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1 Introduction

In this supplement we detail our sampling strategy, provide information on non-

response rates, explain how we have included post-stratification weighting in the

analyses, and provide additional information on the laboratory assay [1]. The

risk factor analyses in the main text use random-effects logistic regression based

on binary classification of the data (seronegative versus seropositive). Here, we

also provide an underpinning of this classification using a two-component mix-

ture model. In this model, samples are not rigidly classified as either seroneg-

ative or seropositive, but belong to either the negative or positive component

with certain probability [2, 3]. As the probability of seropositivity may depend

on age, we model the mixing parameter (i.e. the probability of seropositivity,

or seroprevalence) with an age-dependent penalized spline [4]. We fit the model

to antibody concentration measurements from the population sample described

in the main text while incorporating information from a test panel of proven

negative and positive samples [1]. Subsequently, we derive test characteristics

(sensitivity, specificity) for various cut-offs, showing that the binary classifica-

tion used in the main text performs well. Finally, we present additional weighted

seroprevalence estimates by Municipal Health Services (GGD) region, and we

show detailed results of our main analyses, i.e. risk factors for seropositivity, as

well as of the sensitivity analyses.

2 Sampling

The PIENTER3 serosurvey cohort was established in the Netherlands in 2016/17

(for details see [5]). Primary aim of this seroepidemiological study was to evalu-

ate the National Immunization Program and to monitor (re-)emerging infectious

diseases. In respect of the current study, prior randomly-selected participants

(from the Dutch population registry) previously enrolled in PIENTER3 and who

had provided consent to be approached for potential follow-up, were invited for
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the first PIENTER-Corona (PICO-)study in April, 2020. In this first PICO-

serosurvey 2, 634 participants (of initially 4,926 invited) had been included (for

details see [6]). Subsequently, these participants were invited to the second

PICO-serosurvey in June, 2020, i.e., the current study, in which 2, 317 enrolled.

Correspondingly, anticipating a 10% drop-out rate from the first PICO-serosurvey

in April, 2020, and given the low estimated seroprevalence (2.8%), we aimed to

increase the overall power of the current study as well as enhance countrywide

geographical coverage. Hence, the cohort was supplemented with an additional

sample of randomly-selected persons from the Dutch population registry (as of

May, 2020). These persons were randomly drawn from five regions with roughly

similar population size (North: provinces of Groningen, Friesland, Drenthe and

Overijssel; Mid-West: provinces of Flevoland and Noord-Holland; Mid-East:

provinces of Gelderland and Utrecht; South-West: provinces of Zuid-Holland

and Zeeland; South-East: provinces of Noord-Brabant and Limburg), and from

17 pre-defined age groups (1-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39,

40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, 75-79, 80-89 years). A total

sample size of 6, 400 participants, i.e. with an average of 380 participants per

age group, would enable us to estimate an overall and age-specific seroprevalence

with a precision of 1.25% and 5%, respectively. Following previous experience,

we anticipated a response rate of at least 15%. Hence, for this additional sam-

ple, we randomly selected 27, 200 persons from the population registry, of which

26, 854 remained eligible for participation after an initial screening and these

were invited. Of these, 4, 496 participated.

Taken together, the current PICO-survey in June, 2020, consisted of 6, 813

participants (combined response rate 21.4%).

3 Non-response and weighting

Table S1 shows the number of participants and response rates, stratified by sex,

age group, region, and ethnic background.
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Table S1. Overview of responders vs. non-responders.

Non-responder Responder Total

N % N % 31,780

Total 24,967 78.6 6,813 21.4

Sex Man 12,609 50.5 3,042 44.7 15,561

Woman 12,358 49.5 3,771 55.4 16,129

Age 1-4 1,740 7.0 220 3.2 1,960

5-9 1,637 6.6 285 4.2 1,922

10-14 1,567 6.3 319 4.7 1,886

15-19 1,591 3.4 304 4.5 1,895

20-24 1,542 6.2 300 4.4 1,842

25-29 1,779 7.1 398 5.8 2,177

30-34 1,293 5.2 369 5.4 1,662

35-39 1,519 6.1 408 6.0 1,927

40-44 1,439 5.8 448 6.6 1,887

45-49 1,423 5.7 457 6.7 1,880

50-54 1,365 5.5 548 8.0 1,913

55-59 1,323 5.3 544 8.0 1,867

60-64 1,226 4.9 591 8.7 1,817

65-69 1,250 5.0 626 9.2 1,876

70-74 1,326 5.3 501 7.4 1,827

75-79 1,410 5.7 134 2.0 1,752

80-90 1,537 6.2 153 2.3 1,690

Region North 5,029 20.1 1,357 19.9 6,386

Mid-West 4,957 19.9 1,211 17.8 6,168

Mid-East 4,825 19.3 1,469 21.6 6,294

South-West 5,060 20.3 1,248 18.3 6,308

South-East 5,096 20.4 1,528 22.4 6,624

Urbanization High 6,038 24.2 1,319 19.4 7,357

degree Middle 7,670 30.7 2,101 30.8 9,771

Low 11,259 45.1 3,393 49.8 14,652

Ethnic Dutch 18,598 74.5 5,996 88.0 24,594

background* Non-Dutch Western 2,389 9.6 512 7.5 2,901

Non-Western 3,964 15.9 305 4.5 4,269

*Ethnic background was missing for 16 invited persons
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Post-stratification weights were assigned to each participant to standardize sero-

prevalence estimates, using census data from the Statistics Netherlands of Jan-

uary 1, 2020. Since our cohort consists of two samples, weights were calculated

for each sample separately. Per study sample, weights were assigned to each

participant based on their membership to specific census strata (in total 112):

for Dutch ethnic background, strata are designed for age group (1-4, 5-9, 10-14,

15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-

74, 75-90 years), urbanization level (high, middle, low), and sex; and for other

ethnicity groups strata were based on age group (1-9, 10-34, 35-59, 60-90 years)

and sex.

Subsequently, post-stratification weights were defined as the proportion of each

stratum represented in the Dutch population divided by the analogous propor-

tion in the study sample. Specifically, weights wij for participants in stratum i

and study j were calculated as

wij =
Xi

N
xij

nj

,

where Xi is the total number of persons in stratum i, N is the total population

size (i.e. the Netherlands), xij is the number of participants in stratum i in

study sample j, and nj is number of participants in sample j.

4 Data and immunoassay

Figure S1 shows the regional distribution of participants in the Netherlands, and

Figure S2 depicts the individual antibody concentration by age. Participants’

fingerstick blood samples were centrifuged at the RIVM laboratory and serum

was stored at -20 degrees Celsius awaiting analyses. Using a validated fluores-

cent bead-based immune assay ([1], which was improved recently [7]), concen-

trations of IgG antibodies to the SARS-CoV-2 Spike S1 protein (Wuhan isolate,

GenBank YP-009724390.1) were measured. More specifically, serum samples

were diluted 1:200 and 1:8,000 and incubated with spike S1-coupled beads in
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Figure S1. Regional distribution of participants. Notice that the western part of

the Netherlands is the most densely populated area and also has large number

of samples, thus attaining good population coverage.

SM01 buffer (Surmodics, USA) supplemented with 2% FCS while shaking (600

rpm) at room temperature for 45 minutes. Hereafter, plates were washed three

times (with PBS), incubated with PE-conjugated anti-human IgG (Jackson Im-

munoResearch Laboratories) and incubated for an additional 30 minutes. After

final washing steps, samples were acquired on a LX200 or FlexMap3D (using

Luminex technology). Concentrations were interpolated from an in-house ref-

erence consisting of pooled sera using a 5-parameter logistic fit.

For the mixture modelling analyses below, we included a validation panel that

has been used for validation of the assay [1]. Specifically, a set of 384 pre-
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Figure S2. Overview of the data. Shown are (log-transformed) antibody con-

centrations of all 6,813 samples in the national sample as function of age. Here,

samples are classified as seronegative below the cut-off of 0.04 (log(Arbitrary

Units)/mL)(blue) and as seropositive above the cut-off (red).

pandemic samples comprising participants from the PIENTER2 (2006/2007)

and PIENTER3 (2016/2017) cohorts (representative of the Dutch population)

as well as a panel of cases with influenza-like illness, and a set of 115 proven

SARS-CoV-2 infections covering asymptomatic and mild to severe cases [1].

Mean and standard deviation of the (log-transformed) measurements were µuninfected =

−2.3 (Arbitrary Units (AU)) and σuninfected = 1.0 for the uninfected group, and

µinfected = 3.0 and σinfected = 2.1 for the infected group.

5 Mixture model

Survey participants are assumed to be either seropositive or seronegative. These

two classes were characterized by distributions for antibody measurements, de-
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noted by fneg and fpos and specified by parameters θneg and θpos. The mix-

ing parameter (probability of seropositivity) depends on age and is denoted by

p (a). For n = 6, 813 participants, the set of participant ages and observed mea-

surements were given by a = (ak) and x = (xk) (k = 1, . . . , n), respectively.

Throughout we used normal distributions for the components of the mixture of

the log-transformed data, so that θneg = (µneg, σneg) and θpos = (µpos, σpos),

while the mixing parameter was modelled with a Bayesian penalized-spline us-

ing cubic basis functions and first order penalization [8, 9]. Throughout, we

considered the age range [0, 100] years, placing knots at 10-year intervals (11

knots in total), so that the total number of basis functions was 13 [8, 9].

6 Estimation

Parameters were estimated in a Bayesian framework using Hamiltonian Monte

Carlo, implemented in Stan [10]. To improve performance at low prevalence, we

employed a logistic transformation for the age-specific prevalence.

Prior distributions for the means and standard deviations of the seronegative

and seropositive components were based on the uninfected and infected samples

from the validation set as described before. As the uninfected set is obtained

from random samples from the Dutch population in 2006/2007 and 2016/2017

as well as a panel comprising cases with influenza-like illness, and the seroposi-

tive set contained mostly cases with symptoms and may be less representative

of cases in the population, we took informative prior distributions for the pa-

rameters of the seronegative component, a weakly informative prior distribution

for the mean of the seropositive component, and provided no explicit prior dis-

tribution for the standard deviation of the seropositive component. Specifically,

we took

µneg ∼ N (µuninfected, 0.01)

σneg ∼ N (σuninfected, 0.1)

µpos ∼ N (µinfected, 0.5) .
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For the spline smoothing parameter (RWvar) we took an inverse gamma distri-

bution [9],

RWvar ∼ inverse gamma (1, 0.0005) ,

and for the weights of the spline base functions wi (i = 1 . . . 13), we took

wi ∼ N (0, 4) ,

where it should be noted that the prior weights were defined on the logistic

scale.

Table S2. Parameter estimates (selected posterior quantiles) with

selected convergence diagnostics.

Parameter R̂ neff 2.5% 50% 97.5%

µneg 0.997 1071 -2.311 -2.297 -2.284

σneg 0.997 964 0.742 0.756 0.770

µpos 0.996 1066 1.967 2.168 2.336

σpos 1.003 1126 1.216 1.339 1.501

RWvar 1.000 1030 0.008 0.042 0.169

Estimates for the parameters defining the mixing distribution and the spline

smoothing parameter are given in Table S2, together with convergence diagnos-

tics R̂ and neff [10]. In a sensitivity analysis we have re-run the fitting procedure

with uninformative prior distributions (only assuming that µpos > µneg). These

analyses yield virtually identical results (not shown).

Figure S3 gives a visualisation of the data (gray histograms) and model fit (col-

ored lines), suggesting good agreement between the two. Notice also that over-

lap between the negative and positive component is small which bodes well for

efforts to distinguish seronegative from seropositive samples. To further investi-

gate the implications of the analyses, Figure S4 shows the estimated probability

of infection as function of antibody concentration. Here, the probability of in-

fection calculated as the estimated positive density (at a certain concentration)
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Figure S3. Data and model fit. Shown are the data (gray histograms) and fit

of the mixture model (blue: seronegative component; red: seropositive compo-

nent). The age-specific prevalence was modelled with a penalized spline, and

the mixing distributions were weighted with the overall posterior probability of

infection. Shown are 1, 000 samples from the posterior distribution.

divided by the sum of the positive and negative densities (at that concentration)

[2]. The figure shows that, in the absence of information on age-specific preva-

lence, the estimated probability of infection is close to 0 for concentrations of −1

(log(AU)/mL) and lower, and close to 1 at concentrations of 0 (log(AU)/mL)

and higher.

In a next step we estimated the probability of seropositivity for each of the

n = 6, 813 samples. Here we weighted the posterior seropositive density by

the posterior prevalence, and the posterior seronegative density by 1 minus the

posterior prevalence, and applied the same procedure as in Figure S4. The

figure shows that for the majority of samples (6, 722), the posterior median

for the probability of infection is either low (< 0.05, 6, 437 samples) or high
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Figure S4. Estimated probability of seropositivity. Shown are estimated prob-

abilities of seropositivity as function of the (log-transformed) antibody concen-

tration. No weighting for prevalence was applied. Shown are 1, 000 samples

from the posterior distribution.

(> 0.95, 285 samples), indicating that only for a small minority of samples

(< 100) classification would not be straightforward. This is a robust result that

also holds when using less informative priors or when including a random effect

at the municipality level (not shown). It is due to the clear separation of the

negative and positive components in the analyses (Figure S3).

7 Binary classification

The above results show that for the majority of samples there is limited uncer-

tainty as to whether they should be classified as seronegative or seropositive.

Therefore, we feel confident that reliable binary classification of the samples is

feasible. Here, we investigated the optimal cut-off value for such binary classi-
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Figure S5. Estimated probability of seropositivity. Shown are estimated prob-

abilities of seropositivity for each of the 6, 813 samples as function of age. Esti-

mates were weighted with age-specific prevalence. Dots and whiskers represent

posterior medians and 95% credible intervals, respectively. Notice that the pos-

terior probability of seropositivity (i.e. posterior median) is either very low

(< 0.05) or very high (> 0.95) for the majority of samples (> 98%).

fication, and associated test characteristics (sensitivity and specificity).

For a given cut-off, the proportion of the negative distribution with concen-

trations higher than the cut-off defines specificity of the test (high proportion

implies low specificity), while the proportion of the positive distribution with

concentrations lower than the cut-off defines sensitivity of the test. Technically,

both sensitivity and specificity are calculated using cumulative density functions

of the negative (specificity) and positive distributions (sensitivity) [2]. Figure S6

shows the test characteristics and the Youden index (Se + Sp − 1) as function

of the cut-off. For low values of the cut-off, sensitivity of the test is high, at

the price of a low specificity. Conversely, at high values of the cut-off, speci-
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Figure S6. Sensitivity, specificity, and Youden index. Shown are the estimated

sensitivity (red), specificity (blue), and Youden index (gray, superposed on top

of sensitivity and specificity) as function of the cut-off concentration for seropos-

itivity. Shown are 1, 000 samples from the posterior distribution.

ficity of the test is high, at the price of low sensitivity. At intermediate values

both sensitivity and specificity are reasonably high, and the Youden index is

maximal.

Table S3. Test characteristics for cut-off that maximizes the Youden

index or that selects for high test specificity (Sp = 0.999). Shown are

posterior medians with 95% credible intervals.

Scenario cut-off (95%CrI) Se (95%CrI) Sp (95%CrI) Youden (95%CrI)

Youden -0.56 (-0.67, -0.44) 0.979 (0.965, 0.987) 0.989 (0.985, 0.993) 0.97 (0.95, 0.98)

Sp 0.04 (0.0, 0.08) 0.943 (0.910, 0.966) 0.999 0.94 (0.91, 0.97)
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In Table S3 we show test characteristics for two specific scenarios. The first takes

cut-offs that maximize the Youden index. Here, the estimated optimal cut-off

was -0.56 (95%CrI: -0.67- -0.44) and the estimated maximal Youden index was

0.97 (94%CrI: 0.95-0.98). This cut-off, however, is not useful in practice as

expected seroprevalence is low (< 10%), and control of the false positive rate is

more important than control of the false negative rate. Therefore, in a second

scenario we aimed at a specificity of 0.999. Such specificity can be reached with

the test, at a cut-off of 0.04 and a sensitivity of 0.943. In the following and in

the main text we have opted for a cut-off of 0.04.

Figure S7 presents the results of a Receiver Operating Characteristic (ROC)

diagram (blue lines), together with true and false positive rates at the cut-off of

0.04 (red dots). Variation in the false positive rate was minimal (Ŝp = 0.9990,

95%CrI: 0.9987-0.9992), while estimated sensitivity was still high (Ŝp = 0.944,

95%CrI: 0.910-0.967). Estimated Youden index is 0.94 (95%CrI: 0.91-0.97).

Figure S7. Receiver Operator Characteristic (ROC) diagram. Shown are the

false positive rates (1− Sp) and true positive rates (Se) for 1, 000 samples from

the posterior distribution (blue). Also shown are the false and true positive

rates for cut-off of 0.04 (log(AU)/mL) (1.04 AU/mL)(red).
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Finally, Figure S8 shows the posterior distribution of test sensitivity at a cut-

off of 0.04 (log(AU)/mL). Mean and standard deviation of the distribution are

0.942 and 0.0151, respectively. These values can be incorporated in Rogan-

Gladen-type corrections for estimating true prevalence from observed apparent

prevalence in binary classification [11, 12].

Figure S8. Posterior distribution of the true positive rate (sensitivity) when

the cut-off is set at 0.04 (log(AU)/mL) (1.04 AU/mL). Shown is a histogram of

1, 000 samples from the posterior distribution. Mean and standard deviation of

the distribution are 0.942 and 0.0151, respectively.

8 Regional seroprevalence and risk factor anal-

ysis

Figure S9 shows the regional weighted seroprevalence estimates, i.e., by Munici-

pal Health Service (GGD) region. Further, the manuscript provides main results

and interpretation of the analyses with random-effects logistic regression using
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the binary classification described in the above. Table S4 provides detailed re-

sults of the main risk factor analysis (N=6, 331, these results were similar after

applying both backward and forward selection), including age-specific estimates

of the unadjusted odds ratios for seropositivity derived from the univariable

model (Figure S10). Finally, Table S5 shows the results of the multivariable

models derived from the sensitivity analyses as described in the manuscript:

Model 1 - without the variable ’being religious’, N=6, 487; Model 2 - without

the variable ’educational level’, N=6, 339; and Model 3 - without contact data

(i.e. nature of close contacts as well as total number), N=6, 338.

0

4

8

12

16
SARS−CoV−2 seroprevalence (%) per GGD health region

Figure S9. Weighted seroprevalence by Municipal Health Service (GGD) region.
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Table S4. Main risk factor analysis (N=6,331).

Risk factor Univariable model Multivariable model

OR 95% CI P-value aOR 95% CI P-value

Nature of close contact, yesterday 0.0053 0.0752

No close contact Ref. Ref.

< 50% with persons < 10y 1.38 [1.07-1.79] 1.36 [1.04-1.78]

50− 100% with persons < 10y 0.72 [0.43-1.23] 1.35 [0.78-2.35]

Attended indoor meeting(s) with > 20 persons 0.0008 0.0047

No Ref. Ref.

Yes 1.54 [1.20-1.98] 1.46 [1.12-1.89]

Visited a nursing home < 0.0001 0.0009

No Ref. Ref.

Yes, 1-5 times 1.35 [0.85-2.15] 1.09 [0.68-1.75]

Yes, >= 6 times 2.14 [1.09-4.19] 1.72 [0.86-3.44]

Nursing home worker 4.44 [2.31-8.53] 3.72 [1.90-7.27]

Household size 0.0697 0.0667

Single-person Ref. Ref.

Two-person 1.64 [1.03-2.61] 1.64 [1.02-2.63]

Three or more persons 1.35 [0.85-2.15] 1.79 [1.09-2.95]

Age (spline) 0.0002 0.0002

Region < 0.0001 < 0.0001

North Ref. Ref.

Mid-West 1.75 [1.01-3.04] 2.01 [1.18-3.42]

Mid-East 2.03 [1.23-3.37] 2.18 [1.35-3.53]

South-West 1.35 [0.77-2.35] 1.51 [0.88-2.61]

South-East 4.21 [2.63-6.74] 4.28 [2.73-6.72]

Urbanization degree 0.0013 0.0197

High (large cities) 1.07 [0.63-1.81] 1.23 [0.77-1.96]

Middle (moderate cities) Ref. Ref.

Low (village to countryside) 1.81 [1.27-2.58] 1.59 [1.14-2.20]

Educational level 0.0048 0.0216

High Ref. Ref.

Middle 1.56 [1.19-2.03] 1.45 [1.11-1.91]

Low 1.21 [0.87-1.68] 1.09 [0.77-1.54]
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Nr. of close contacts, yesterday 0.0928

0-1 Ref.

2-4 1.17 [0.88-1.57]

5-9 1.50 [1.07-2.11]

>= 10 0.95 [0.66-1.38]

Had been working from home, last week 0.0013

No 1.40 [1.04-1.90]

Yes/partly Ref.

No job (including age < 15y) 0.84 [0.63-1.14]

Contact profession/voluntary work with clients/patients 0.0001

No Ref.

Yes 1.62 [1.26-2.08]

Contact profession/voluntary work with children 0.183

No Ref.

Yes 1.27 [0.89-1.80]

Healthcare worker 0.0003

No Ref.

Yes 1.77 [1.30-2.42]

Works in a pub/restaurant/café 0.0612

No Ref.

Yes 1.96 [0.97-3.95]

Sex 0.4839

Men Ref.

Women 1.09 [0.86-1.38]

Ethnic background 0.1082

Dutch Ref.

non-Dutch Western 0.67 [0.40-1.14]

non-Western 0.54 [0.25-1.12]

Religious 0.0075

No Ref.

Yes 1.39 [1.09-1.76]
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Figure S10. Estimates of the unadjusted odd ratios for seropositivity as func-

tion of age (see main text for adjusted odds ratios). The estimate is based on

random-effects univariable logistic regression. Also shown is the 95% confidence

envelope. Reference age is 12 years (odds ratio = 1).
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Table S5. Sensitivity analyses.

Risk factor Model 1 (N=6,487) Model 2 (N=6,339) Model 3 (N=6,338)

aOR 95% CI P value aOR 95% CI P value aOR 95% CI P value

Nature of close contact, yesterday 0.0849 0.068 NA

No close contact Ref. Ref. NA

< 50% with persons < 10y 1.35 [1.03-1.76] 1.37 [1.05-1.79] NA NA

50− 100% with persons < 10y 1.30 [0.75-2.26] 1.35 [0.77-2.34] NA NA

Attended indoor meeting(s) with > 20 persons 0.005 0.0047 0.0028

No Ref. Ref. Ref.

Yes 1.45 [1.12-1.88] 1.45 [1.12-1.89] 1.49 [1.15-1.93]

Visited a nursing home 0.0012 0.0004 0.0006

No Ref. Ref. Ref.

Yes, 1-5 times 1.14 [0.71-1.81] 1.10 [0.69-1.77] 1.11 [0.69-1.78]

Yes, >= 6 times 1.70 [0.85-3.40] 1.80 [0.90-3.59] 1.75 [0.87-3.49]

Nursing home worker 3.61 [1.85-7.03] 3.94 [2.02-7.69] 3.83 [1.96-7.49]

Age (spline) 0.0003 0.0003 0.0004

Region < 0.0001 < 0.0001 < 0.0001

North Ref. Ref. Ref.

Mid-West 1.98 [1.16-3.37] 1.99 [1.17-3.39] 2.01 [1.18-3.42]

Mid-East 2.14 [1.32-3.46] 2.13 [1.32-3.43] 2.16 [1.34-3.50]

South-West 1.52 [0.88-2.60] 1.50 [0.88-2.58] 1.50 [0.87-2.58]

South-East 4.18 [2.67-6.55] 4.20 [2.68-6.57] 4.25 [2.71-6.65]

Urbanization degree 0.0181 0.0115 0.0156

High (large cities) 1.22 [0.76-1.95] 1.20 [0.75-1.90] 1.23 [0.77-1.95]

Middle (moderate cities) Ref. Ref. Ref.

Low (village to countryside) 1.59 [1.15-2.21] 1.62 [1.17-2.24] 1.60 [1.16-2.22]

Educational level 0.0275 NA 0.0199

High Ref. NA Ref.

Middle 1.43 [1.09-1.88] NA NA 1.46 [1.11-1.92]

Low 1.07 [0.76-1.52] NA NA 1.09 [0.77-1.55]
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