Chromosome-scale inference of hybrid speciation and admixture with convolutional neural networks

SUPPLEMENTAL MATERIALS

Paul D. Blischak, Michael S. Barker, and Ryan N. Gutenkunst

Contents

S1 Su	nmary statistics	2
List o	of Tables	
S1	Breakdown of image processing by HyDe-CNN	3
S2	Precision and recall of HyDe-CNN for mean d_{XY}	3
S3	Precision and recall of HyDe-CNN for minimum+mean d_{XY}	4
S4	Precision and recall of the Flagel <i>et al.</i> network for minimum d_{XY}	4
S5	Precision and recall of the Flagel <i>et al.</i> network for mean d_{XY}	4
S6	Precision and recall for the random forest classifier	5
List o	of Figures	
S1	Confusion matrices for HyDe-CNN (mean d_{XY})	6
S2	Confusion matrices for HyDe-CNN (minimum+mean d_{XY})	7
S3	Confusion matrices for Flagel <i>et al.</i> network (minimum d_{XY})	8
S4	Confusion matrices for Flagel $et\ al.$ network (mean d_{XY})	9
S5	Model predictions for no hybridization test simulations	10
S6	Model predictions for hybrid speciation test simulations	11
S7	Model predictions for admixture with migration test simulations	12
S8	Admixture statistics calculated for 0.5 CU branch scaling	13
S9	Admixture statistics calculated for 1.0 CU branch scaling	14
S10	Admixture statistics calculated for 2.0 CU branch scaling	15
S11	Confusion matrices for <i>Heliconius</i> simulations	16

Supplemental Text

S1 Summary statistics

To train a random forest classifier for model selection we calculated the statistics D (Green et~al.~2010), f_{hom} (Durand et~al.~2011), and D_p (Hamlin et~al.~2020) on the phylogeny (((P_1, P_2, P_3), P_3)). The allele-frequency based formulas for each statistic are given below, where $\hat{p}_{i,\ell}$ is the derived allele frequency for population i at locus ℓ .

$$D = \frac{\sum_{L} (1 - \hat{p}_{1,\ell}) \hat{p}_{2,\ell} \hat{p}_{3,\ell} (1 - \hat{p}_{O,\ell}) - \hat{p}_{1,\ell} (1 - \hat{p}_{2,\ell}) \hat{p}_{3,\ell} (1 - \hat{p}_{O,\ell})}{\sum_{L} (1 - \hat{p}_{1,\ell}) \hat{p}_{2,\ell} \hat{p}_{3,\ell} (1 - \hat{p}_{O,\ell}) + \hat{p}_{1,\ell} (1 - \hat{p}_{2,\ell}) \hat{p}_{3,\ell} (1 - \hat{p}_{O,\ell})}.$$

$$f_{hom} = \frac{\sum_{L} (1 - \hat{p}_{1,\ell}) \hat{p}_{2,\ell} \hat{p}_{3,\ell} (1 - \hat{p}_{O,\ell}) - \hat{p}_{1,\ell} (1 - \hat{p}_{2,\ell}) \hat{p}_{3,\ell} (1 - \hat{p}_{O,\ell})}{\sum_{L} (1 - \hat{p}_{1,\ell}) \hat{p}_{3,\ell} \hat{p}_{3,\ell} (1 - \hat{p}_{O,\ell}) - \hat{p}_{1,\ell} (1 - \hat{p}_{3,\ell}) \hat{p}_{3,\ell} (1 - \hat{p}_{O,\ell})}.$$

$$D_p = \frac{\sum_L (1 - \hat{p}_{1,\ell}) \hat{p}_{2,\ell} \hat{p}_{3,\ell} (1 - \hat{p}_{O,\ell}) - \hat{p}_{1,\ell} (1 - \hat{p}_{2,\ell}) \hat{p}_{3,\ell} (1 - \hat{p}_{O,\ell})}{\sum_L (1 - \hat{p}_{1,\ell}) \hat{p}_{2,\ell} \hat{p}_{3,\ell} (1 - \hat{p}_{O,\ell}) + \hat{p}_{1,\ell} (1 - \hat{p}_{2,\ell}) \hat{p}_{3,\ell} (1 - \hat{p}_{O,\ell}) + \hat{p}_{1,\ell} \hat{p}_{2,\ell} (1 - \hat{p}_{3,\ell}) (1 - \hat{p}_{O,\ell})}.$$

Supplemental References

Durand, E. Y., Patterson, N., Reich, D., and Slatkin, M. 2011. Testing for ancient admixture between closely related populations. *Molecular Biology and Evolution*, 28: 2239–2252.

Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., Patterson, N., Li, H., Zhai, W., Fritz, M. H.-Y., Hansen, N. F., Durand, E. Y., Malaspinas, A.-S., Jensen, J. D., Marques-Bonet, T., Alkan, C., Prüfer, K., Meyer, M., Burbano, H. A., Good, J. M., Schultz, R., Aximu-Petri, A., Butthof, A., Höber, B., Höffner, B., Siegemund, M., Weihmann, A., Nusbaum, C., Lander, E. S., Russ, C., Novod, N., Affourtit, J., Egholm, M., Verna, C., Rudan, P., Brajkovic, D., Kucan, Ž., Gušic, I., Doronichev, V. B., Golovanova, L. V., Lalueza-Fox, C., de la Rasilla, M., Fortea, J., Rosas, A., Schmitz, R. W., Johnson, P. L. F., Eichler, E. E., Falush, D., Birney, E., Mullikin, J. C., Slatkin, M., Nielsen, R., Kelso, J., Lachmann, M., Reich, D., and Pääbo, S. 2010. A draft sequence of the Neandertal genome. *Science*, 328: 710–722.

Hamlin, J. A. P., Hibbins, M. S., and Moyle, L. C. 2020. Assessing biological factors affecting postspeciation introgression. *Evolution Letters*, 4: 137–154.

Supplemental Tables

Table S1: Breakdown of how images are processed through the HyDe-CNN architecture. The original input shape is (1000, 6, 1) for the minimum and mean d_{XY} networks and is (1000, 6, 2) for the minimum+mean d_{XY} .

Layer	Output shape	Number of parameters	
2D Convolution 1	(997, 5, 12)	108	
2D Average Pooling 1	(498, 5, 12)	_	
Dropout 1	(498, 5, 12)	_	
2D Convolution 2	(495, 4, 24)	2328	
2D Average Pooling 2	(247, 4, 24)	_	
Dropout 2	(247, 4, 24)	_	
2D Convolution 3	(244, 3, 36)	6948	
2D Average Pooling 3	(122, 3, 36)	_	
Dropout 3	(122, 3, 36)	_	
2D Convolution 4	(119, 2, 48)	13872	
2D Average Pooling 4	(59, 2, 48)	_	
Dropout 4	(59, 2, 48)	_	
Flatten	(5664)	_	
Dense 1	(60)	339900	
Dropout 5	(60)	_	
Dense 2	(4)	244	

Table S2: Precision and recall of HyDe-CNN trained on images of mean d_{XY} for model selection on independent test data. Branch scaling is given in coalescent units (CU).

Branch Scaling	Model	Precision	Recall
0.5	no_hyb	0.725	0.850
	hyb_sp	0.796	0.896
	admix	0.572	0.365
	admix_mig	0.708	0.753
1.0	no_hyb	0.827	0.960
	hyb_sp	0.902	0.908
	admix	0.804	0.700
	admix_mig	0.923	0.889
2.0	no_hyb	0.908	0.989
	hyb_sp	0.945	0.914
	admix	0.901	0.803
	admix_mig	0.943	0.992

Table S3: Precision and recall of HyDe-CNN trained on images of minimum+mean d_{XY} for model selection on independent test data. Branch scaling is given in coalescent units (CU).

Branch Scaling	Model	Precision	Recall
0.5	no_hyb	0.837	0.930
	hyb_sp	0.926	0.841
	admix	0.798	0.674
	admix_mig	0.822	0.932
1.0	no_hyb	0.911	0.972
	hyb_sp	0.843	0.982
	admix	0.971	0.691
	admix_mig	0.944	0.996
2.0	no_hyb	0.916	0.985
	hyb_sp	0.930	0.949
	admix	0.943	0.826
	admix_mig	0.972	1.000

Table S4: Precision and recall of the Flagel $et\ al.$ network trained on images of minimum d_{XY} for model selection on independent test data. Branch scaling is given in coalescent units (CU).

Branch Scaling	Model	Precision	Recall
0.5	no_hyb	0.810	0.808
	hyb_sp	0.859	0.845
	admix	0.703	0.457
	admix_mig	0.699	0.956
1.0	no_hyb	0.855	0.975
	hyb_sp	0.922	0.858
	admix	0.789	0.770
	admix_mig	0.979	0.932
2.0	no_hyb	0.899	0.936
	hyb_sp	0.956	0.817
	admix	0.776	0.856
	admix_mig	0.996	0.997

Table S5: Precision and recall of the Flagel $et\ al.$ network trained on images of mean d_{XY} for model selection on independent test data. Branch scaling is given in coalescent units (CU).

Branch Scaling	Model	Precision	Recall
0.5	no_hyb	0.398	0.668
	hyb_sp	0.907	0.738
	admix	0.494	0.474
	admix_mig	0.483	0.263
1.0	no_hyb	0.671	0.846
	hyb_sp	0.948	0.792
	admix	0.664	0.496
	admix_mig	0.833	0.964
2.0	no_hyb	0.853	0.941
	hyb_sp	0.905	0.894
	admix	0.837	0.701
	admix_mig	0.905	0.970

Table S6: Precision and recall of the random forest classifier trained with introgression summary statistics for model selection on independent test data. Branch scaling is given in coalescent units (CU).

Branch Scaling	Model	Precision	Recall
0.5	no_hyb	0.651	0.765
	hyb_sp	0.812	0.813
	admix	0.471	0.381
	admix_mig	0.541	0.549
1.0	no_hyb	0.784	0.867
	hyb_sp	0.838	0.836
	admix	0.665	0.560
	admix_mig	0.744	0.784
2.0	no_hyb	0.877	0.944
	hyb_sp	0.849	0.852
	admix	0.804	0.755
	admix_mig	0.936	0.917

Supplemental Figures

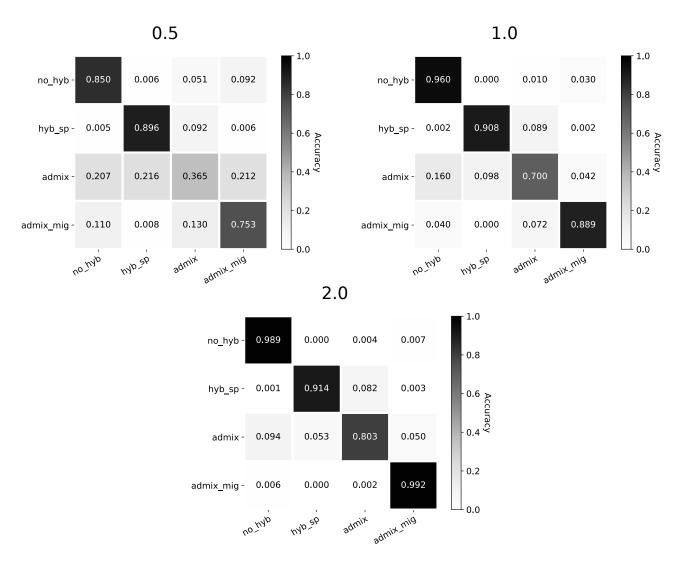


Figure S1: Confusion matrices for the HyDe-CNN architecture trained on images of mean d_{XY} across different branch scaling factors (specified in coalescent units).

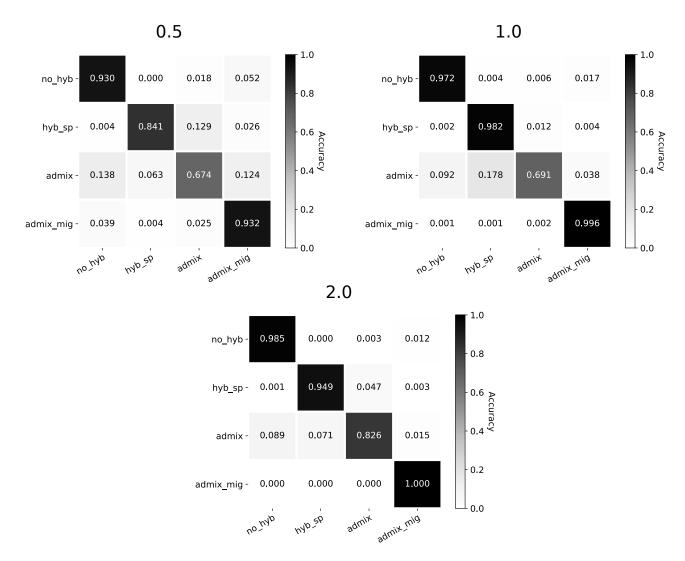


Figure S2: Confusion matrices for the HyDe-CNN architecture trained on images of minimum+mean d_{XY} across different branch scaling factors (specified in coalescent units).

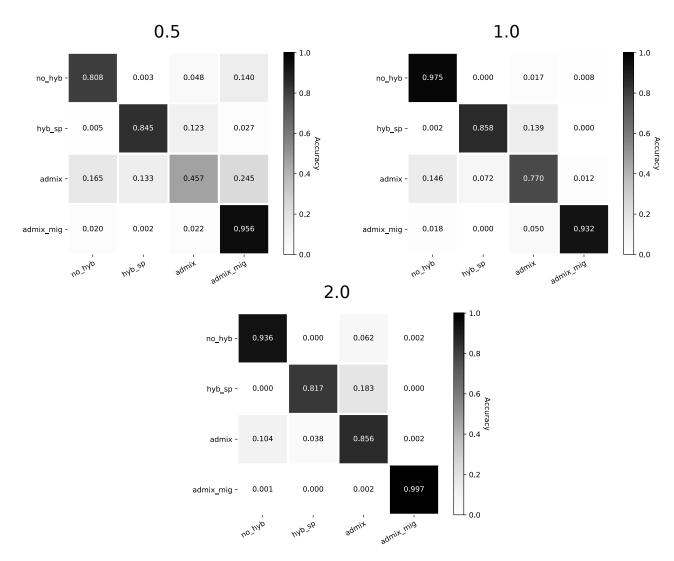


Figure S3: Confusion matrices for the Flagel $et\ al.$ network trained on images of minimum d_{XY} across different branch scaling factors (specified in coalescent units).

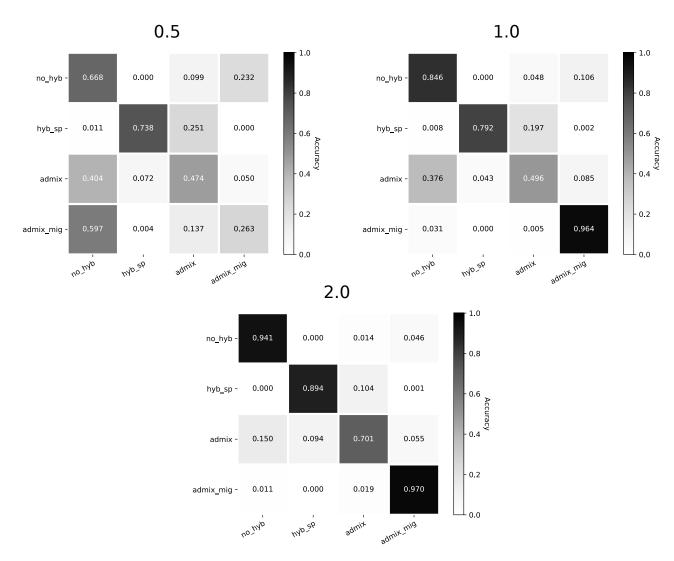


Figure S4: Confusion matrices for the Flagel $et\ al.$ network trained on images of mean d_{XY} across different branch scaling factors (specified in coalescent units).

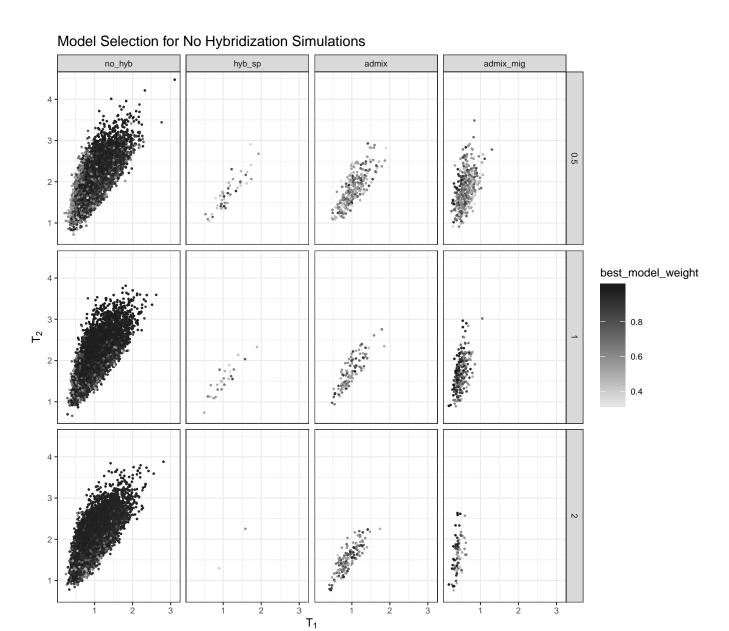


Figure S5: Model prediction for test data simulated under the no hybridization scenario. Columns represent the model chosen by the HyDe-CNN architecture trained on minimum d_{XY} and rows show different branch scalings. The divergence time between P_1 and P_2 (T_1) is plotted on the x-axis and the divergence time between P_3 and (P_1 , P_2) (T_2) is plotted on the y-axis.

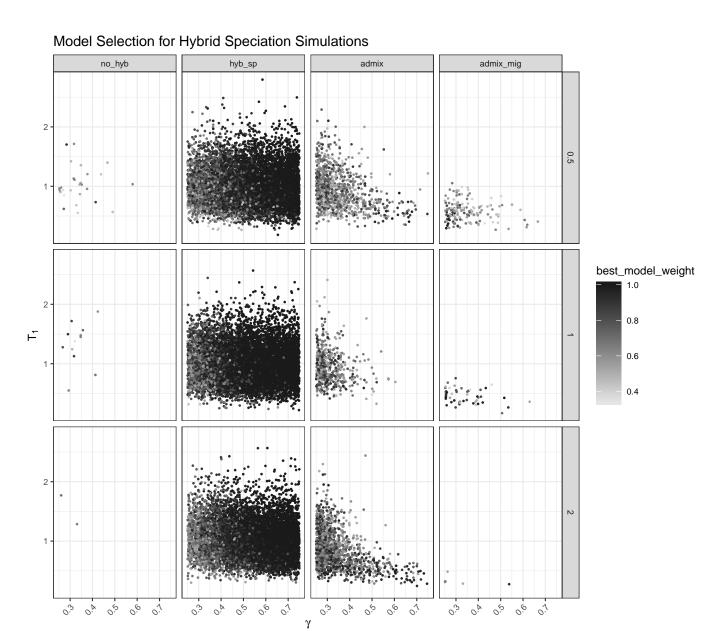


Figure S6: Model prediction for test data simulated under the hybrid speciation scenario. Columns represent the model chosen by the HyDe-CNN architecture trained on minimum d_{XY} and rows show different branch scalings. The hybridization fraction (γ) is plotted on the x-axis and the divergence time between P_1 and P_2 (T_1) is plotted on the y-axis.

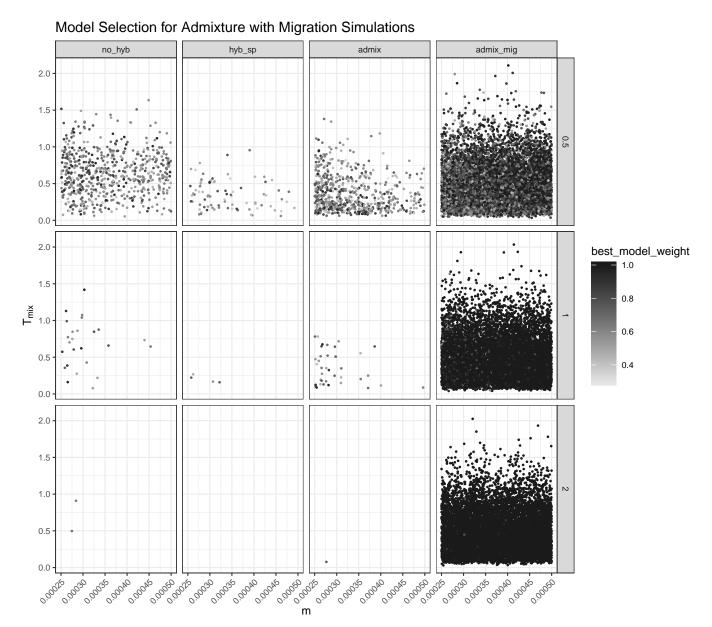


Figure S7: Model prediction for test data simulated under the admixture with gene flow scenario. Columns represent the model chosen by the HyDe-CNN architecture trained on minimum d_{XY} and rows show different branch scalings. The migration rate m is plotted on the x-axis and the timing of admixture (T_{mix}) is plotted on the y-axis.

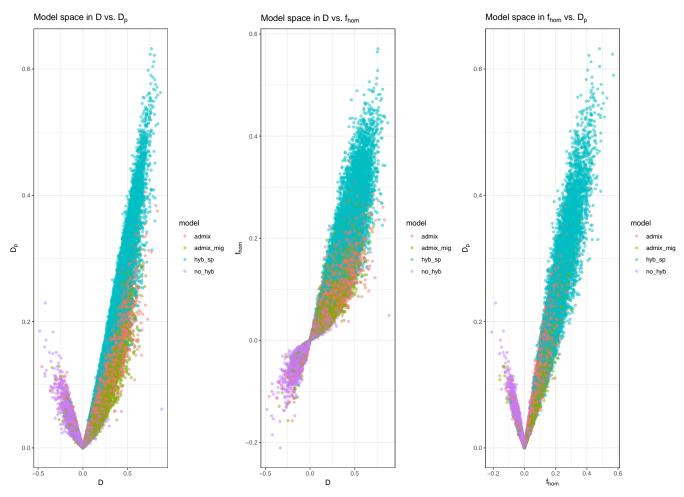


Figure S8: Pairwise plots of calculated summary statistics (D, f_{hom} , D_p) for training a random forest classifier at the 0.5 coalescent unit branch scaling. The color of each dot corresponds with a single simulation and represents its generating model.

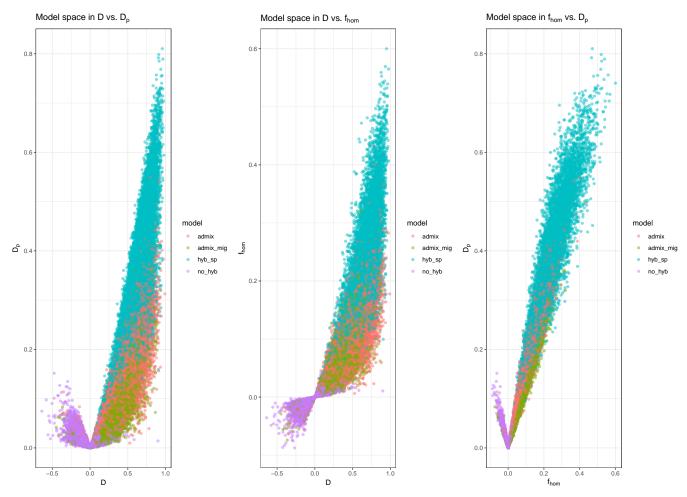


Figure S9: Pairwise plots of calculated summary statistics (D, f_{hom} , D_p) for training a random forest classifier at the 1.0 coalescent unit branch scaling. The color of each dot corresponds with a single simulation and represents its generating model.

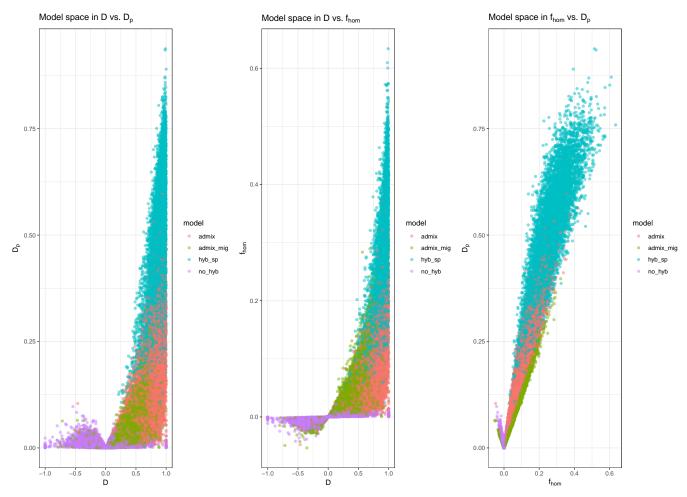


Figure S10: Pairwise plots of calculated summary statistics (D, f_{hom} , D_p) for training a random forest classifier at the 2.0 coalescent unit branch scaling. The color of each dot corresponds with a single simulation and represents its generating model.

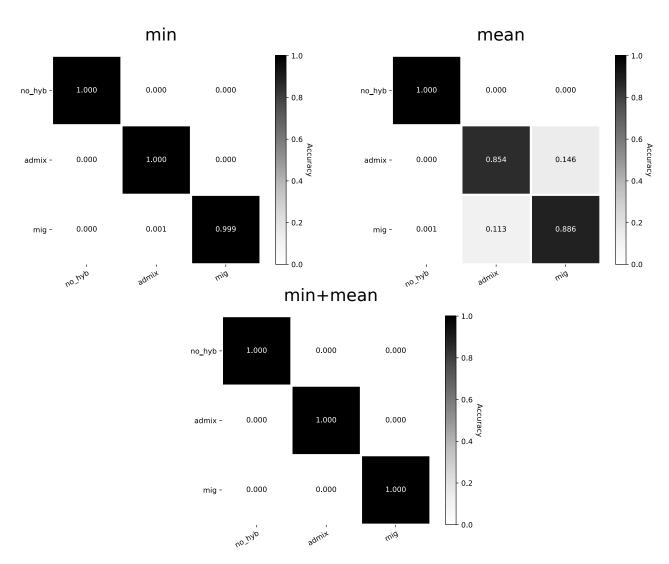


Figure S11: Confusion matrices for images simulated under the demographic models (no hybridization [no_hyb], admixture [admix], and continuous migration [mig]) tested in *Heliconius* across the different input types.