Supplementary Information

Abiotic reduction of ketones with silanes catalyzed by carbonic anhydrase through an enzymatic zinc hydride

Pengfei Ji¹, Jeeyoung Park¹, Yang Gu¹, Douglas S. Clark^{1,2}, and John F. Hartwig^{1,*}

¹Department of Chemistry, University of California, Berkeley, CA, 94720, USA

²Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA

*email: jhartwig@berkeley.edu

Contents	Page
1. Protein Expression and Purification	2
2. DNA and Protein Sequences	3
3. Catalytic Reactions	10
4. Preparation of Racemic Standards	13
5. Detection of H ₂ and HD	14
6. Products and Characterizations	16
7. Computational Study	42
8. NMR Spectra	58
9. References	89

1. Protein Expression and Purification

1.1 Methods and Materials

Unless otherwise noted, all chemicals, salts and solvents were obtained from commercial suppliers (Sigma-Aldrich, Acros, etc.) and used without further purification. All expression media and buffers were prepared with ddH₂O (MilliQ A10 Advantage purification system, Millipore). Expression media was sterilized either by autoclave (45 min, 121°C) or a sterile syringe filter (0.22 um). To maintain sterile conditions, sterile materials and E. coli cells were manipulated near a lit Bunsen burner.

1.2 Preparation of Plasmides

Plasmids encoding hCAVII (Uniprot ID P43166) and hCAXIII (UniProt ID Q8N1Q1) were purchased from Addgene. The plasmid encoding hCAII (UniProt ID P00918) was prepared by mutating 3*His-hCAII. The procedure for preparing the 3*His-hCAII plasmide was previously reported by our group.¹ To prepare the plasmid of wild-type hCAII, we perform three point mutations (R3H, R10H and F15H) step-by-step.

1.3 Protein Expression

Protein Expression (Unlabeled Carbonic Anhydrase): Carbonic anhydrase was overexpressed in chemically competent BL21 DE3 *E. coli.* cells (UC Berkeley Macro Lab) with Terrific Broth (TB) Media. Freshly transformed cells were plated on ampicillin/LB (100mg/L) media and grown overnight at 37 °C in the oven. Single colonies were used to inoculate 3 mL LB/amp cultures, which were shaken at 37 °C at 250 rpm for 6 h. Each 3 mL culture was used to inoculate 1 L of TB media. Expressions were typically conducted in 4×1 L batches in baffled flasks, and the flasks were shaken at 37 °C / 250 rpm for 6 h, after which time the temperature was reduced to 28 °C. The culture was supplemented with ZnSO₄ (100 mg/L) and IPTG (100 mg/L) and allowed to proceed for additional 12 h. After this time, cells were recovered by centrifugation (5000 rpm, 15 minutes, 4°C). Cell pellets were frozen at -80 °C, thawed, resuspended in Ni-NTA lysis buffer (50 mM NaPi, 300 mM NaCl, 10 mM imidazole, pH 8.0), and flash frozen until purification.

1.4 Protein Purification

Protein Purification. Cell suspensions were thawed in a room-temperature water bath, decanted into 50 mL glass beakers, and lysed on ice by sonication $(3 \times 30 \text{ s on}, 2 \times 2 \text{ min off}, 65\%$ power). Cell debris was removed by centrifugation (10,000 rpm, 30 min, 4 °C), and Ni-NTA (5 mL, 50% suspension per 850 mL cell culture) was added. The lysates were briefly incubated with Ni-NTA (30 min, rt, 20 rpm) and poured into glass frits (coarse, 50 mL). The resin was washed with Ni-NTA lysis buffer (3 × 35 mL), and the desired protein was eluted with 18 mL Ni-NTA elution buffer (50 mM NaPi, 250 mM NaCl, 250 mM Imidazole, pH = 8.0). The eluted protein was dialyzed twice against Tris buffer (50 mM, pH = 8.0, 12 h, 4 °C). Gel electrophoreses was then preformed to monitor protein purity (Supplementary Figure 1). Protein concentration was measured with a NanoDrop UV-vis spectrophotometer at 280 nm.

Supplementary Figure 1. Representative SDS-Page gel of hCAII ran at 300 V.

2. DNA and Protein Sequence

2.1 hCAII

DNA Sequence of hCAII

Protein Sequence of hCAII

MKSSHHHHHHENLYFQSNAMSHHWGYGKHNGPEHWHKDFPIAKGERQSPVDIDTHTAKYDPSLKPLSVSYDQATSLR ILNNGHAFNVEFDDSQDKAVLKGGPLDGTYRLIQFHFHWGSLDGQGSEHTVDKKKYAAELHLVHWNTKYGDFGKAVQ QPDGLAVLGIFLKVGSAKPGLQKVVDVLDSIKTKGKSADFTNFDPRGLLPESLDYWTYPGSLTTPPLLECVTWIVLK EPISVSSEQVLKFRKLNFNGEGEPEELMVDNWRPAQPLKNRQIKASFK*

2.2 hCAVII

DNA Sequence of hCAVII

Protein Sequence of hCAVII

MHHHHHHSSGVDLGTENLYFQSMHGWGYGQDDGPSHWHKLYPIAQGDRQSPINIISSQAVYSPSLQPLELSYEACMS LSITNNGHSVQVDFNDSDDRTVVTGGPLEGPYRLKQFHFHWGKKHDVGSEHTVDGKSFPSELHLVHWNAKKYSTFGE AASAPDGLAVVGVFLETGDEHPSMNRLTDALYMVRFKGTKAQFSCFNPKCLLPASRHYWTYPGSLTTPPLSESVTWI VLREPICISERQMGKFRSLLFTSEDDERIHMVNNFRPPQPLKGRVVKASF*

2.3 hCAXIII

DNA Sequence of hCAXIII

Protein Sequence of hCAVII

MHHHHHHSSGVDLGTENLYFQSMSRLSWGYREHNGPIHWKEFFPIADGDQQSPIEIKTKEVKYDSSLRPLSIKYDPS SAKIISNSGHSFNVDFDDTENKSVLRGGPLTGSYRLRQVHLHWGSADDHGSEHIVDGVSYAAELHVVHWNSDKYPSF VEAAHEPDGLAVLGVFLQIGEPNSQLQKITDTLDSIKEKGKQTRFTNFDLLSLLPPSWDYWTYPGSLTVPPLLESVT WIVLKQPINISSQQLAKFRSLLCTAEGEAAAFLVSNHRPPQPLKGRKVRASF*

2.4 DNA and Protein Sequences of 10 different mutants of hCAII

Supplementary Table 1. Sequence comparison for 10 different mutants of hCAII and the catalytic activity of the expressed enzyme for reducing acetophenone in whole cell. The catalyst loading for the hCAII mutants is 0.05 mol%.

Mutants	121 Val	143 Val	198 Leu	209 Trp	Yield (%)	ee (%)
1	V	F	F	W	0	-
2	L	L	V	W	0	-
3	I	L	F	К	0	-
4	I	F	F	К	0	-
5	I	V	V	W	1.5	70
6	V	V	K	L	0	-
7	V	I	I	W	6.0	91
8	L	I	V	W	0	-
9	L	V	F	R	0	-
10	I	L	К	W	0	-
wt-hCAII (0.05 mol%)	V	V	L	W	23	92
wt-hCAII (0.2 mol%)	V	V	L	W	89	94

DNA sequence of mutant 1 VFFW:

Protein sequence of mutant 1 VFFW:

MKSSHHHHHHENLYFQSNAMSHHWGYGKHNGPEHWHKDFPIAKGERQSPVDIDTHTAKYDPSLK PLSVSYDQATSLRILNNGHAFNVEFDDSQDKAVLKGGPLDGTYRLIQFHFHWGSLDGQGSEHTV DKKKYAAELHLVHWNTKYGDFGKAVQQPDGLAFLGIFLKVGSAKPGLQKVVDVLDSIKTKGKSA DFTNFDPRGLLPESLDYWTYPGSFTTPPLLECVTWIVLKEPISVSSEQVLKFRKLNFNGEGEPE ELMVDNWRPAQPLKNRQIKASFK*

DNA sequence of mutant 2 LLVW:

Protein sequence of mutant 2 LLVW:

MKSSHHHHHHENLYFQSNAMSHHWGYGKHNGPEHWHKDFPIAKGERQSPVDIDTHTAKYDPSLK PLSVSYDQATSLRILNNGHAFNVEFDDSQDKAVLKGGPLDGTYRLIQFHFHWGSLDGQGSEHTV DKKKYAAELHLLHWNTKYGDFGKAVQQPDGLALLGIFLKVGSAKPGLQKVVDVLDSIKTKGKSA DFTNFDPRGLLPESLDYWTYPGSVTTPPLLECVTWIVLKEPISVSSEQVLKFRKLNFNGEGEPE ELMVDNWRPAQPLKNRQIKASFK*

DNA sequence of mutant 3 ILFK:

Protein sequence of mutant 3 ILFK:

MKSSHHHHHHENLYFQSNAMSHHWGYGKHNGPEHWHKDFPIAKGERQSPVDIDTHTAKYDPSLK PLSVSYDQATSLRILNNGHAFNVEFDDSQDKAVLKGGPLDGTYRLIQFHFHWGSLDGQGSEHTV DKKKYAAELHLIHWNTKYGDFGKAVQQPDGLALLGIFLKVGSAKPGLQKVVDVLDSIKTKGKSA DFTNFDPRGLLPESLDYWTYPGSFTTPPLLECVTKIVLKEPISVSSEQVLKFRKLNFNGEGEPE ELMVDNWRPAQPLKNRQIKASFK*

DNA sequence of mutant 4 IFFK:

Protein sequence of mutant 4 IFFK:

MKSSHHHHHHENLYFQSNAMSHHWGYGKHNGPEHWHKDFPIAKGERQSPVDIDTHTAKYDPSLK PLSVSYDQATSLRILNNGHAFNVEFDDSQDKAVLKGGPLDGTYRLIQFHFHWGSLDGQGSEHTV DKKKYAAELHLIHWNTKYGDFGKAVQQPDGLAFLGIFLKVGSAKPGLQKVVDVLDSIKTKGKSA DFTNFDPRGLLPESLDYWTYPGSFTTPPLLECVTKIVLKEPISVSSEQVLKFRKLNFNGEGEPE ELMVDNWRPAQPLKNRQIKASFK*

DNA sequence of mutant 5 IVVW:

Protein sequence of mutant 5 IVVW:

MKSSHHHHHHENLYFQSNAMSHHWGYGKHNGPEHWHKDFPIAKGERQSPVDIDTHTAKYDPSLK PLSVSYDQATSLRILNNGHAFNVEFDDSQDKAVLKGGPLDGTYRLIQFHFHWGSLDGQGSEHTV DKKKYAAELHLIHWNTKYGDFGKAVQQPDGLAVLGIFLKVGSAKPGLQKVVDVLDSIKTKGKSA DFTNFDPRGLLPESLDYWTYPGSVTTPPLLECVTWIVLKEPISVSSEQVLKFRKLNFNGEGEPE ELMVDNWRPAQPLKNRQIKASFK*

DNA sequence of mutant 6 VVKL:

Protein sequence of mutant 6 VVKL:

MKSSHHHHHHENLYFQSNAMSHHWGYGKHNGPEHWHKDFPIAKGERQSPVDIDTHTAKYDPSLK PLSVSYDQATSLRILNNGHAFNVEFDDSQDKAVLKGGPLDGTYRLIQFHFHWGSLDGQGSEHTV DKKKYAAELHLVHWNTKYGDFGKAVQQPDGLAVLGIFLKVGSAKPGLQKVVDVLDSIKTKGKSA DFTNFDPRGLLPESLDYWTYPGSKTTPPLLECVTLIVLKEPISVSSEQVLKFRKLNFNGEGEPE ELMVDNWRPAQPLKNRQIKASFK*

DNA sequence of mutant 7 VIIW:

Protein sequence of mutant 7 VIIW:

MKSSHHHHHHENLYFQSNAMSHHWGYGKHNGPEHWHKDFPIAKGERQSPVDIDTHTAKYDPSLK PLSVSYDQATSLRILNNGHAFNVEFDDSQDKAVLKGGPLDGTYRLIQFHFHWGSLDGQGSEHTV DKKKYAAELHLVHWNTKYGDFGKAVQQPDGLAILGIFLKVGSAKPGLQKVVDVLDSIKTKGKSA DFTNFDPRGLLPESLDYWTYPGSITTPPLLECVTWIVLKEPISVSSEQVLKFRKLNFNGEGEPE ELMVDNWRPAQPLKNRQIKASFK*

DNA sequence of mutant 8 LIVW:

Protein sequence of mutant 8 LIVW:

MKSSHHHHHHENLYFQSNAMSHHWGYGKHNGPEHWHKDFPIAKGERQSPVDIDTHTAKYDPSLK PLSVSYDQATSLRILNNGHAFNVEFDDSQDKAVLKGGPLDGTYRLIQFHFHWGSLDGQGSEHTV DKKKYAAELHLLHWNTKYGDFGKAVQQPDGLAILGIFLKVGSAKPGLQKVVDVLDSIKTKGKSA DFTNFDPRGLLPESLDYWTYPGSVTTPPLLECVTWIVLKEPISVSSEQVLKFRKLNFNGEGEPE ELMVDNWRPAQPLKNRQIKASFK*

DNA sequence of mutant 9 LVFR:

Protein sequence of mutant 9 LVFR:

MKSSHHHHHHENLYFQSNAMSHHWGYGKHNGPEHWHKDFPIAKGERQSPVDIDTHTAKYDPSLK PLSVSYDQATSLRILNNGHAFNVEFDDSQDKAVLKGGPLDGTYRLIQFHFHWGSLDGQGSEHTV DKKKYAAELHLLHWNTKYGDFGKAVQQPDGLAVLGIFLKVGSAKPGLQKVVDVLDSIKTKGKSA DFTNFDPRGLLPESLDYWTYPGSFTTPPLLECVTRIVLKEPISVSSEQVLKFRKLNFNGEGEPE ELMVDNWRPAQPLKNRQIKASFK*

DNA sequence of mutant 10 ILKW:

Protein sequence of mutant 10 ILKW:

MKSSHHHHHHENLYFQSNAMSHHWGYGKHNGPEHWHKDFPIAKGERQSPVDIDTHTAKYDPSLK PLSVSYDQATSLRILNNGHAFNVEFDDSQDKAVLKGGPLDGTYRLIQFHFHWGSLDGQGSEHTV DKKKYAAELHLIHWNTKYGDFGKAVQQPDGLALLGIFLKVGSAKPGLQKVVDVLDSIKTKGKSA DFTNFDPRGLLPESLDYWTYPGSKTTPPLLECVTWIVLKEPISVSSEQVLKFRKLNFNGEGEPE ELMVDNWRPAQPLKNRQIKASFK*

3. Catalytic Reactions

3.1 General Method

All enzyme-catalyzed reactions were performed at room temperature (23 °C) on an orbital shaker at the rate of 300 rpm. Unless otherwise noted, catalytic reactions were performed in 20 mL scintillation vials. The vials were loosely capped during catalytic reactions to avoid pressure accumulation due to the evolution of hydrogen. Protein catalysts were diluted to reaction concentrations in Tris buffer (50 mM, pH = 8.0) before adding to the reaction vials. To purify the reaction product, silica gel chromatography was conducted with AMD Silica Gel 60, 230-400 mesh. ¹H NMR spectra and ¹⁹F NMR spectra were recorded on the Bruker AVB-400 instrument with ¹H operating frequencies of 400 MHz and ¹⁹F operating frequency of 376 MHz. Chemical shifts (δ) are reported in ppm, relative to the residual solvent signal (CDCl₃: 7.26 ppm for ¹H NMR).

3.2 Procedure for typical catalytic experiments

Catalysis with purified enzyme:

The 0.1 mM solution of hCAII in Tris Buffer (50 mM, pH 8.0) was stored at -80 °C, and warmed to room temperature before catalytic reactions. To a 20 mL scintillation vial was added 1 ml of the catalyst stock solution (0.1 umol of hCAII), followed by phenylsilane (18 μ L, 150 μ mol), ketone (50 μ mol) and 2 mL of Tris buffer (50 mM, pH = 8.0). The vial was capped and incubated on an orbital shaker (20 °C, 300 rpm) for 3 h. Upon completion, the reaction mixture was extracted with 5 mL EtOAc and evaporated under vacuum. The chiral alcohol products were dissolved in CDCl₃, mesitylene was added as the internal standard, and the reaction yields were measured by ¹H NMR spectroscopy. The products were purified by silica column chromatography eluting with EtOAc/hexane (2%-20%), and e.e.'s were determined by supercritical fluid chromatography (SFC) or high performance liquid chromatography (HPLC).

Catalysis with lyophilized cell powder:

The amount of hCAII in lyophilized cell powder was determined by first purifying the enzyme with Ni-NTA resin, followed by measurement of protein concentration with NanoDrop UV-Vis spectrophotometer (see section 1.3 for details). The amount of hCAII was quantified to be 19 mg per 100 mg of lyophilized cell powder.

To a 20 mL scintillation vial containing 3 mL of Tris buffer (50 mM, pH = 8.0) was added 15 mg of the lyophilized cell powder (containing 0.1 umol of hCAII), followed by phenylsilane (18 μ L, 150 μ mol) and ketone (50 μ mol). The vial was capped, vortexed briefly, and incubated on an orbital shaker (20 °C, 300 rpm) for 3 h. Upon completion, the reaction mixture was extracted with EtOAc, and the chiral alcohol product was measured by ¹H NMR spectroscopy for yields and SFC or HPLC for e.e. values.

3.3 Procedure for gram-scale reaction

To a 1 L Erlenmeyer flask containing 500 mL of Tris buffer (50 mM, pH = 8.0) was added 1.2 g of the lyophilized cell powder (containing 8 umol of hCAII), followed by phenylsilane (3.6 mL, 30 mmol) and ketone (1.1 mL, 10 mmol). The reaction mixture was vigorously stirred on an stir plate (20 °C, 600 rpm) for 3 h. Upon completion, the reaction mixture was monitored by ¹H NMR spectroscopy to measure the conversion of ketone. The mixture was extracted with EtOAc three times (1.5 L), washed with water three times (1.5 L), and then dried with Na₂SO₄. Upon evaporation to dryness, the chiral alcohol product was obtained in 93% isolated yield (1.15 g) as a white solid without further purification. The configuration and enantiomeric excess of the product was analyzed by SFC to be mainly the S-enantiomer in 97% e.e.

4 Preparation of Racemic Standards

4.1 Procedure for typical synthesis of racemic alcohol

The ketone (1 mmol) was dissolved in 4 mL of methanol, cooled to 0 °C in ice, and NaBH₄ (4 mmol, 152 mg) was added with stirring. The mixture was stirred at room temperature for 3 h, then 20 mL of water was added to the reaction mixture to quench the excess NaBH₄. The mixture was extracted with 30 mL of EtOAc and dried with Na₂SO₄. The alcohol product was obtained by evaporation of EtOAc and was purified by silica column chromatography eluting with hexane/EtOAc. All compounds were obtained in high chemical yields and purity, as determined by ¹H NMR spectroscopy.

4.2 Synthesis of racemic 3-hydroxy-1-phenylbutan-1-one

The racemic sample of 3-hydroxy-1-phenylbutan-1-one was synthesized following a modified literature procedure.² To a solution of NaOH (0.184 g, 4.6 mmol) in water (1 mL) and EtOH (2 mL), acetophenone (0.49 mL, 4.16 mmol) and acetaldehyde (0.3 mL. 5.3 mmol) were sequentially added. After stirring for 15 min, a saturated aqueous solution of NH₄Cl (5 mL) was added, and the solution was extracted with EtOAc. (3 × 15 mL). The residue was purified by silica gel column chromatography eluting with 30% EtOAc in hexane. 3-hydroxy-1-phenylbutan-1-one was obtained in 60% yield as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 8.01 (dt, *J* = 8.5, 1.1 Hz, 2H), 7.73 – 7.63 (m, 1H), 7.58 – 7.47 (m, 2H), 4.46 (dqd, *J* = 9.3, 6.3, 3.1 Hz, 1H), 3.37 (d, *J* = 3.1 Hz, 1H), 3.23 (ddd, *J* = 17.7, 2.8, 1.0 Hz, 1H), 3.09 (dd, *J* = 17.8, 9.0 Hz, 1H), 1.35 (d, *J* = 6.4 Hz, 3H).

4.3 Synthesis of racemic 2-hydroxy-1-phenylpropan-1-one

The racemic sample of 2-hydroxy-1-phenylpropan-1-one was synthesized following a modified literature procedure.³ To a solution of 2-bromopropiophenone (3.5 g, 16.4 mmol) in MeOH (20 mL) was added sodium formate (4.4 g, 64.8 mmol). After the mixture was refluxed for 12 h, the solvent was evaporated. The residue was extracted with EtOAc, and the resulting solution was washed with water and brine. After drying the solution with anhydrous MgSO₄, filtration and evaporation, the crude product was purified by silica gel column chromatography eluting with 10% EtOAc in hexane to give 2-hydroxy-1-phenylpropan-1-one in 90% yield as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.93 (dt, *J* = 8.5, 1.8 Hz, 2H), 7.74 – 7.59 (m, 1H), 7.51 (td, *J* = 7.8, 7.3, 1.6 Hz, 2H), 5.26 – 5.12 (m, 1H), 3.79 (d, *J* = 6.3 Hz, 1H), 1.46 (d, *J* = 7.1 Hz, 3H).

5. Detection of H₂ and HD

5.1 Procedure for detection of H₂

PhSiH₃ $\xrightarrow{\text{hCAII whole cell}}$ PhSiH_x(OH)_{3-x} + H₂ Tris Buffer in H₂O x = 0-2 3 h, 20 °C

A 4 mL vial was charged with 1 mL of the 0.1 mM solution of the hCAII enzyme in Tris buffer (50 mM in water, pH 8.0), followed by the lyophilized hCAII (3.1 mg, 0.1 µmol), and 1,000 equivalents of PhSiH₃ (12 µL, 100 µmol) relative to hCAII. The vial was sealed with a septum and incubated on an orbital shaker (20 °C, 300 rpm) for 30 min. Upon completion, 0.8 mL of benzene- d_6 was added through the septum by syringe. The vial was gently shaken to ensure that the H₂ gas in the head space dissolved. After the aqueous layer was separated from the organic layer, the benzene- d_6 solution was transferred to an evacuated J Young NMR tube via cannula. The identity of H₂ was confirmed by ¹H NMR spectroscopy

5.2 Procedure for detection of HD

PhSiH₃
$$\xrightarrow{\text{hCAII whole cell}}$$
 PhSiH_x(OD)_{3-x} + HD
Tris Buffer in **D**₂**O** $x = 0-2$
3 h. 20 °C

A 4 mL vial was charged with 1 mL of Tris buffer (50 mM, pH 8.0) that was prepared with D₂O, followed by the lyophilized hCAII (3.1 mg, 0.1 µmol), and 1,000 equivalents of PhSiH₃ (12 µL, 100 µmol) relative to hCAII. The vial was sealed with a septum and incubated on an orbital shaker (20 °C, 300 rpm) for 30 min. Upon completion, 0.8 mL of benzene-d₆ was added through the septum by syringe. The vial was gently shaken to ensure that the HD gas in the head space dissolved. After the aqueous layer was separated from the organic layer, the benzene-d₆ solution was transferred to an evacuated J Young NMR tube via cannula. The identity of HD was confirmed by ¹H NMR spectroscopy.

6. Products and Characterizations

(S)-1-(pyridin-4-yl)ethan-1-ol (2)

¹H NMR (400 MHz, CDCl₃) δ 8.83 – 8.33 (m, 2H), 7.29 – 7.26 (m, 2H), 4.88 (q, J = 6.5 Hz, 1H), 1.48 (d, J = 6.6 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 155.44, 149.61, 120.64, 68.78, 25.21.

Spectral data match those previously reported.⁴

Separation of enantiomers: SFC IC column, 20% iPrOH in scCO₂, 2.5 mL/min flow rate.

Supplementary Figure 2. SFC traces of the racemic 1-(pyridin-4-yl)ethan-1-ol (top) and the enantioenriched products of the hCAII-catalyzed reduction (bottom).

(S)-1-(pyridin-4-yl)ethan-1-d-1-ol (4)

¹H NMR (400 MHz, CDCl₃) δ 8.69 – 8.37 (m, 1H), 7.66 – 6.96 (m, 1H), 1.52 (s, 1H).

²H NMR (92 MHz, CDCl₃) δ 4.87.

¹³C NMR (151 MHz, CDCl₃) δ 155.55, 149.50, 120.68, 68.30, 25.07.

HRMS (EI+) calcd for [C₇H₈²HNO]⁺: m/z 125.0820, found 125.0819.

Optical Rotation: $[\alpha]20_D = -39.8$ (c 1.0, CH₂Cl₂)

Separation of enantiomers: HPLC OD-H column, 10% iPrOH in hexane, 1.0 mL/min flow rate.

Supplementary Figure 3. HPLC traces of the racemic 1-(pyridin-4-yl)ethan-1-*d*-1-ol (top) and the enantioenriched products of the hCAII-catalyzed reduction (bottom).

(S)-1-phenylethan-1-d-1-ol (6)

¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.39 (m, 3H), 7.39 – 7.29 (m, 2H), 1.54 (t, J = 0.9 Hz, 3H). ²H NMR (77 MHz, CDCl₃) δ 4.91

¹³C NMR (151 MHz, CDCl₃) δ 145.77, 128.55, 128.52, 127.52, 127.50, 125.42, 125.40, 70.16, 70.01, 69.87, 25.03.

Spectral data match those previously reported.^{5,6}

Separation of enantiomers: HPLC OJ-H column, 5.0% iPrOH in hexanes, 1.0 mL/min flow rate.

Supplementary Figure 4. HPLC traces of the racemic 1-phenylethan-1-*d*-1-ol (top) and the enantioenriched products of the hCAII-catalyzed reduction (bottom).

(S)-1-phenylethan-1-ol (7)

¹H NMR (400 MHz, CDCl₃) δ 7.40 - 7.31 (m, 4H), 7.30 - 7.23 (m, 1H), 4.93-4.85 (m, 1H), 1.90 (d, *J* = 3.6 Hz, 1H), 1.49 (d, *J* = 6.4 Hz, 3H).
¹³C NMR (151 MHz, CDCl₃) δ 145.97, 128.63, 127.60, 125.53, 70.53, 25.28.
Spectral data match those previously reported.⁴

Enantiomer separation: SFC OJ-H column, 5% iPrOH in scCO₂, 2.5 mL/min flow rate.

Supplementary Figure 5. SFC traces of the racemic 1-phenylethan-1-ol (top) and the enantioenriched products of the hCAII-catalyzed reduction (bottom).

(S)-1-(4-chlorophenyl)ethan-1-ol (8)

¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.81 (m, 2H), 7.43 – 7.33 (m, 2H), 4.83 (q, J = 6.5 Hz, 1H), 1.42 (d, J = 6.5 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 144.38, 133.20, 128.73, 126.92, 69.87, 25.40.

Spectral data match those previously reported.⁴

Supplementary Figure 6. SFC traces of the racemic 1-(4-chlorophenyl)ethan-1-ol (top) and the enantioenriched products of the hCAII-catalyzed reduction (bottom).

(S)-1-(4-bromophenyl)ethan-1-ol (9)

¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 8.0 Hz, 2H), 7.24 (d, J = 8.4 Hz, 2H), 4.85 (q, J = 6.0 Hz, 1H), 1.96 (s, 1H), 1.46 (d, J = 6.4 Hz, 3H).
¹³C NMR (151 MHz, CDCl₃) δ 144.88, 131.66, 127.27, 121.27, 69.88, 25.34.
Spectral data match those previously reported.⁴

Supplementary Figure 7. SFC traces of the racemic 1-(4-bromophenyl)ethan-1-ol (top) and the enantioenriched products of the hCAII-catalyzed reduction (bottom).

(S)-1-(p-tolyl)ethan-1-ol (10)

¹H NMR (400 MHz, CDCl₃) δ 7.26 (d, 2H), 7.16 (d, *J* = 7.8 Hz, 2H), 4.88 (dd, *J* = 6.5, 3.3 Hz, 1H), 2.35 (s, 3H), 1.49 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 143.04, 137.28, 129.30, 125.51, 70.38, 25.22, 21.23.

Spectral data match those previously reported.⁴

Supplementary Figure 8. SFC traces of the racemic 1-(p-tolyl)ethan-1-ol (top) and the enantioenriched products of the hCAII-catalyzed reduction (bottom).

(S)-1-(4-methoxyphenyl)ethan-1-ol (11)

¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, J = 8.7 Hz, 2H), 6.93 – 6.84 (m, 2H), 4.86 (q, J = 6.4 Hz, 1H), 3.81 (s, 3H), 1.48 (d, J = 6.4 Hz, 3H).
¹³C NMR (151 MHz, CDCl₃) δ 159.08, 138.15, 126.79, 113.96, 70.07, 55.41, 25.13.
Spectral data match those previously reported.⁷

Supplementary Figure 9. SFC traces of the racemic 1-(4-methoxyphenyl)ethan-1-ol (top) and the enantioenriched products of the hCAII-catalyzed reduction (bottom).

(S)-1-(4-(methylthio)phenyl)ethan-1-ol (12)

¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, J = 8.4 Hz, 2H), 7.25 (d, J = 8.5 Hz, 3H), 4.87 (q, J = 6.5 Hz, 1H), 2.48 (s, 3H), 1.48 (d, J = 6.4 Hz, 3H).
¹³C NMR (151 MHz, CDCl₃) δ 142.94, 137.57, 127.00, 126.12, 70.13, 25.22, 16.16.
Spectral data match those previously reported.⁴

Supplementary Figure 10. SFC traces of the racemic 1-(4-(methylthio)phenyl)ethan-1-ol (top) and the enantioenriched products of the hCAII-catalyzed reduction (bottom).

(S)-1-(2-methoxyphenyl)ethan-1-ol (13)

¹H NMR (400 MHz, CDCl₃) δ 7.34 (dd, J = 7.6, 1.7 Hz, 1H), 7.30 – 7.21 (m, 1H), 6.97 (tt, J = 7.5, 1.0 Hz, 1H), 6.89 (dd, J = 8.2, 1.1 Hz, 1H), 5.10 (q, J = 6.5 Hz, 1H), 3.87 (d, J = 0.8 Hz, 3H), 1.51 (dd, J = 6.5, 0.8 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 156.69, 133.59, 128.43, 126.23, 120.94, 110.58, 66.65, 55.40, 23.00. Spectral data match those previously reported.⁷

Enantiomer separation: SFC OJ-H column, 5% iPrOH in scCO₂, 2.5 mL/min flow rate.

1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.90 4.00 4.10 4.20 4.30 4.40 4.50 4.60 4.70 4.80 4.905.00 Retention Time [min]

Supplementary Figure 11. SFC traces of the racemic 1-(2-methoxyphenyl)ethan-1-ol (top) and the enantioenriched products of the hCAII-catalyzed reduction (bottom).

(S)-1-(3-bromophenyl)ethan-1-ol (14)

¹H NMR (400 MHz, CDCl₃) δ 7.58 (t, *J* = 1.8 Hz, 1H), 7.44 (ddd, *J* = 7.9, 2.1, 1.3 Hz, 1H), 7.34 (dt, *J* = 7.7, 1.6 Hz, 1H), 7.26 (t, *J* = 7.7 Hz, 1H), 4.92 (qd, *J* = 6.4, 3.6 Hz, 1H), 1.53 (d, *J* = 6.4 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 148.24, 130.59, 130.21, 128.69, 124.14, 122.73, 69.86, 25.36. Spectral data match those previously reported.⁴

Supplementary Figure 12. SFC traces of the racemic 1-(3-bromophenyl)ethan-1-ol (top) and the enantioenriched products of the hCAII-catalyzed reduction (bottom).

(S)-1-(2-chlorophenyl)ethan-1-ol (15)

¹H NMR (400 MHz, CDCl₃) δ 7.60 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.38 – 7.28 (m, 2H), 7.20 (td, *J* = 7.6, 1.8 Hz, 1H), 5.30 (qd, *J* = 6.4, 2.8 Hz, 1H), 1.50 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 143.20, 131.76, 129.52, 128.52, 127.34, 126.55, 67.08, 23.63. Spectral data match those previously reported.⁴

Supplementary Figure 13. SFC traces of the racemic 1-(2-chlorophenyl)ethan-1-ol (top) and the enantioenriched products of the hCAII-catalyzed reduction (bottom).

(S)-1-(2,6-dichloro-3-fluorophenyl)ethan-1-ol (16)

¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.27 (m, 1H), 7.12 – 7.03 (m, 1H), 5.62 (q, J = 6.9 Hz, 1H), 1.69 (d, J = 6.8 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 158.23, 156.58, 140.66, 129.76, 129.71, 115.85, 115.70, 68.51, 21.42.

¹⁹F NMR (376 MHz, CDCl₃) δ -113.31 (s)

Spectral data match those previously reported.8

Supplementary Figure 14. SFC traces of the racemic 1-(2,6-dichloro-3-fluorophenyl)ethan-1-ol (top) and the enantioenriched products of the hCAII-catalyzed reduction (bottom).

(S)-1-(3,5-bis(trifluoromethyl)phenyl)ethan-1-ol (17)

¹H NMR (400 MHz, CDCl₃) δ 7.89 (s, 2H), 7.83 (s, 1H), 5.22 – 4.99 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 148.33, 131.97, 125.74, 124.36, 121.41, 69.37, 25.68. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.81 (s) Spectral data match those previously reported.⁷

Enantiomer separation: HPLC AS-H column, 1% iPrOH in hexane, 1.0 mL/min flow rate.

Supplementary Figure 15. HPLC traces of the racemic 1-(3,5-bis(trifluoromethyl)phenyl)ethan-1-ol (top) and the enantioenriched products of the hCAII-catalyzed reduction (bottom). (S)-1-(naphthalen-2-yl)ethan-1-ol (18)

¹H NMR (400 MHz, CDCl₃) δ 7.88 (m, 4H), 7.56 (m, 1H), 7.54 – 7.50 (m, 2H), 5.13 (qd, *J* = 6.5, 3.5 Hz, 1H), 1.63 (d, *J* = 6.5 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 143.30, 133.46, 133.05, 128.44, 128.06, 127.80, 126.28, 125.92, 123.94, 123.93, 70.66, 25.25.

Spectral data match those previously reported.⁴

Enantiomer separation: SFC OD-H column, 10% iPrOH in scCO₂, 2.5 mL/min flow rate.

Supplementary Figure 16. SFC traces of the racemic 1-(naphthalen-2-yl)ethan-1-ol (top) and the enantioenriched products of the hCAII-catalyzed reduction (bottom).

(S)-1-phenylpropan-1-ol (19)

¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.32 (m, 4H), 7.32 – 7.27 (m, 1H), 4.60 (dd, J = 7.1, 6.1 Hz, 1H), 1.96 – 1.71 (m, 2H), 0.92 (t, J = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 144.75, 128.51, 127.59, 126.12, 76.11, 31.99, 10.26. Spectral data match those previously reported.⁷

Enantiomer separation: HPLC AD-H column, 2% iPrOH in hexane, 1.0 mL/min flow rate.

Supplementary Figure 17. HPLC traces of the racemic 1-phenylpropan-1-ol (top) and the enantioenriched products of the hCAII-catalyzed reduction (bottom).

(S)-1-(3-bromophenyl)propan-1-ol (20)

¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.50 (m, 1H), 7.44 – 7.38 (m, 1H), 7.34 (dd, *J* = 15.5, 7.6 Hz, 1H), 7.25 – 7.18 (m, 1H), 4.59 (t, *J* = 6.5 Hz, 1H), 1.88 – 1.67 (m, 2H), 0.93 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 147.05, 130.61, 130.09, 129.20, 124.72, 122.67, 75.38, 32.04, 10.09. Spectral data match those previously reported.⁹

Enantiomer separation: SFC OJ-H column, 5% iPrOH in scCO₂, 2.5 mL/min flow rate.

Supplementary Figure 18. SFC traces of the racemic 1-(3-bromophenyl)propan-1-ol (top) and the enantioenriched products of the hCAII-catalyzed reduction (bottom).

(R)-2-fluoro-1-phenylethan-1-ol (21)

¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.31 (m, 5H), 5.10 – 4.87 (m, 1H), 4.63 – 4.32 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 138.36, 138.30, 128.77, 128.54, 126.48, 87.87, 86.71, 73.14, 73.01. ¹⁹F NMR (376 MHz, CDCl₃) δ -220.73 (m)

Spectral data match those previously reported.¹⁰

Supplementary Figure 19. SFC traces of the racemic 2-fluoro-1-phenylethan-1-ol (top) and the enantioenriched products of the hCAII-catalyzed reduction (bottom).

(R)-2,2,2-trifluoro-1-phenylethan-1-ol (22)

¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.45 (m, 2H), 7.44 – 7.38 (m, 3H), 5.03 (q, J = 6.7 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 134.17, 129.64, 128.73, 127.56, 125.33, 73.03. ¹⁹F NMR (376 MHz, CDCl₃) δ -78.36 (d, J = 56.6 Hz) Spectral data match those previously reported.¹¹

Supplementary Figure 20. SFC traces of the racemic 2,2,2-trifluoro-1-phenylethan-1-ol (top) and the enantioenriched products of the hCAII-catalyzed reduction (bottom).

(S)-1-(pyridin-2-yl)ethan-1-ol (23)

¹H NMR (400 MHz, CDCl₃) δ 8.53 (dt, J = 4.9, 1.4 Hz, 1H), 7.69 (td, J = 7.7, 1.7 Hz, 1H), 7.33 – 7.26 (m, 1H), 7.20 (ddd, J = 7.4, 4.9, 1.2 Hz, 1H), 4.89 (q, J = 6.6 Hz, 1H), 1.50 (d, J = 6.6 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 163.20, 148.23, 136.95, 122.35, 119.93, 69.02, 24.32. Spectral data match those previously reported.⁷

Enantiomer separation: SFC IC column, 2% iPrOH in scCO₂, 4.0 mL/min flow rate.

Supplementary Figure 21. SFC traces of the racemic 1-(pyridin-2-yl)ethan-1-ol (top) and the enantioenriched products of the hCAII-catalyzed reduction (bottom).

(S)-1-(pyridin-3-yl)ethan-1-ol (24)

¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, J = 2.4 Hz, 1H), 8.44 (dd, J = 4.8, 1.7 Hz, 1H), 7.72 (dt, J = 8.0, 1.9 Hz, 1H), 7.26 (q, J = 4.5 Hz, 1H), 4.92 (q, J = 6.5 Hz, 1H), 1.50 (d, J = 6.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 148.21, 147.04, 141.62, 133.77, 123.77, 67.94, 25.30. Spectral data match those previously reported.⁴

Enantiomer separation: HPLC OJ-H column, 10% iPrOH in Hexane, 0.8 mL/min flow rate.

Supplementary Figure 22. SFC traces of the racemic 1-(pyridin-3-yl)ethan-1-ol (top) and the enantioenriched products of the hCAII-catalyzed reduction (bottom).

(S)-1-(pyrazin-2-yl)ethan-1-ol (**25**) $\bigvee_{N}^{OH} Me$ ¹H NMR (400 MHz, CDCl₃) δ 8.72 (s, 1H), 8.56 (m, 2H), 5.04 (q, J = 6.6 Hz, 1H), 1.62 (dd, J = 6.6, 0.8 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 158.75, 143.50, 143.23, 142.51, 68.07, 24.05.

Spectral data match those previously reported.¹²

Enantiomer separation: SFC OD column, 5% iPrOH in scCO₂, 2.5 mL/min flow rate.

Supplementary Figure 23. SFC traces of the racemic 1-(pyrazin-2-yl)ethan-1-ol (top) and the enantioenriched products of the hCAII-catalyzed reduction (bottom).

(S)-1-(5-bromopyridin-3-yl)ethan-1-ol (26)

¹H NMR (400 MHz, CDCl₃) δ 8.55 (d, J = 2.2 Hz, 1H), 8.47 (d, J = 1.9 Hz, 1H), 7.89 (t, J = 2.0 Hz, 1H), 4.93 (q, J = 6.5 Hz, 1H), 1.51 (d, J = 6.5 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 149.26, 145.22, 143.66, 136.41, 121.06, 67.08, 25.34. Spectral data match those previously reported.¹³

Supplementary Figure 24. SFC traces of the racemic 1-(5-bromopyridin-3-yl)ethan-1-ol (top) and the enantioenriched products of the hCAII-catalyzed reduction (bottom).
(S)-1-(furan-2-yl)ethan-1-ol (27)

¹H NMR (400 MHz, CDCl₃) δ 8.55 (d, *J* = 2.2 Hz, 1H), 8.47 (d, *J* = 1.9 Hz, 1H), 7.89 (t, *J* = 2.0 Hz, 1H), 4.93 (q, *J* = 6.5 Hz, 1H), 1.51 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 157.77, 141.96, 110.22, 105.19, 63.65, 21.36. Spectral data match those previously reported.¹³

Enantiomer separation: HPLC IF column, 5% iPrOH in hexane, 1.0 mL/min flow rate.

Supplementary Figure 25. HPLC traces of the racemic 1-(furan-2-yl)ethan-1-ol (top) and the enantioenriched products of the hCAII-catalyzed reduction (bottom).

(S,E)-4-(thiophen-2-yl)but-3-en-2-ol (28)

¹H NMR (400 MHz, CDCl₃) δ 7.16 – 7.10 (m, 1H), 6.96 – 6.88 (m, 2H), 6.67 (dd, J = 15.7, 1.3 Hz, 1H), 6.07 (dd, J = 15.7, 6.3 Hz, 1H), 4.42 (pd, J = 6.4, 1.3 Hz, 1H), 1.33 (d, J = 6.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 141.95, 133.29, 127.47, 125.90, 124.39, 122.71, 68.69, 23.45. Spectral data match those previously reported.¹⁴

Enantiomer separation: SFC OJ-H column, 5% iPrOH in scCO₂, 2.5 mL/min flow rate.

Supplementary Figure 26. SFC traces of the racemic E-4-(thiophen-2-yl)but-3-en-2-ol (top) and the enantioenriched products of the hCAII-catalyzed reduction (bottom).

(S)-3-hydroxy-1-phenylbutan-1-one (29)

¹H NMR (400 MHz, CDCl₃) δ 8.01 (dt, *J* = 8.5, 1.1 Hz, 2H), 7.73 – 7.63 (m, 1H), 7.58 – 7.47 (m, 2H), 4.46 (dqd, *J* = 9.3, 6.3, 3.1 Hz, 1H), 3.37 (d, *J* = 3.1 Hz, 1H), 3.23 (ddd, *J* = 17.7, 2.8, 1.0 Hz, 1H), 3.09 (dd, *J* = 17.8, 9.0 Hz, 1H), 1.35 (d, *J* = 6.4 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 201.00, 136.84, 133.69, 128.83, 128.21, 64.18, 46.63, 22.56. Spectral data match those previously reported.¹⁵

Enantiomer separation: SFC OJ-H column, 5% iPrOH in scCO₂, 2.5 mL/min flow rate.

Supplementary Figure 27. SFC traces of the racemic 3-hydroxy-1-phenylbutan-1-one (top) and the enantioenriched products of the hCAII-catalyzed reduction (bottom).

(S)-2-hydroxy-1-phenylpropan-1-one (30)

¹H NMR (400 MHz, CDCl₃) δ 7.93 (dt, *J* = 8.5, 1.8 Hz, 2H), 7.74 – 7.59 (m, 1H), 7.51 (td, *J* = 7.8, 7.3, 1.6 Hz, 2H), 5.26 – 5.12 (m, 1H), 3.79 (d, *J* = 6.3 Hz, 1H), 1.46 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 202.52, 134.12, 133.48, 129.01, 128.79, 69.46, 22.43. Spectral data match those previously reported.¹⁶

Enantiomer separation: SFC OD-H column, 5% iPrOH in scCO₂, 2.5 mL/min flow rate.

Supplementary Figure 28. SFC traces of the racemic 2-hydroxy-1-phenylpropan-1-one (top) and the enantioenriched products of the hCAII-catalyzed reduction (bottom).

(S)-1-(2-bromophenyl)ethan-1-ol (**32**)

¹H NMR (400 MHz, CDCl₃) δ 7.63 (dd, J = 7.8, 1.8 Hz, 1H), 7.56 (dd, J = 8.0, 1.3 Hz, 1H), 7.38 (td, J = 7.5, 1.2 Hz, 1H), 7.17 (ddd, J = 8.0, 7.3, 1.8 Hz, 1H), 5.28 (q, J = 6.4 Hz, 1H), 1.53 (d, J = 6.4 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 144.73, 132.78, 128.89, 127.98, 126.79, 121.84, 69.31, 23.70. Spectral data match those previously reported.⁷

Enantiomer separation: SFC OJ-H column, 5% iPrOH in scCO₂, 2.5 mL/min flow rate.

Supplementary Figure 29. SFC traces of the racemic 1-(2-bromophenyl)ethan-1-ol (top) and the enantioenriched products of the hCAII-catalyzed reduction (bottom).

7. QM/MM Study of hCAII Catalytic Intermediates

7.1 Complex of ZnOH-hCAII Docked by Phenylsilane

The binding mode of phenylsilane to the active site in ZnOH-hCAII was simulated in three steps. In step one, the starting structure for phenylsilane-hCAII complex was generated through docking. In step 2, the structure of the docking complex was equilibrated through Molecular Dynamics (MD). In step 3, the most frequent trajectory was further optimized through QM/MM calculations.

Generation of the initial structure with Glide Docking

Protein structure with the PDB code of 1BN1 was used as the starting structure for the calculations. Protein preparation module in Schrödinger^{17,18} was used to correct errors in the crystal structure and add hydrogen atoms. The Hg ion coordinating to cysteine was replaced with two protons to ensure accuracy of the structure. Protonation states were simulated at pH of 7.0, and water molecules beyond 5 Å from the protein were deleted for clarity. The hydrogen-bonding interactions within the protein were optimized with the OPLS_2005 force field¹⁹ to generate an accurate structure for the protein receptor. Then, the native sulfamide anion was replaced with a hydroxide group, followed by receptor grid generation with a box length of 20 Å centering at the Zn atom.

The phenylsilane ligand was built and prepared with the same force field with the Ligprep module.²⁰ Docking of the ligands into the hCAII enzymatic active site was performed using the Glide Dock module in Maestro.²¹ For optimization of the structure with the phenylsilane docked, the ligand was set to be flexible, and the docking was performed at the XP (extra precision) level with the same OPLS_2005 force field.¹⁹ The most stable docking complex was exported and used for the MD simulations.

Classical MD Simulations

MD simulations was performed using the Desmond program of the Schrödinger package.^{22,23} Each protein was immersed in a pre-equilibrated truncated cubic box with a 10 Å buffer of TIP3P²⁴ water molecules using the System Builder panel of Desmond,²¹ resulting in the addition of around 7,500 solvent molecules. The systems were neutral, therefore do not need the addition of explicit counter ions (Na⁺ or Cl⁻). All subsequent calculations were done using the OPLS_2005 force field.¹⁹ The system was equilibrated in two stages. In the first stage, the systems were gently heated using six 50-ps steps, incrementing the temperature by 50 K for each step (0–300 K); The system was simulated with a weak restraint of 15 kcal/mol/Å on the solute using the NPT ensemble, ²⁵ at the target temperature of 300 K and target pressure of 1.013 bar. In the second stage, the system was equilibrated for 1.2 ns without constraints. Trajectories were processed and analyzed using the

Trajectory Frame Clustering panel of Desmond.⁴ The most populated conformational snapshot extracted from the classical MD trajectory was selected for the subsequence QM/MM simulations.

QM/MM Simulations

QM/MM simulations were performed using the QSite program²⁶⁻²⁸ in the Schrödinger package 2020-2. The QM/MM methodology (an additive scheme) with hydrogen caps on boundary QM atoms and electrostatic treatment at the interface between the QM and MM regions using Gaussian charge distributions represented on a grid was employed.^{9,10} The QM region has 51 atoms in total, including the Zinc hydroxide (3 atoms), three histidine side chains (33 atoms), and the docked phenylsilane (15 atoms). The QM region was simulated with the (R)B3LYP functional,^{29,30} with the Los Alamos National Laboratory effective core potential (LACVP*) basis set.^{31,32} In the LACVP* basis set the valence electrons are described by the Pople's split-valence basis set 6-31G(d) augmented by polarization on all atoms.³³ MM calculations were conducted for all other atoms with the OPLS_2005 force field with no cut-offs introduced for nonbonding interactions. No atom in the system was frozen or restrained during the optimization. Convergence thresholds for the energy and gradient change were set to be 5×10^{-5} Hartree and 4.5×10^{-4} Hartree·Bohr⁻¹, respectively. The structure optimization for PhSiH₃-ZnOH-hCAII converged with energy change of -3.4628×10^{-5} hartree.

Supplementary Figure 30. Atoms in the QM region were shown in ball-and-stick format. All other atoms are in the MM region. The hanging bonds between C α and C β of histadine were hydrogen-capped for QM/MM simulation.

Supplementary Figure 31. (a) The structure of ZnOH-hCAII (gray) docked to phenylsilane optimized by QM/MM overlayed with the structure of hCAII bound by thiophene-2,5-disulfonic acid 2-amide-5-(4-methyl-benzylamide) as inhibitor (pdb 1BN1, green). The protein backbone of the two complexes are almost identical, indicating the QM/MM calculation well reproduced the protein structure. (b) The triagonal bipyramidal geometry around Zn center. (c) The Si atom closely contacts the hydroxide group with a bond distance of 1.78 Å, forming a pentacoordinate trigonal bipyramidal silicon center.

7.2 Complex of ZnH-hCAII docked by acetophenone and 2'-Bromoacetophenone

The binding mode of acetophenones to the active site in ZnH-hCAII was simulated in three steps using almost idental procedure in simulating the complex of phenylsilane with ZnOH-hCAII. In step one, the starting structure for acetophenone-hCAII complex was generated through docking.

In step 2, the structure of the docking complex was equilibrated through Molecular Dynamics (MD). In step 3, the most frequent trajectory was further optimized through QM/MM calculations.

Generation of the initial structure with Glide docking

Protein structure with the PDB code of 1BN1 was used as the starting structure for the calculations. Protein preparation module in Schrödinger^{17,18} was used to correct errors in the crystal structure and add hydrogen atoms. The Hg ion coordinating to cysteine was replaced with two protons to ensure accuracy of the structure. Protonation states were simulated at pH of 7.0, and water molecules beyond 5 Å from the protein were deleted for clarity. The hydrogen-bonding interactions within the protein were optimized with the OPLS_2005 force field¹⁹ to generate an accurate structure for the protein receptor. Then, the native sulfamide anion was replaced with a hydride, followed by receptor grid generation with a box length of 20 Å centering at the Zn atom.

The ligand was built and prepared with the same force field with the Ligprep module.²⁰ Docking of the ligands into the hCAII enzymatic active site was performed using the Glide Dock module in Maestro.²¹ For optimization of the structure with the ketone docked, the ligand was set to be flexible, and the docking was performed at the XP (extra precision) level with the same OPLS_2005 force field. The most stable docking complex was exported and used for the MD simulations.

Classical MD Simulations

MD simulations was performed using the Desmond program of the Schrödinger package.^{22,23} Each protein was immersed in a pre-equilibrated truncated cubic box with a 10 Å buffer of TIP3P²⁴ water molecules using the System Builder panel of Desmond, ²¹ resulting in the addition of around 7,500 solvent molecules. The systems were neutral, therefore do not need the addition of explicit counter ions (Na⁺ or Cl⁻). All subsequent calculations were done using the OPLS_2005 force field.¹⁹ The system was equilibrated in two stages. In the first stage, the systems were gently heated using six 50-ps steps, incrementing the temperature by 50 K for each step (0–300 K); The system was simulated with a weak restraint of 15 kcal/mol/Å on the solute using the NPT ensemble, ²⁵ at the target temperature of 300 K and target pressure of 1.013 bar. In the second stage, the system was equilibrated for 1.2 ns without constraints. Trajectories were processed and analyzed using the Trajectory Frame Clustering panel of Desmond.⁴ The most populated conformational snapshot extracted from the classical MD trajectory was selected for the subsequence QM/MM simulations.

QM/MM Calculations

QM/MM simulations were performed using the QSite program²⁶⁻²⁸ in the Schrödinger package 2020-2. The QM/MM methodology (an additive scheme) with hydrogen caps on boundary QM atoms and electrostatic treatment at the interface between the QM and MM regions using

Gaussian charge distributions represented on a grid was employed.^{9,10} The QM region has 52 atoms in total, including the Zinc hydride (2 atoms), three histidine side chains (33 atoms), and the docked acetophenone or 2'-bromoacetophenone (17 atoms). The QM region was simulated with the (R)B3LYP functional,^{29,30} with the Los Alamos National Laboratory effective core potential (LACVP*) basis set.^{31,32} In the LACVP* basis set the valence electrons are described by the Pople's split-valence basis set 6-31G(d) augmented by polarization on all atoms.³³ MM calculations were conducted for all other atoms with the OPLS_2005 force field with no cut-offs introduced for nonbonding interactions. No atom in the system was frozen or restrained during the optimization. Convergence thresholds for the energy and gradient change were set to be 5×10^{-5} Hartree and 4.5×10^{-4} Hartree ·Bohr⁻¹, respectively. The structure optimization of acetophenone-ZnH-hCAII converged with energy change of -3.0778×10^{-5} Hartree.

The optimized structure contains a strong hydrogen-bonding interaction of the carbonyl group to the amide N-H of Thr199, with a bond distance of 2.28 Å. The Thr199 amide N-H is the major functional group in the binding site of the the native enzyme ineracting with carbon dioxide, the native substrate. The ketone was placed in an ideal geometry for concerted hydride and proton transfer to form the corresponding (S)-1-phenylethan-1-ol.

Supplementary Figure 32. Atoms in the QM region were shown in ball-and-stick format. All other atoms are in the MM region. The hanging bonds between C α and C β of histadine were hydrogen-capped for QM/MM simulation.

Supplementary Figure 33. The structure of ZnH-hCAII (gray) docked with acetophenone optimized by QM/MM overlayed with hCAII bound by thiophene-2,5-disulfonic acid 2-amide-5-(4-methyl-benzylamide) as inhibitor (pdb 1BN1, green). The protein backbone of the two complexes are almost identical, indicating the QM/MM calculation well reproduced the protein structure. A more detailed figure showing the accurate interactions of acetophenone with neighboring residues was included in Figure 4c.

7.3 Cartesian coordinates QM/MM optimized structures in xyz format

hCAII-ZnOH-PhSiH3 (QM region + Hydrogen Cap)

atom	X	У	Z
C1	-1.5314610264	5.8304157448	0.4568552644
N2	-0.7843192035	4.8768752071	1.0313055561
C3	-0.4676158868	4.7822335896	2.4511338982
C4	0.8552285102	4.0204787740	2.6249591689

05	1.0867675528	3.0165166717	1.9497163765
C6	-1.6609016778	4.1377648453	3.2107019052
C7	-1.9923868313	2.7174595248	2.8820810344
N8	-2.9190803073	2.3083663789	1.9412669331
С9	-1.5180298326	1.5608950171	3.4416086306
C10	-2.9662664827	0.9536923342	1.9629384733
N11	-2.1193531924	0.4651156189	2.8618318281
H12	-0.3701994312	4.1801496571	0.4269236446
Н13	-0.3126357305	5.7949576168	2.8352979578
H14	-2.5201590685	4.7912785717	3.0499873457
H15	-1.4340279382	4.1883231570	4.2813733936
H16	-3.4576094406	2.9275411720	1.3300132842
H17	-0.7647367535	1.4606132328	4.2050998392
H18	-3.6040528443	0.3642000452	1.3213125679
N19	1.6992533204	4.4680469558	3.5640807953
C20	2.6521581224	2.8896609780	5.2111243979
N21	3.6460030506	2.0467670367	5.5296870068
C22	3.7099107531	1.1581279496	6.6831787798
C23	5.1084691383	1.2152789807	7.3079014872
024	6.0777518744	1.5271443158	6.6201628218
C25	3.2898266710	-0.2892639666	6.3009935436
C26	1.8702569535	-0.4503909674	5.8547471217
N27	0.7802405819	-0.3248088764	6.6987284735
C28	1.3444259710	-0.7659021605	4.6260345674
C29	-0.3371399329	-0.5446389084	5.9842626578
N30	-0.0360464960	-0.8168559816	4.7211233355
Н31	4.4791738340	2.0860144471	4.9582526301
Н32	3.0289766683	1.5370743808	7.4466188687
Н33	3.4934817755	-0.9556798838	7.1513084904
Н34	3.9439893911	-0.6123158755	5.4880385490
Н35	0.7875290200	-0.0437533587	7.6810347531
Н36	1.8696158050	-0.9537638964	3.6982841286
Н37	-1.3260146658	-0.4964552164	6.4153022776
N38	5.1921026496	0.9520490674	8.6198880561
C39	4.9046627121	-5.6458877334	5.8816846207
N40	3.7715354592	-5.5719635593	5.1576695325
C41	2.6434094720	-6.5006629376	5.2267414137

C42	3.0409920951	-7.8534881991	4.5950895561
043	2.9330448899	-8.8945789150	5.2427744841
C44	1.3972534336	-5.8855270874	4.5204647796
C45	1.0092116223	-4.3984818441	4.7800374862
C46	-0.4993555044	-4.2534165670	5.1611658791
047	-1.1942682585	-3.3692261387	4.5555468261
048	-0.9204610105	-5.0256422158	6.0543477902
H49	3.6756453832	-4.8224837414	4.4925504881
Н50	2.4019782095	-6.6491303333	6.2797781003
Н51	0.5500161207	-6.5047063894	4.8411884669
Н52	1.5063724490	-6.0238040612	3.4346782643
Н53	1.2590617196	-3.7811427326	3.9149538084
Н54	1.5679199083	-3.9616591070	5.6117918132
N55	3.6017893529	-7.8201664038	3.3711252386
C56	3.0448604756	0.7479247978	-0.3807262343
N57	1.7958230280	1.2414522984	-0.4028803808
C58	0.5921942528	0.6412779571	-0.9683609103
C59	-0.1860545701	1.7318681208	-1.7126027206
060	-1.0161949473	2.4153897473	-1.1144846852
C61	-0.2253921058	-0.0618774577	0.1520690582
C62	0.1396968764	-1.4866150803	0.4485172765
N63	-0.4220338883	-2.1651647100	1.5321271432
C64	0.9496522200	-2.3620435817	-0.2147268149
C65	0.0733898314	-3.4006885937	1.5036674871
N66	0.8848323551	-3.5542459552	0.4519673057
Н67	1.6741989679	2.1665693447	-0.0137022288
Н68	0.8686045848	-0.0854087192	-1.7353930184
Н69	-1.2906846091	-0.0316965295	-0.1181720076
Н70	-0.1281201202	0.5588298231	1.0477136492
H71	1.6392134772	-2.2379512203	-1.0274256808
Н72	-0.1734830150	-4.1718879211	2.2135040122
Н73	1.5650742687	-4.2985729853	0.2890593785
N74	0.1016383851	1.8785959728	-3.0170923385
Zn75	-1.4114996316	-1.6091719965	3.2739904247
Si76	-4.8627898768	-2.5978670959	2.1114259364
C77	-6.5172157269	-1.6964923583	1.7029687100
C78	-7.5660650157	-1.5654471651	2.6299451749

C79	-8.7567441106	-0.9095664113	2.3048114182
C80	-8.9393951509	-0.3886110665	1.0214805854
C81	-7.9186878135	-0.5166716365	0.0741144904
C82	-6.7207523606	-1.1471475048	0.4234149414
Н83	-9.8695965564	0.1136876031	0.7626188687
084	-3.5116283747	-2.1465517146	3.1665495528
Н85	-4.8828209006	-4.0454239207	1.4869064172
Н86	-4.0971260514	-2.0024361866	0.9375294696
Н87	-5.5210087969	-3.2039753515	3.4360986800
H88	-7.4562269855	-1.9817380372	3.6267822681
Н89	-9.5383157411	-0.8115570748	3.0552508564
Н90	-8.0595461314	-0.1293610103	-0.9322223567
Н91	-5.9218678904	-1.2240491034	-0.3120336923
Н92	-3.6237168244	-2.5942901038	4.0211783563
Н93	-0.8102270199	4.5971964691	2.6692178287
Н94	3.5892980010	0.7425589483	6.5734473828
Н95	2.2856184587	-6.3240477527	5.0239582752
Н96	0.3574523404	0.4393909697	-0.6466678307

hCAII-ZnH-PhC(O)Me (QM region + Hydrogen cap)

atom	х	У	Z
C1	-3.7127176766	4.6581194448	6.5755158970
N2	-3.9698714984	3.7918261017	5.5851812576
C3	-5.1905959921	3.7747175717	4.7917369740
C4	-5.4496887446	2.3909997381	4.1848373791
05	-4.5174479155	1.7062407733	3.7650462567
C6	-5.1822941475	4.8840690485	3.7050346097
C7	-4.0610223285	4.8127964759	2.7213690152
N8	-2.8818851787	5.5155723652	2.8745848791
C9	-3.9015987791	4.0865545869	1.5700987092
C10	-2.0692165181	5.1958650537	1.8444472132
N11	-2.6542557790	4.3261215050	1.0362006669
H12	-3.2907018993	3.0632714230	5.4089448668
H13	-6.0273636038	3.9695146157	5.4700540448
H14	-5.1449379134	5.8352722078	4.2350026279
H15	-6.1418946871	4.8475176080	3.1809973502

H16	-2.6700323419	6.1951316503	3.6099858001
H17	-4.5922139247	3.3987565177	1.1059227777
H18	-1.0850161018	5.6175425699	1.7082825989
N19	-6.7323546432	2.0334783113	4.0472689467
C20	-7.3122360132	1.1258844686	1.8290921326
N21	-7.3093232607	0.0412035911	1.0394632889
C22	-7.7510512642	0.0026595750	-0.3492929400
C23	-8.6142149069	-1.2492949590	-0.5275322018
024	-8.1590407056	-2.3440646945	-0.2081170024
C25	-6.5898110841	0.0150131132	-1.3777282695
C26	-5.7065444532	1.2231621491	-1.3795367941
N27	-5.8285971527	2.2567980054	-2.2815373474
C28	-4.5302176860	1.4652970800	-0.7212438289
C29	-4.7523528782	3.0531455648	-2.1774364921
N30	-3.9304758710	2.6070319709	-1.2308322127
H31	-7.2296881860	-0.8536836774	1.5041778299
Н32	-8.3926269325	0.8661177310	-0.5375749493
Н33	-6.9917467654	-0.1210644669	-2.3846529661
H34	-5.9608391525	-0.8582037258	-1.1822331143
Н35	-6.5773243043	2.3842657227	-2.9698971443
Н36	-4.0526428888	0.8480674285	0.0229992702
Н37	-4.6065677251	3.9300191028	-2.7882775744
N38	-9.8356477739	-1.0771639628	-1.0472565440
C39	-2.8314372725	-1.7458117840	3.8594039760
N40	-2.4929948439	-0.4440190885	3.8809640573
C41	-1.1521409103	0.1321181767	3.7558079517
C42	-0.8431143073	0.8774408530	5.0635291901
043	-1.5516241605	1.8265946142	5.4010164282
C44	-1.1202118718	1.1730502115	2.5999376855
C45	-1.1850430475	0.5377630325	1.2349701095
N46	-1.3835353463	1.2873933541	0.0738288270
C47	-1.1473795901	-0.7867140165	0.8735665420
C48	-1.4939520478	0.3990361251	-0.9244123625
N49	-1.3410222852	-0.8445197004	-0.4771190785
Н50	-3.2224449979	0.2052948750	4.1409511425
Н51	-0.3919028175	-0.6359343003	3.6024882052
Н52	-0.2082496273	1.7867427294	2.6937819688

Н5З	-1.9683812120	1.8534909510	2.7315850559
H54	-1.0393115596	-1.6923892534	1.4446960741
H55	-1.7575065597	0.6094122348	-1.9496519258
Н56	-1.5886109458	-1.7420670245	-1.0078123973
N57	0.2306798999	0.4757761172	5.7620533975
Zn58	-1.9804515576	3.1799464883	-0.6752167282
C59	1.5220417874	6.0163179244	-1.5476720056
C60	1.4236996431	7.3618600603	-0.9009273805
C61	1.6947827242	7.5696998127	0.4614906501
C62	1.6373498868	8.8533846555	1.0036575743
C63	1.3036476528	9.9414919148	0.1937287153
C64	1.0244628624	9.7424404032	-1.1623275970
C65	1.0892332919	8.4635000250	-1.7076566669
Н66	1.2667911944	10.9413826559	0.6191099958
Н67	-0.8095141582	4.0898925381	-1.5030152020
068	1.2484556523	5.8829843508	-2.7363909792
Н69	1.9533781157	6.7368636339	1.1065316020
Н70	1.8749419228	9.0042610377	2.0532373319
H71	0.7551209538	10.5818678484	-1.7970409245
H72	0.8857612319	8.3037209295	-2.7605884990
C73	1.9589059409	4.8176300615	-0.7414105142
Н74	1.0447350097	4.3286886887	-0.3749074801
Н75	2.4494075518	4.0979285723	-1.4030034433
Н76	2.6204905867	5.0533639827	0.0942763238
H77	-5.1882124018	4.0932298420	4.4797276204
Н78	-7.4176409305	0.0062064703	-0.6445729108
Н79	-1.1429735808	0.4309861483	3.4239394047

hCAII-ZnH-2BrPhC(O)Me conformation 1 (QM region + Hydrogen cap)

atom	Х	У	Z
C1	-3.8155947354	4.3345596147	6.6496642754
N2	-4.0829396701	3.4330615034	5.6917719480
C3	-5.3019934282	3.4127239276	4.8897602422
C4	-5.5655529126	2.0267223836	4.2798730665
05	-4.6372773768	1.3554645627	3.8282447650
C6	-5.2978445031	4.5227743244	3.8039264083

С7	-4.1340643160	4.5110144007	2.8706064122
N8	-3.0291156699	5.3240664155	3.0396555015
С9	-3.8852754429	3.7900299324	1.7334367678
C10	-2.1696922769	5.0709832566	2.0270777860
N11	-2.6577332128	4.1446139871	1.2179121745
H12	-3.4356159905	2.6644737047	5.5764881357
H13	-6.1392742896	3.6093604755	5.5669851135
H14	-5.3150026115	5.4723249513	4.3371971388
H15	-6.2323976080	4.4480480575	3.2361700016
H16	-2.8879913487	6.0111740446	3.7820880333
H17	-4.4947147294	3.0280912183	1.2707195256
H18	-1.2206848031	5.5733611093	1.9117833852
N19	-6.8496128915	1.6526206897	4.1733100514
C20	-7.5194169616	0.7665318551	1.9609979744
N21	-7.6979535116	-0.3029654928	1.1675427992
C22	-7.8514047782	-0.3093989757	-0.2859874336
C23	-8.7443620977	-1.4944371460	-0.6885805715
024	-8.2378340254	-2.5221759920	-1.1384206239
C25	-6.4631334361	-0.3012066344	-1.0028611846
C26	-5.6474609063	0.9531694187	-1.0113800483
N27	-5.9421266744	2.0990688560	-1.7272068366
C28	-4.3616487856	1.1338341429	-0.5754982193
C29	-4.8659133630	2.9060563891	-1.7271637781
N30	-3.8718556332	2.3540313371	-1.0316855577
H31	-7.7906156831	-1.1983747108	1.6284707148
Н32	-8.4014937801	0.5859943620	-0.5726787374
Н33	-6.5791209189	-0.6135376859	-2.0435887120
H34	-5.8449069868	-1.0875465684	-0.5739272543
Н35	-6.8130731494	2.3097714456	-2.2167000333
Н36	-3.7600165208	0.4001273249	-0.0639988905
Н37	-4.8503759947	3.8652979155	-2.2227251393
N38	-10.0629858389	-1.3318973147	-0.5052117618
C39	-2.7761025601	-1.9415758827	3.8678628208
N40	-2.4397833893	-0.6426023551	3.9738235229
C41	-1.1065234827	-0.0426557224	3.8558621593
C42	-0.8272569340	0.6708506934	5.1898715593
043	-1.5045851069	1.6503724294	5.5015262962

C44	-1.0852194891	1.0283302397	2.7240109230
C45	-1.0370655639	0.4479771879	1.3347974828
N46	-1.2235575530	1.2355574627	0.1929663694
C47	-0.9503511798	-0.8575973129	0.9270046136
C48	-1.3004892791	0.3739409077	-0.8316954766
N49	-1.1053773546	-0.8757470977	-0.4307686801
Н50	-3.1456875544	-0.0324273293	4.3632556899
Н51	-0.3320724599	-0.7965696762	3.6972972445
Н52	-0.2338476827	1.7112684367	2.8886515881
Н53	-1.9914071405	1.6352707555	2.8317292633
Н54	-0.8652513014	-1.7838471116	1.4664277500
Н55	-1.6003978912	0.5940660174	-1.8442990845
Н56	-1.4774663128	-1.7274301460	-0.9629189081
N57	0.1754623141	0.2021177506	5.9500506863
Zn58	-1.9492263289	3.0699567478	-0.5360783022
C59	1.4300982982	6.3198351821	-1.7150383599
C60	1.3818660929	7.7943118433	-1.3685054215
C61	1.4590125057	8.4062481932	-0.1075969494
C62	1.4489614672	9.7930878790	0.0438122866
C63	1.3570772257	10.6121012484	-1.0797828486
C64	1.2632369812	10.0400306973	-2.3486665559
C65	1.2777660246	8.6575522139	-2.4799071511
Н66	1.3423473995	11.6914291973	-0.9526184837
Н67	-0.8234096728	4.0915060053	-1.3456285891
068	1.0737653041	5.9893720814	-2.8388772354
Br69	1.5078659323	7.4043997594	1.5818461559
Н70	1.5036551836	10.2250772740	1.0370818699
H71	1.1580516965	10.6580028095	-3.2339287506
Н72	1.1952720017	8.2060058341	-3.4612000823
C73	1.9631612271	5.2628529692	-0.7810337729
Н74	1.1316267689	4.8815865173	-0.1744036973
Н75	2.3043375165	4.4207459629	-1.3882381054
Н76	2.7656639095	5.6115003741	-0.1286632559
Н77	-5.3008022065	3.7314368688	4.5780002574
Н78	-7.4528102244	-0.3070468256	-0.4918131712
Н79	-1.1004067708	0.2648412047	3.5308898539

atom	Х	У	Z
C1	-11.9466917703	0.6806996591	10.4684354225
N2	-11.3898287262	-0.3519444007	11.1082217024
C3	-10.5084661439	-1.3504828606	10.5203097741
C4	-10.6872963461	-2.7032393347	11.2252031395
05	-11.2173774842	-2.7552940132	12.3360286561
C6	-9.0410813809	-0.8543210853	10.4950051538
C7	-8.4102723944	-0.6390898478	11.8271348590
N8	-8.5163957171	0.5588028760	12.5054142442
С9	-7.6680593603	-1.4517701307	12.6440120220
C10	-7.8521183469	0.4448350178	13.6774895562
N11	-7.3339253908	-0.7705173696	13.7985930754
H12	-11.6183996526	-0.4868978784	12.0932416842
H13	-10.8342563121	-1.5069007343	9.4883414064
H14	-9.0524293638	0.0842605634	9.9383922725
H15	-8.4454072714	-1.5527478588	9.9083286539
H16	-8.9712449299	1.4036984523	12.1427814614
H17	-7.3686577792	-2.4773264625	12.4872619322
H18	-7.7659678497	1.2409828922	14.4029417811
N19	-10.2318372966	-3.7882075166	10.5932185447
C20	-8.8256942756	-5.6535482317	11.3137003858
N21	-8.6054039146	-6.4690670286	12.3464781814
C22	-7.4625413812	-7.3557399940	12.5170208531
C23	-7.9817134502	-8.7967402447	12.3719715511
024	-9.1211646947	-9.0623896821	12.7597255628
C25	-6.8584479851	-7.1892733296	13.9377457713
C26	-6.3290663765	-5.8014400548	14.1547354946
N27	-5.0430064782	-5.3903705375	13.8565619295
C28	-6.9560648804	-4.6699734211	14.6120454837
C29	-4.9336379856	-4.0749484735	14.1362579891
N30	-6.0810979730	-3.5997038874	14.5953755370
Н31	-9.3704843382	-6.6121377233	13.0060125152
Н32	-6.7152630035	-7.1586942269	11.7527203847
Н33	-6.0731659039	-7.9378980034	14.0945605666
Н34	-7.6475768731	-7.3895148968	14.6687210221

Н35	-4.2642870258	-5.9618019615	13.5335869992
Н36	-7.9793117476	-4.5637731780	14.9402587358
Н37	-4.0173657942	-3.5176005306	14.0200870241
N38	-7.1824476206	-9.7111631252	11.8136433323
C39	-12.7677366540	-3.8816939440	15.4110190448
N40	-12.0436335212	-2.8444225877	14.9870224345
C41	-11.7384054957	-1.6412535308	15.7391637418
C42	-12.4283866107	-0.4665941974	15.0320323396
043	-12.0846797582	-0.1393343553	13.8958975926
C44	-10.2041722691	-1.4227534682	15.7351396790
C45	-9.4744619789	-2.3610235835	16.6563170604
N46	-8.0889945292	-2.3856193736	16.7106565138
C47	-9.9510552323	-3.2648514239	17.5730303583
C48	-7.7571582272	-3.2730515230	17.6437244303
N49	-8.8568317381	-3.8213112016	18.1879714299
Н50	-11.7494494935	-2.8382244943	14.0085374389
Н51	-12.1079331886	-1.6948095358	16.7644008926
Н52	-9.9705082821	-0.3861952192	16.0107877807
Н5З	-9.8518873133	-1.5518484327	14.7063771267
Н54	-10.9480412843	-3.5637483534	17.8453245747
Н55	-6.7496071348	-3.5124453600	17.9429368687
Н56	-8.9292628712	-4.5866894776	18.8924372455
N57	-13.4055751196	0.1561214931	15.6948607905
Zn58	-6.3973880593	-1.6812143995	15.5192783051
C59	-6.1479869174	2.4664472022	16.5138472244
C60	-5.2776332204	3.4026580137	15.7067997745
C61	-5.7520945047	4.7188263490	15.5749527425
C62	-5.0302828527	5.6867365747	14.8848735587
C63	-3.8105758295	5.3468995377	14.2959474932
C64	-3.3297978333	4.0405896073	14.3885555811
C65	-4.0626490932	3.0795681790	15.0864537892
H66	-3.2412127313	6.0915441925	13.7461362684
Н67	-5.3536838064	-0.8505845712	16.4287502627
068	-7.3455199402	2.4159071998	16.2759453192
Н69	-6.6950507686	4.9697362968	16.0458053511
Н70	-5.4266412873	6.6926591528	14.7958741881
H71	-2.3984854045	3.7525344118	13.9136358203

Br72	-3.4233818903	1.2458494814	15.0587905143
C73	-5.5871104662	1.7412053680	17.7171859323
Н74	-6.0547711879	0.7592289150	17.8043558392
Н75	-4.5059835723	1.6129500582	17.6746537039
Н76	-5.8593832941	2.3486577072	18.5925387499
Н77	-10.0871568817	-1.2080270053	10.5130444193
Н78	-7.2890966587	-7.3079447945	12.9249333395
Н79	-11.2979029873	-1.5785187236	15.7380083700

8. NMR Spectra

160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 f1 (ppm)

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

100 -101 -102 -103 -104 -105 -106 -107 -108 -109 -110 -111 -112 -113 -114 -115 -116 -117 -118 -119 -120 -121 -122 -123 -124 -125 -126 f1 (ppm)

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

9. References

- 1. Key, H. M., Clark, D. S. & Hartwig, J. F. Generation, characterization, and tunable reactivity of organometallic fragments bound to a protein ligand. *J. Am. Chem. Soc.* **137**, 8261-8268 (2015).
- 2. Vitale, P. *et al.* Asymmetric chemoenzymatic synthesis of 1,3-diols and 2,4-disubstituted aryloxetanes by using whole cell biocatalysts. *Org. Biomol. Chem.* **14**, 11438-11445 (2016).
- Kang, S., Han, J., Lee, E. S., Choi, E. B. & Lee, H.-K. Enantioselective synthesis of cyclic sulfamidates by using chiral rhodium-catalyzed asymmetric transfer hydrogenation. *Org. Lett.* 12, 4184-4187 (2010).
- 4. Yu, J. *et al.* Iridium-catalyzed asymmetric hydrogenation of ketones with accessible and modular ferrocene-based amino-phosphine acid (f-ampha) ligands. *Org. Lett.* **19**, 690-693 (2017).
- Kenso, S., Yuji, H. & Shuichi, S. Catalytic asymmetric synthesis of optically active secondary alcohols deuterated on the secondary carbon by the enantioselective alkylation of aldehydes. *Bull. Chem. Soc. Jpn.* 65, 1734-1735 (1992).
- Rowbotham, J. S., Ramirez, M. A., Lenz, O., Reeve, H. A. & Vincent, K. A. Bringing biocatalytic deuteration into the toolbox of asymmetric isotopic labelling techniques. *Nat. Commun.* 11, 1454 (2020).
- 7. Chen, X. & Lu, Z. Iminophenyl oxazolinylphenylamine for enantioselective cobalt-catalyzed hydrosilylation of aryl ketones. *Org. Lett.* **18**, 4658-4661 (2016).
- Widegren, M. B., Harkness, G. J., Slawin, A. M. Z., Cordes, D. B. & Clarke, M. L. A highly active manganese catalyst for enantioselective ketone and ester hydrogenation. *Angew. Chem. Int. Ed.* 56, 5825-5828 (2017).
- Sappino, C. *et al.* New chiral amino alcohol ligands for catalytic enantioselective addition of diethylzincs to aldehydes. *Org. Biomol. Chem.* 16, 1860-1870 (2018).
- Fuglseth, E., Sundby, E., Bruheim, P. & Hoff, B. H. Asymmetric reduction using (r)-mecbs and determination of absolute configuration of para-substituted 2-fluoroarylethanols. *Tetrahedron: Asymmetry* 19, 1941-1946 (2008).
- Huang, H., Zong, H., Bian, G. & Song, L. Chemo- and enantioselective addition and β-hydrogen transfer reduction of carbonyl compounds with diethylzinc reagent in one pot catalyzed by a single chiral organometallic catalyst. J. Org. Chem. 80, 12614-12619 (2015).
- 12. Lebedev, Y. *et al.* Asymmetric hydroboration of heteroaryl ketones by aluminum catalysis. *J. Am. Chem. Soc.* **141**, 19415-19423 (2019).
- Dong, X.-Y. *et al.* A general asymmetric copper-catalysed sonogashira c(sp3)–c(sp) coupling. *Nat. Chem.* 11, 1158-1166 (2019).
- 14. Stepanenko, V. *et al.* Chiral spiroaminoborate ester as a highly enantioselective and efficient catalyst for the borane reduction of furyl, thiophene, chroman, and thiochroman-containing ketones. *Tetrahedron: Asymmetry* **20**, 2659-2665 (2009).

- Zhu, L., Kitanosono, T., Xu, P. & Kobayashi, S. A cu(ii)-based strategy for catalytic enantioselective β-borylation of α,β-unsaturated acceptors. *Chem. Commun.* 51, 11685-11688 (2015).
- Li, C.-T., Liu, H., Yao, Y. & Lu, C.-D. Rearrangement of n-tert-butanesulfinyl enamines for synthesis of enantioenriched α-hydroxy ketone derivatives. *Org. Lett.* 21, 8383-8388 (2019).
- Schrödinger release 2020-2: Protein preparation wizard; epik, schrödinger, llc, new york, NY, 2020; impact, schrödinger, llc, new york, NY, 2020; prime, schrödinger, llc, new york, NY. (2020).
- Madhavi Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R. & Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. *J. Comput. Aided Mol. Des.* 27, 221-234 (2013).
- 19. Banks, J. L. *et al.* Integrated modeling program, applied chemical theory (impact). *J. Comput. Chem.* **26**, 1752-1780 (2005).
- 20. Schrödinger release 2020-2: Ligprep, schrödinger, llc, new york, NY. (2020).
- 21. Friesner, R. A. *et al.* Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. *J. Med. Chem.* **47**, 1739-1749 (2004).
- 22. Schrödinger release 2020-2: Desmond molecular dynamics system, d. E. Shaw research, new york, NY, 2020. Maestro-desmond interoperability tools, schrödinger, new york, NY. (2020).
- 23. in *Proceedings of the 2006 ACM/IEEE conference on Supercomputing*. (Association for Computing Machinery).
- 24. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. *J. Chem. Phys*, **79**, 926-935 (1983).
- 25. Berendsen, H. J. C., Postma, J. P. M., Gunsteren, W. F. v., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. *J. Chem. Phys*, **81**, 3684-3690 (1984).
- 26. Schrödinger release 2020-2: Qsite, schrödinger, llc, new york, NY. (2020).
- Murphy, R. B., Philipp, D. M. & Friesner, R. A. A mixed quantum mechanics/molecular mechanics (qm/mm) method for large-scale modeling of chemistry in protein environments. J. *Comput. Chem.* 21, 1442-1457 (2000).
- 28. Philipp, D. M. & Friesner, R. A. Mixed ab initio qm/mm modeling using frozen orbitals and tests with alanine dipeptide and tetrapeptide. *J. Comput. Chem.* **20**, 1468-1494 (1999).
- Becke, A. D. Density-functional thermochemistry. Iii. The role of exact exchange. J. Chem. Phys, 98, 5648-5652 (1993).
- Stephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. *The Journal of Physical Chemistry* 98, 11623-11627 (1994).
- 31. Wadt, W. R. & Hay, P. J. Ab initio effective core potentials for molecular calculations. Potentials for main group elements na to bi. *J. Chem. Phys*, **82**, 284-298 (1985).

32. Hay, P. J. & Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms sc to hg. *J. Chem. Phys*, **82**, 270-283 (1985).

33. Hariharan, P. C. & Pople, J. A. Accuracy of ah n equilibrium geometries by single determinant molecular orbital theory. *Mol. Phys.* **27**, 209-214 (1974).