
		281	4 4185	0.0033	$H \rightarrow I + 2 (96\%)$
		201	1.1105	0.0055	
		275	4.5094	0.006	H→L+1 (51%), H→L+4 (40%) H→L+7 (3%)
4	219	389	3.1864	0.0013	$H \rightarrow L (86\%) H \rightarrow L+1 (5\%), H \rightarrow L+3 (2\%), H \rightarrow L+4$
					(4%)
		325	3.8108	0.1717	H-1→L (92%) H-2→L (3%)
		313	3.9633	0.0096	H→L (12%), H→L+1 (52%), H→L+4 (10%) H-
					$1 \rightarrow L$ (2%), $H \rightarrow L+2$ (4%), $H \rightarrow L+3$ (9%), $H \rightarrow L+5$
					(3%), H→L+8 (4%)
		289	4.2927	0.0935	H-2→L (81%) H-3→L (5%), H-1→L (4%), H-
					$1 \rightarrow L+1 (3\%)$
		277	4.4784	0.0238	H-4→L (26%), H-3→L (29%), H-1→L+1 (11%) H-
					$5 \rightarrow L$ (6%), H-2 $\rightarrow L$ (4%), H-2 $\rightarrow L+1$ (3%), H $\rightarrow L+1$
		0.55		0.000-	(6%), $H \rightarrow L+3$ (4%)
		275	4.5018	0.0095	$H \rightarrow L+1 (33\%), H \rightarrow L+3 (24\%), H \rightarrow L+4 (10\%) H-$
					$4 \rightarrow L$ (6%), H-3 $\rightarrow L$ (7%), H $\rightarrow L+2$ (7%), H $\rightarrow L+5$
					$(5\%), H \rightarrow L^+ / (2\%)$

Table S7. Computed transition energy (*eV*), maximum absorption wavelengths (λ_{max}/nm), oscillator strengths (*f*), and transition studies compounds.

296	391	3.1735	0.001	$H \rightarrow L$ (86%) $H \rightarrow L+1$ (3%), $H \rightarrow L+3$ (2%), $H \rightarrow L+4$ (7%)
	324	3.8318	0.198	$H-1 \rightarrow L (95\%) H-2 \rightarrow L (3\%)$
	310	3.9998	0.0012	H→L (13%), H→L+1 (40%), H→L+3 (11%),
				H→L+4 (25%) H→L+2 (3%), H→L+5 (2%),
				H→L+7 (2%), H→L+8 (2%)
	287	4.3207	0.0898	H-2→L (79%) H-4→L (2%), H-3→L (3%), H-
				2→L+1 (2%), H-1→L (3%), H-1→L+1 (4%)
	278	4.4524	0.0128	H→L+1 (53%), H→L+2 (13%), H→L+4 (17%)
				H→L+3 (9%), H→L+7 (3%)
	273	4.5450	0.0688	H-4→L (34%), H-3→L (28%) H-6→L (3%), H-5→L
				(9%), H-2→L (9%), H-2→L+1 (3%), H-1→L+1
				(9%)
245	392	3.1623	0.0012	$H \rightarrow L (87\%) H \rightarrow L+1 (3\%), H \rightarrow L+4 (8\%)$
	324	3.8246	0.2032	H-1→L (95%) H-2→L (3%)
	309	4.0120	0.0007	H→L (12%), H→L+1 (37%), H→L+4 (33%)
				H→L+2 (9%), H→L+5 (2%), H→L+7 (2%),
				H→L+8 (3%)
	288	4.3096	0.0988	H-2→L (78%) H-3→L (6%), H-1→L (3%), H-
				1→L+1 (4%)
	279	4.4362	0.0146	H→L+1 (57%), H→L+2 (16%), H→L+4
				(19%)H→L+7 (3%)
	273	4.5435	0.0723	H-4→L (37%), H-3→L (32%), H-2→L (10%) H-
				6→L (4%), H-2→L+1 (3%), H-1→L+1 (8%)
	296	296 391 324 310 287 278 273 273 245 392 309 288 279 273	296 391 3.1735 324 3.8318 310 3.9998 287 4.3207 278 4.4524 273 4.5450 245 392 3.1623 324 3.8246 309 4.0120 288 4.3096 279 4.4362 273 4.5435	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

H = HOMO, L = LUMO, H-1 = HOMO-1, L+1 = LUMO+1.

DFT	Scaling	Exp	Intensities	Vibrational assignments
Frequencies	8	Frequencies		-
3886	3723	3687,3388	134.931	υ(O-H)
3564	3414		22.306	υ (N-H)
3460	3315	3148	29.467	υ (N-H)+
3181	3047	3097	19.852	υ _s (C-H)
3170	3037	3153	24.217	$\upsilon_{s}(C-H_{Ben})+\upsilon(N-H)$
3060	2931		8.821	υ(C-H)
3011	2885	3002	24.522	υ_{s} (C-H)+ υ (N-H)
1692	1663		19.022	$\upsilon_{as}(C-N) + \upsilon_{s}(N-H)$
1649	1621	1548	23.154	$\upsilon_{s}(C=N)+\rho(C-H)+\upsilon_{s}+\upsilon_{as}(C-C_{Ben})$
1659	1631		3.4	υ (C-C _{Ben})
1631	1603		9.5421	υ (N-H)+ υ (C-C _{Ben})
1546	1520		350.670	$\delta_{as}(N-H)$
1520	1494		27.817	$\upsilon_{s}+\upsilon_{as}(C-C_{Ben})$
1518	1492		89.791	υ (C=C-C=C _{Ben})
1514	1488	1523	361.227	δ_{as} (N-H)+ ρ (C-H _{Ben})
1475	1450		11.315	υ (C=C-C=C _{Ben})
1471	1446		18.932	$\rho(C-H) + \delta(C-H)$
1440	1416		100.676	$\rho(C-H) + \delta(C-H_{Ben})$
1382	1359		117.161	$\rho(C-H) + \rho(N-H) +$

Table S8: Calculated vibrational frequencies of compound 1.

1361	1338	1326	338.200	$\delta_{as}(N-H) + \delta(C-H_{Ben})$
1278	1256		55.632	$\rho(\text{N-H}) + \delta_{as}(\text{C-H}_{Ben})$
1247	1226	1229	402.815	$\upsilon(C=S)+\delta(N-H)$
1167	1147		83.133	$\delta + \rho(\text{C-H}_{\text{Ben}})$
1120	1101		99.986	$\delta + \delta_{as}(C-H_{Ben})$
1098	1079		7.656	$\rho(\text{O-H})+\delta+\delta_{s}(\text{C-H}_{\text{Ben}})$
1071	1053		49.055	$\delta_{as}(N-H) + \delta(C-H_{Ben})$
942	926		15.033	$\delta(\text{N-H}) + \delta_{as}(\text{C-H}_{\text{Ben}})$
925	909		23.207	$\delta + \delta_{as}(C-H_{Ben}) + v(C-Cl)$
866	851		39.348	$\delta(\text{N-H}) + \delta_{as}(\text{C-H}_{\text{Ben}}) + v(\text{C-Cl})$
810	796		47.873	$\delta(C=N) + \delta_s(C-H_{Ben})$
721	709		22.724	$\delta(\text{N-H}) + \rho(\text{C-H}_{\text{Ben}})$
659	648		22.791	υ (C-Cl)+ δ_{as} (C-H _{Ben})

 Table S9: Calculated vibrational frequencies of compound 2.

DFT	Scaling	Exp	Intensities	Vibrational assignments
3887	3724	3687	133.411	<i>ν</i> (O-H)
3573	3423		23.121	<i>υ</i> (N-H)
3463	3318	3323	29.718	$v_{\rm as}({ m N-H})$
3192	3058		1.332	$v_{\rm s}({ m C-H_{Ben}})$
3189	3055		6.926	$v_{\rm s}({\rm C-H_{Ben}})+v({\rm N-H})$
3179	3045	3187	12.472	$v_{\rm as}(\text{C-H}_{\rm Ben})$
3144	3012	3125	13.545	<i>ν</i> (C-H)+ <i>ν</i> (N-H)
3068	2939		6.536	<i>ν</i> (C-H)
3024	2897	3062	20.888	<i>υ</i> (C-H)
1691	1662		18.742	v(C-H)+v(N-H)
1669	1641		13.220	υ (C=C-C=C _{Ben})
1648	1620		22.336	$v_{s}(C-H_{Ben})+v(C=C-C=C_{Ben})$
1642	1614		18.024	υ (C=C-C=C _{Ben})
1548	1522	1532	379.589	$v_{s}(C-H)+v(C=N)$
1526	1500	1532	84.595	υ (C=C-C=C _{Ben})
1518	1492		130.199	υ (C=C-C=C _{Ben})+ υ (N-H)
1516	1490	1532	326.421	$\delta_{as}(N-H)$
1474	1449		36.383	$\delta(C-H) + \rho(C-H_{Ben})$
1439	1415		100.410	$\delta(C-H_{Ben})+ \upsilon (C=C-C=C_{Ben})$
1382	1359		228.540	$\delta(C-H)+\rho(N-H)$
1360	1337		305.704	$\delta(\text{C-H}_{\text{Ben}}) + \delta_{s} (\text{N-H})$
1280	1258		60.763	$v(\text{F-C}_{\text{Ben}}) + \rho(\text{C-H}_{\text{Ben}})$
1246	1225		374.193	ρ(N-H)
1231	1210	1222	59.243	$\delta_{as}(N-H) + v(C=S)$
1220	1199		19.873	$\delta_{as}(\text{O-H}) + \delta_{as}(\text{C-H}_{\text{Ben}})$
1167	1147		82.356	$\delta + \rho(C-H_{Ben})$
1120	1101		100.367	$\delta + \delta_{as}(C-H_{Ben}) +$
1117	1098		13.660	$\delta + \delta_{as} (C-H_{Ben})$

1073	1055	51.450	$\delta (C-H_{Ben}) + \delta_{as}(N-H)$
1052	1034	7.933	$\delta + \delta_{s} (C-H_{Ben})$
951	935	6.012	$\delta + \delta_{as}(C-H_{Ben})$
941	925	13.569	$\delta_{as}(C-H_{Ben})$
924	908	18.776	$v(C-Cl) + \delta_{as}(C-H_{Ben})$
866	851	33.388	$\delta_{as}(C-H_{Ben}) + \delta_s(N-H)$
810	796	43.127	$\delta_{s}(C-H_{Ben})+\delta(N-H)$
805	791	21.805	$v(C-F)+\delta(N-H)$
797	783	35.216	$v(C-S)+\delta_{as}(N-H)+v(C-F)$
764	751	60.500	$\delta_{s}(C-H_{Ben})$
659	648	23.056	$v(C-Cl) + \delta_{as}(C-H_{Ben})$

 Table S10: Calculated vibrational frequencies of compound 3.

DFT	Scaling	Exp	Intensities	Vibrational assignments
Frequencies	0	Frequencies		
3889	3726	3656	135.643	<i>v</i> (O-H)
3561	3411		20.940	v(N-H)
3456	3311	3450	30.635	v(N-H)
3164	3031	3187	5.821	$v_{as}(C-H_{Ben})+v(N-H)$
3163	3030	3125	6.603	$v_{\rm as}$ (C-H)+ v (N-H)
3150	3018		13.855	$v_{\rm as}(\text{C-H}_{\text{Ben}})$
3053	2925	3094	8.431	$v_{\rm as}(\text{C-H})$
3010	2884		23.887	$v_{\rm s}({ m C-H})$
1693	1664		16.881	$v_{\rm as}(\text{C-N})$
1664	1636		37.374	$\delta(C-H) + \upsilon (C=C-C=C_{Ben})$
1648	1620	1548	22.037	$v_{as}(C=N)+\rho(C-H)+$ υ (C=C-
				C=C _{Ben})
1544	1518	1530	77.449	υ (C=C-C=C _{Ben}) + υ (N-H)
1534	1508		452.470	v_{as} (N-H)+ δ (C-H _{Ben})+ υ (C=C-
				C=C _{Ben})
1517	1491	1530	111.130	$\rho(\text{N-H})+ \delta(\text{C-H}_{\text{Ben}})+ \upsilon$ (C=C-
				C=C _{Ben})
1508	1482		321.428	$v_{as}(N-H) + \delta_{as}(C-H_{Ben})$
1474	1449		19.621	$\delta(C-H) + \rho(N-H)$
1441	1417		36.316	$\delta(C-H_{Ben}) + v(O-H) + v (C=C-$
				C=C _{Ben})
1441	1417		67.547	$\delta(N-H)+ \delta(C-H_{Ben})+ \upsilon$ (C=C-
				C=C _{Ben})
1377	1354		195.973	$\delta_{as}(N-H) + \delta(C=C_{Ben})$
1357	1334		362.409	$v(C=S)+v_{as}(N-H)$
1314	1292		100.262	$v(C-O) + \delta_{as}(C-H_{Ben})$
1281	1259		105-650	$\delta_{as}(F-C_{Ben})+\rho(N-H)+\rho(C-H)$
1240	1219	1217	366.156	$v(C=S)+\rho(N-H)$
1170	1150		75.811	$\delta(C-H_{Ben})$

1121	1102	106.911	$\delta(O-H) + \delta(C-H_{Ben})$
1069	1051	49.021	$v_{\rm as}$ (N-N)+ $\delta_{\rm as}$ (C-H _{Ben})
1021	1004	5.746	$\delta(C-H_{Ben})$
941	925	14.956	$\delta_{as}(C-H_{Ben})$
923	907	17.274	$\delta(N-H) + \delta_{as} (C-H_{Ben}) + v(C-Cl)$
874	859	17.928	$v(C-F)+\delta(C-H_{Ben})$
864	849	63.787	$\delta_{as}(N-H) + \delta(C-H_{Ben}) + v(C-Cl)$
845	831	46.026	v(C-F)
794	781	33.388	$v(C=S)+\delta_s(C-H_{Ben})+v(C-Cl)$
718	706	4.521	$v_{as}(C-F) + \delta_s(C-H_{Ben})$
659	648	24.516	$v_{as}(C-Cl) + \delta_{as}(C-H_{Ben})$

 Table S11: Calculated vibrational frequencies of compound 4.

DFT	Scaling	Exp	Intensities	Vibrational assignments
Frequencies		Frequencies		2
3887	3724	3386	139.268	<i>v</i> (O-H)
3572	3422		21.457	<i>v</i> (N-H)
3458	3313		27.984	<i>v</i> (N-H)
3177	3044		24.938	$v_{\rm s}({\rm C-H_{Ben}})$
3163	3030	3134	21.729	$v_{\rm as}(\text{C-H}_{\text{Ben}}) + v(\text{N-H})$
3112	2981		13.912	$v_{\rm s}(\rm CH-CH_3)$
3075	2946		28.419	$v_{\rm as}(\rm CH-CH_3)$
3019	2892		42.658	v(C-H)+v(N-H)
3015	2888	2996	39.611	$v_{s}(C-H)+v_{as}(CH-CH_{3})$
1691	1662		14.347	$v_{s}(N-H) + v_{as}(C=N)$
1652	1624		24.582	v_{as} (C-H _{Ben})+ v (C=C-C=C _{Ben})
1550	1524	1541	329.194	v_{as} (N-H)+ v_{s} (C=N) + v (C=C-
				C=CBen)
1522	1496		132.885	υ (C=C-C=C _{Ben}) + υ _{as} (N-H)+ υ
				_s (C=N)
1518	1492		201.412	$\delta_{s}(C-H = Ben) + \delta_{as}(N-H) + \upsilon(C=C-$
				C=C _{Ben})
1499	1474		12.956	$\delta_{as}(C-CH_3) + \delta_s(C-H_{Ben})$
1442	1417		101.916	$\delta_{as}(C-H_{Ben})+ \upsilon (C=C-C=C_{Ben})$
1387	1363		236.482	$\delta_{as}(C-H_{Ben}) + \delta_{as}(N-H)$
1352	1329		188.576	$\delta(C-H) + v(C=S) + \delta_{as}(N H)$
1254	1233		305.280	$\delta_{s}(C-H_{Ben}) + \delta_{as}(N-H)$
1240	1219	1228	73.868	$v_{as}(C=S)+\delta_{as}(N-H)$
1170	1150		82.895	$\delta_{as}(C-H_{Ben})+\rho(N-H)$
1124	1105		100.990	$\delta_{as}(C-H_{Ben})+v_{as}(O-H)+v_{as}(C-$
				Cl)
1075	1057		11.838	$\delta(\text{C-H}_{\text{Ben}}) + \delta_{as}(\text{N-H})$
959	943		19.467	$\delta_{as}(C-H_{Ben})$
926	910		19.231	$\delta(N-H) + \delta_{as}(C-H_{Ben}) + v(C-Cl)$

868	853	829	33.206	$\delta(\text{C-H}_{\text{Ben}}) + \delta_{as}(\text{N-H}) + v(\text{C-Cl})$
807	793		43.405	$\rho(\text{C-H}_{\text{Ben}}) + \delta_{s} (\text{C=N})$
799	785		37.255	$\delta_{as}(C-H_{Ben}) + \delta_{s}(N-H)$
755	742		21.015	$\delta_{as}(C-H_{Ben})$
659	648		21.957	$\delta(\text{C-H}_{\text{Ben}}) + v(\text{C-Cl})$

 Table S12: Calculated vibrational frequencies of compound 5.

DFT	Scaling	Exp	Intensities	Vibrational assignments
Frequencies	C	Frequencies		U U
3888	3725	3687	135.094	<i>v</i> (O-H)
3565	3415		22.939	v(N-H)
3458	3313	3342	28.617	v(N-H)
3177	3044	3218	21.844	$v_{\rm s}({\rm C-H_{Ben}}) + v({\rm N-H})$
3156	3023	3125	11.706	$v_{\rm as}(\text{C-H}_{\text{Ben}}) + v(\text{N-H})$
3115	2984		15.496	$v_{\rm s}(\rm CH-CH_3)$
3090	2960	3094	16.317	<i>v</i> (C-H)
3022	2895		26.221	$v_{\rm s}(\rm CH-CH_3)+v(\rm N-H)$
3009	2883		26.585	<i>v</i> (C-H)
1687	1658		20.152	$\delta(N-H) + v_{as}(C=N) + v_{as}(C-H_{Ben})$
1661	1633		11.975	$\delta(C-H_{Ben})+\delta_{as}(C+H_{Ben})+\upsilon$ (C=C-
				C=C _{Ben})
1655	1627		25.203	$\delta_{as}(C-H_{Ben}) + \upsilon (C=C-C=C_{Ben})$
1546	1520	1543	324.181	$v(C=N)+\delta_{as}(N-H)+\delta(C-H)$
1521	1495		184.742	$v_{as}(O-H)+v(C-Cl)+v_{as}(N-H)+$
1519	1493		207.601	$v_{as}(N-H)+\delta(C-H_{Ben})+v(C=S)+v(C=C-$
				C=C _{Ben})
1514	1488	1538	99.601	υ (C=C-C=C _{Ben}) + υ_{as} (CH-CH ₃)
1487	1462		18.463	$\rho(N-H)+\delta(C-H_{Ben})$
1472	1447		18.627	$\delta(C-H) + \delta_{as}(CH-CH_3) + \rho(N-H)$
1443	1418		97.547	$v(C-Cl)+ \delta+\delta_s(C-H_{Ben}) + v$ (C=C-
				C=C _{Ben})
1314	1292		95.625	$\delta_{as}(C-H_{Ben})+ v(C=O)$
1278	1256		51.554	$\delta_{as}(C-H_{Ben})+$, $\rho(N-H)$
1272	1250		51.147	$\delta (C-H_{Ben}) + \rho(N-H)$
1241	1220	1223	389.142	$v(C=S)+\delta_{as}(N-H)$
1170	1150		75.091	$\delta + \rho(\text{C-H}_{\text{Ben}}) + v(\text{C=O})$
1123	1104		109.157	$v(\text{C-Cl}) + \delta_{as}(\text{C-H}_{Ben})$
1070	1052		45.023	$v(C=S)+\delta+\rho(C-H_{Ben})$
1050	1032		4.935	$\delta_{as}(CH-CH_3)+) \rho(C-H_{Ben})$
942	926		16.767	$\delta_{as}(C-H_{Ben})+v(C-Cl)$
925	909		24.717	$v(C-Cl) + \delta_{as}(C-H_{Ben}) + \delta(N-H)$
864	849		50.460	$v(C-Cl) + \delta(C-H_{Ben}) + v_{as}(C=S)$
811	797		49.526	$\rho(C-H_{Ben}) + \delta_{as}(N-H)$
792	779		22.361	$\delta(C-H_{Ben}) + v(C=O) + \delta_{as}(C=S) +$
722	710		14.964	$\delta_{as}(C-H_{Ben})$
660	649		21.927	$v(C-Cl) + \delta + \rho(C-H_{Ben})$

DFT	Scaling	Exp	Intensities	Vibrational assignments
Frequencies		Frequencies		
3890	3727	3719	134.631	υ(O-H)
3565	3415		23.549	<i>ν</i> (N-H)
3456	3311	3282	27.648	<i>υ</i> (N-H)
3160	3027		25.142	$v_{\rm s}({ m C-H}_{ m Ben})$
3149	3017	3130	14.241	$v_{\rm as}$ (C-H)+ v (N-H)
3112	2981	3094	13.257	v_{as} (CH-CH ₃)+ v (N-H)
3085	2955		13.854	$v_{\rm s}({\rm C-H})+v_{\rm as}({\rm CH-CH}_3)$
3019	2892	2988	35.283	<i>v</i> _s (C-H)
3010	2884		21.449	$v_{\rm s}(\text{C-H})$
1694	1665		19.957	v_{as} (N-H)+ δ + δ_{as} (C-H _{Ben})
1649	1621	1539	21.932	$v(C-Cl)+v(C=N)+v(C=C-C=C_{Ben})$
1534	1508	1532	433.191	$\delta_{s}(C-H_{Ben}) + \upsilon (C=C-C=C_{Ben})$
1518	1492	1514	112.702	$v(C=O)+ \delta_{as}(N-H)+ \delta(C-H_{Ben})+ v (C=C-$
				$C=C_{Ben}$)
1509	1483		337.185	δ (N-H)+ ρ (C-H _{Ben})+ ν (C=O)
1476	1451		19.037	$\delta_{as}(CH-CH_3) + \rho(N-H) + \delta(C-H_{Ben})$
1471	1446		19.342	$\delta + \delta_{as} (C-H_{Ben}) + \upsilon (C=C-C=C_{Ben})$
1456	1431		8.598	$\delta_{as}(C-CH_3)$
1441	1417		98.729	$v_{as}(C=O) + \delta + \delta_s(C-H_{Ben}) + \upsilon (C=C-C=C_{Ben})$
1378	1355		220.683	$v(C=S)+\rho(N-H)+\delta+\delta_{as}(C-H_{Ben})$
1357	1334		330.549	$v(C=S)+\delta_s(N-H)+\rho(C-H_{Ben})$
1238	1217	1225	177.045	$\rho(N-H) + \nu(C=S)$
1237	1216		149.108	$v(C=S)+\rho(N-H)+\delta_s(C-H_{Ben})$
1170	1150		76.243	$v_{as}(O-H) + v(C-Cl) + \delta + \rho(C-H_{Ben})$
1121	1102		106.527	$v(C=O)+\delta+\delta_{as}(C-H_{Ben})$
1070	1052		47.232	$\delta + \rho(C-H_{Ben}) + \delta_{as}(C=N) + \upsilon(C=S)$
1041	1023		8.808	$v_{as}(CH-CH_3) + \rho + \delta_s(C-H_{Ben})$
941	925		14.291	$v(C-Cl) + \delta_{as}(C-H_{Ben})$
923	907		16.554	$v(C-Cl) + \delta_{as}(C-H_{Ben}) + \delta(N-H)$
861	846		51.237	$\delta_{as}(N-H) + v(C=S) + v(C=O) + v(C-CI)$
810	796		41.215	$\delta_{as}(C-H_{Ben}) + v_{as}(C=O)$
792	779		35.362	$v(C=S) + v_{as}(C=O) + \delta(N-H)$
786	773		3.850	$\rho + \delta_{s}(C-H_{Ben}) + \nu(C=S)$
659	648		23.202	v_{as} (C=O)+ δ_s (N-H)+ δ_{as} (C-H _{Ben})+ v (C-Cl)
629	618		14.733	$v_{as}(C=S)+v(C-Cl)+\delta(C-H_{Ben})$

 Table S13: Calculated vibrational frequencies of compound 6.

Frequencies are given in cm⁻¹, v =stretching, β =in-plane bending, γ =out-plane bending, δ =scissoring, ρ =rocking, w= wagging, s =symmetric, as=asymmetric, τ =twisting, Ben=benzene ring.

	1		2		3		4		5		6	
MO _(S)	E(eV)	ΔΕ	E(eV)	ΔΕ	E(eV)	ΔE	E(eV)	ΔE	E(eV)	ΔE	E(eV)	ΔΕ
HOMO-1	-6.284	5.523	-6.244	5.495	-6.354	5.533	-6.291	5.468	-6.263	5.498	-6.241	5.499
LUMO+1	-0.761		-0.749		-0.821		-0.823		-0.765		-0.742	
НОМО-2	-6.858	6 366	-6.832	6 13	-6.918	6 192	-6.850	6 4 5 4	-6.841	6 399	-6.811	64
LUMO+2	-0.492	0.500	-0.702	0.15	-0.726	0.172	-0.396	0.131	-0.442	0.577	-0.411	0.4

Table S14. Frontier molecular orbital energies of Compounds 1-6.

 $E = energy, \Delta E = E_{LUMO}-E_{HOMO}, MO(s) = molecular orbitals, HOMO = highest occupied molecular orbital, LUMO = lowest unoccupied molecular orbital.$

Polarizability	1	2	3	4	5	6
α_{xx}	265.957	258.305	263.797	281.227	275.51	280.456
α_{yy}	266.052	263.095	267.861	271.942	285.626	287.266
α_{zz}	161.144	169.774	161.502	171.918	169.131	169.383
<i>a</i> _{total}	231.051	230.391	231.053	241.695	243.422	245.701

Table S15. Polarizability in unit a.u of the studied compounds 1-6.

 α = polarizability

Table S16. Hyperpolarizability in unit a.u of the studied Compounds 1-6.

Hyperpolariazability	1	2	3	4	5	6
β_{xxx}	17.235	122.278	32.12	-89.754	55.285	-19.555
β_{xxy}	-131.492	-147.897	-34.611	-154.108	-137.458	-86.067
β_{xyy}	-20.545	-14.754	-97.256	2.307	-12.974	74.15
β_{yyy}	-211.872	-207.695	-113.713	-205.311	-206.471	-214.305
β_{xxz}	-58.489	-113.2	-37.352	-32.267	-32.909	33.973
β_{yyz}	-22.352	-34.92	2.651	11.931	-57.926	19.454
β_{xzz}	11.831	68.652	23.575	7.152	-1.024	-46.386

β_{yzz}	-30.593	-42.701	-26.705	-39.83	-24.414	-36.445
β_{zzz}	-39.08	-100.951	-34.588	-16.763	-30.724	39.178
β_{total}	392.807	501.709	192.778	408.93	390.074	349.412

 β = hyperpolarizability

Table S17. Dipole moment in unit debye of the studied Compounds 1-6.

Dipole	1	2	3	4	5	6
moment						
μχ	2.8122	1.9416	3.0797	3.3364	-2.4592	1.6493
μy	-5.2381	-5.3212	-4.5110	-5.1885	5.6831	-6.2007
μz	4.4826	5.5825	4.1008	4.3639	4.4947	4.1709
μ_{total}	7.4458	7.9529	6.8301	7.5562	7.6516	7.6528

 μ = dipole moment

Compound 1

Compound 2

Compound 3

Compound 6

Figure S1: Frontier molecular orbitals of entitled compounds.

Figure S2: UV-Vis spectra of compound 1.

Figure S3: UV-Vis spectra of compound 2.

Figure S4: UV-Vis spectra of compound 3.

Figure S5: UV-Vis spectra of compound 4.

Figure S6: UV-Vis spectra of compound 5.

Figure S7: UV-Vis spectra of compound 6.

Figure S8: IR Spectra of compound 1

Figure S12: IR Spectra of compound 5

Figure S13: IR Spectra of compound 6

Figure S14: ¹HNMR Spectra of compound 1

Figure S15: ¹HNMR Spectra of compound 2

Figure S16: ¹HNMR Spectra of compound 3

Figure S17: ¹HNMR Spectra of compound 4

Figure S18: ¹HNMR Spectra of compound 5

Figure S19: ¹HNMR Spectra of compound 6