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1. Material and Methods 7 

This section describes the methods, particularly technical aspects, in more detail.  8 

 9 

1.1. Study Setting and Participants 10 

We conducted a single-center, retrospective, observational cohort study of adult inpatients who 11 

underwent EEG monitoring as a part of routine clinical care at Massachusetts General Hospital 12 

(MGH) between August 2015 to December 2019. Patients were considered from all wards, 13 

including medical, surgical, and neurological floors, as well as intensive care units (ICUs). Patients 14 

were excluded if they had a recorded history of dementia, other intellectual disability, deafness, 15 

aphasia, or were non-English speaking (if non-comatose). The study was conducted under a 16 

protocol approved by the Institutional Review Board using a waiver of consent.  17 

 18 

1.2 Clinical Data 19 

Patients were assessed to determine delirium presence and severity at the bedside by study staff. 20 

Staff were trained to perform assessments through a combination of didactics, literature review, 21 
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in person case reviews, and ongoing discussions. Assessments were performed either during or 22 

within 1 hour of beginning or discontinuation of EEG recording. Delirium presence was assessed 23 

using the CAM short formS1. Delirium severity was assessed using the CAM-S scoring method2. 24 

The CAM-S Short Form scores the severity of four features: (1) Acute onset & fluctuating course 25 

(0 or 1 point); (2) Inattention (0, 1, 2 points); (3) Disorganized thinking (0, 1, 2 points); and (4) 26 

Altered level of consciousness (0, 1, 2 points). Delirium severity is scored as the sum of the 27 

severity of all four features (total between 0 and 7 points). Responses to individual questions 28 

were considered “normal” only if there was an unequivocally correct response. In cases where a 29 

patient did not answer a question, the question was repeated. If questions remained unanswered 30 

(including due to a decreased level of arousal), non-answers were scored as incorrect. Patients 31 

were also evaluated with the Richmond Agitation Sedation Scale (RASS; range -5 to +4, normal 32 

score 0S2) to assess level of consciousness. Under the above framework, comatose patients (RASS 33 

score of -4 or -5) were assigned a CAM-S short form score of 7, given that coma and delirium are 34 

increasingly considered part of a spectrum of manifestations of underlying encephalopathy 35 

pathophysiologyS3,S4. The analyses below were performed, however, on both the entire cohort 36 

(non-delirious, delirious, and comatose patients) and after excluding patients with coma 37 

(retaining non-delirious and delirious patients). Clinical outcomes, including length of stay and in-38 

hospital mortality, and Charlson Comorbidity Index (CCI)S5 were extracted and calculated from 39 

the medical record.  40 

 41 
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1.3 EEG Recording and Pre-Processing 42 

EEGs were recorded with Ag/AgCl scalp electrodes using the standard international 10-20 system 43 

for electrode placement; however, we calculated the E-CAM-S using only the four frontal 44 

channels, as forehead electrodes are more amenable to application with less technical 45 

experience. We selected the following bipolar frontal channels for analysis: Fp1-Fp2, Fp1-F7, Fp2-46 

F8, F7-F8. All EEGs were resampled to 200 Hz and normalized to have zero mean, notch-filtered 47 

at 60 Hz, and bandpass filtered from 0.5 Hz to 30 Hz to reduce line noise and myogenic artifacts. 48 

For patients referred for routine EEGs, the EEG recordings had durations between 20 and 60 49 

minutes. For patients undergoing long-term EEG monitoring, we selected the one-hour segment 50 

in which the clinical CAM-S score was obtained (30 minutes before and after the clinical 51 

assessment). The selected EEG signals were segmented into non-overlapping 6-second epochs 52 

and automatically checked for artifacts by identifying segments with absolute value > 500 μV or 53 

standard deviation < 1 μV in any channel. Epochs not flagged as containing artifacts were 54 

subsequently used for feature extraction. 55 

 56 

1.4 Feature Extraction 57 

From each 6-second epoch, we extracted 298 features from time and frequency domains, as 58 

summarized in Supplemental Table 1S6,S7. Each feature was calculated for each of the four bipolar 59 

channels and then averaged across all channels. This resulted in 298 features for each 6-second 60 

epoch. We then calculated four summary statistics for each feature across all 6-second epochs: 61 

average, standard deviation, minimum and maximum value, resulting in a total of 298 x 4 = 1192 62 
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feature values per EEG recording. We performed pre-processing and feature extraction using 63 

MATLAB (version 2019a, Mathworks, Natick, MA, USA). 64 

 65 

1.5 Model training and cross validation 66 

Data was split into training and testing data at the patient level, with 90% of EEGs (n = 336) used 67 

for training, and 10% (n = 37) for testing. This splitting of data and model training was repeated 68 

10 times, allowing model performance to be evaluated once on each EEG (10-fold cross 69 

validation). To avoid overfitting, strict separation was maintained between training and testing 70 

data, such that all reported model performance statistics reflect performance on held-out testing 71 

data. Model training and evaluation was performed in Python (version 3.8.0). 72 

 73 

We created the E-CAM-S by training a machine learning model that uses EEG features as inputs 74 

and attempts to produce scores that are correlated with the clinical CAM-S score (0 - 7). The 75 

model used is a Learning-to-Rank (LTR) ordinal regression modelS8. Our LTR model is based on a 76 

pairwise approach: a binary classifier, using logistic regression with LASSO penalty, was trained 77 

to predict, for each pair of patients A and B, whether A is more severely delirious than B. The 78 

value of the decision function of the binary classifier for a particular patient results in the E-CAM-79 

S score, a continuous number indicating delirium severity, bounded between 0 and 1.  80 

 81 

Feature selection during model training was accomplished using a two-step procedure: 82 

1) We used a simple approach that selects features with large k Spearman’s correlation. We 83 

experimented with different values of k (see below).  84 
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2) In order to select among the features that remained, we utilized internal cross validation (ICV) 85 

to fit the LTR model, using a least absolute shrinkage and selection operator (LASSO) penalty. This 86 

penalty is a non-negative number, whose value is determined by the process of ICV.  87 

 88 

The two free parameter values (number of univariate selected features k and the LASSO penalty 89 

parameter value) are known as hyperparameters, and the process of choosing these parameters 90 

using ICV is known as hyperparameter optimization. These hyperparameter values were tuned 91 

using internal 10-fold internal cross validation to optimize the Root Mean Squared Error (RMSE) 92 

on the internal validation set. The lowest RMSE was achieved when using k = 65 and a LASSO 93 

penalty of 100, therefore these hyperparameters were used for final analyses.  94 

 95 

Analyses were performed using the entire cohort and a non-comatose subset. The distribution 96 

of clinically assessed delirium severity scores as present in both the entire cohort and non-97 

comatose subset can be seen in Supplemental Figure 1.   98 

 99 

Technical Background on External and Internal Cross Validation. 100 

We trained and evaluated the model using nested cross validation (NCV), a method which 101 

employs external and internal cross validation (ECV, ICV). ECV and ICV share similar mechanics, 102 

but each serves a unique purpose: ECV is used to avoid inflation of model performance 103 

estimates, whereas ICV prevents model overfitting. Supplemental Figure 3 shows an overview 104 

diagram of nested cross validation and further explanation and elaboration on the exact used 105 

method is given below. 106 
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 107 

 The ECV approach here is k-fold cross validation, in which we have chosen to use k = 10 folds. 108 

The choice of k = 10 is widely used in developing and evaluating machine learning models, as it 109 

generally achieves a favorable bias-variance tradeoffS9,S10 In this method, we split the data into 110 

10 folds, with nine folds (i.e. 90% of the data) reserved for training and one fold (i.e. 10% of the 111 

data, 37 subjects in this case) for testing in each round. We then conduct 10 rounds of cross 112 

validation, with a different combination of folds in each round, such that each individual fold is 113 

used as the testing data in one of the 10 rounds.  This approach in turn generates 10 models, 114 

due to different subsets of folds being used in each round of training. These models will 115 

generally be similar, but not identical, because a different 10% of the data is held out for testing 116 

for each round of ECV.  117 

 118 

ECV avoids overestimating model performance by strictly separating training and testing data, 119 

such that only model predictions generated from testing data are used to evaluate model 120 

performance. In contrast, if we did not employ ECV, and we instead fitted and tested the model 121 

with the same data, our evaluation of performance would be unable to identify overfitting. 122 

Rather, we could find an artificially high correlation coefficient (R) between the CAM – S and VE 123 

– CAM – S scores, i.e. an upwardly biased estimate, and the model would potentially fail when 124 

applied to new data despite a high coefficient. However, if model overfitting has occurred, ECV 125 

will reflect this as poor average model performance on the held out data across the multiple 126 

rounds of external cross validation, and we will be aware of this overfitting. 127 

 128 
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Through ECV, we are able to utilize data from all subjects in the evaluation of model 129 

performance. Indeed, figure 2 includes all subjects rather than just 37, because the correlation 130 

coefficient of 0.68 was calculated based on all subjects. This correlation coefficient is not biased 131 

(i.e. over fit) because this estimate was calculated entirely based on the test folds, which 132 

contain subjects that were not used in training within a given round of cross validation. In this 133 

way, ECV prevents inflated estimates of the correlation coefficient. 134 

 135 

ICV is one of several approaches to avoiding overfitting during model training 136 

The mechanics of ICV are similar to ECV; however, it is important to keep in mind that ICV 137 

operates entirely on the training data; the held-out testing data is not used. In ICV, the training 138 

data are split into a series of folds, and each fold takes a turn serving as the (internal) testing 139 

set while the remaining training data is used to fit the model. In the standard approach, which 140 

we follow, ICV is repeated multiple times using different values of the regularization parameter. 141 

The results of ICV are used to construct a curve of average model performance on the internal 142 

test data as a function of the regularization parameter value. This curve is used to select the 143 

value of the regularization parameter that achieves the best average performance during ICV. 144 

This parameter value is then used to fit a final model on the entire set of training data. This fit 145 

model is then tested on the external held out testing data. The entire ICV procedure is repeated 146 

across the 10 folds of external cross validation (ECV).  147 

 148 

In summary, ECV and ICV have similar methods, but serve distinct purposes. ECV aims to obtain 149 

accurate (unbiased) estimates of model performance, regardless of how the model was fit. By 150 
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contrast, ICV is one of several techniques that aim to avoid overfitting during model 151 

development. ICV helps to avoid model overfitting by separating the training data into folds, 152 

internally simulating the model testing process, in hopes of finding parameter values that will 153 

lead to good model performance during testing on new data.  154 

 155 

Other methods used in this paper to avoid model overfitting during model training 156 

In the present paper, we use three approaches to avoid model overfitting:  157 

1) We filtered out features (in training data) with minimal correlation to the outcome of 158 

interest. 159 

2) We applied a penalty term when fitting our ordinal logistic regression model. 160 

3) We employed internal cross validation (ICV) to select the optimal value of the regularization 161 

parameter in the logistic regression model, as described above. 162 

 163 

 164 

1.6 Association of E-CAM-S with Mortality and Hospital Length of Stay 165 

To evaluate the clinical significance of E-CAM-S scores, we assessed their association with in-166 

hospital mortality using multivariable logistic regression, including age, sex, and CCI as additional 167 

covariates. Age, CAM-S, and CCI were z-normalized prior to model fitting. To compensate for data 168 

imbalance (see Supplemental Figure 2 for histograms of the data set distribution), we assigned 169 

a weight to each patient inversely proportional to the number of patients with that mortality 170 

status. Association with in-hospital mortality was calculated as the average area under the 171 

receiver operating curve (AUROC) using 10-fold cross validation under three conditions: without 172 
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any delirium information, with E-CAM-S scores included, and with clinically assessed CAM-S 173 

scores included.  174 

 175 

To determine associations with hospital length of stay, we used log-transformed length of stay 176 

as the dependent variable. We then performed multivariable linear regression with three models: 177 

without any delirium information, with E-CAM-S scores included, and with clinically assessed 178 

CAM-S scores included. Results are reported as Spearman correlations of each multivariable 179 

prediction model.  180 

 181 

1.7 Statistical Reporting 182 

Medians, interquartile ranges, and proportions were calculated for descriptive analysis given that 183 

most of the data was not normally distributed. Groups were compared with Mann-Whitney rank-184 

sum tests and proportions with chi-squared tests. To estimate the 95% CI of the performance 185 

metrics and the coefficients of the prediction models, we used 1000 rounds of bootstrapping. In 186 

each iteration of bootstrapping, 10-fold cross-validation was performed. The significance level 187 

for all tests was set at alpha = 0.05. 188 

 189 

To evaluate the correlation between E-CAM-S and clinically assessed CAM-S, we used Spearman 190 

correlation coefficients. To evaluate the ability of E-CAM-S to discriminate between patients with 191 

vs. without delirium, we used AUROC. We also compared the E-CAM-S with a previously 192 

published methodS11 for assessing delirium based on the EEG, using Spearman correlations with 193 

the CAM-S and AUROC for predicting delirium presence as evaluation metrics. 194 
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 195 

2. Overview of EEG Features  196 

Supplemental Table 1: Extracted EEG features used for the prediction models. 197 

Domain Feature Number Remark 

time Mean, median, 25% percentile, 75% percentile, 

standard deviation, variance, mean absolute 

gradient, line-length, Zero Crossing Rate, Hjorth 

mobility, Hjorth complexity, skewness, kurtosis, 

Shannon entropy, Higuchi fractal dimension 

15   

frequency Mean spectral (center) frequency, power at 

center frequency,  spectral bandwidth, spectral 

entropy, spectral edge frequencies: SEF95 and 

SEF5.   

6 Computed over the whole 

spectrogram (0.5-30 Hz): 

 Harmonic indexes computed for specific 

frequency bands and ratios: mean, median, 

min, max, std, iqr, 5% percentile, 95% 

percentile. 

8x7=56 Delta (0.5-4), theta (4-8), alpha 

(8-12), beta (13-20), delta/theta, 

delta/alpha, theta/alpha.  

 Power Spectral Density (PSD) of different 

frequency bands and band-ratios, calculated for 

both the PSD value in dB + relative PSD value 

(PSD value in band x / PSD whole spectrogram). 

Calculated separately for different frequency 

bands (26) and the band-ratios (e.g. PSD 

delta/PSD alpha) (27). 

26x2 + 

27x2  

= 106 

Delta: 0.2-3, 0.5-2, 0.5-3, 0.5-4, 1-

4, 1-5, 1-6, 2-4, 2-6 Hz 

Theta: 3-7, 4-6, 4-8, 6-8 Hz 

Alpha: 7-12, 8-10, 8-11, 8-12, 8-

13, 10-12 Hz 

Beta: 11-16, 11-20, 12-30, 15-25, 

21-29 Hz 

All: 1-20, 1-30 Hz 

 Coherence for different frequency bands (26) 

and band ratios (27), calculated for both the 

mean and sum of the coherence in the specific 

bands.  

26x2 + 

27x2  

= 106 

Same bands/ratio’s as for PSD 

calculation. 
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 FOOOF parameters: max amplitude, max 

frequency, max bandwidth, number of peaks, 

broadband offset and exponent of aperiodic fit 

(for both 1-15 Hz  and 15-30 Hz range). 

8 FOOOF parameterizes neural 

power spectra:  https://fooof-

tools.github.io/fooof/   

# features   = 298 for each 6 seconds epoch 

Total 

number of 

features 

per EEG 

 298 x 4 

= 1192 

Average, std, min, max across all 

6-second epochs. 

 198 

  199 

about:blank
about:blank


2 
 

3. Data set distribution 200 

 201 

 202 

Supplemental Figure 1: Histogram of CAM-S distribution for entire population (A) and non-203 

comatose subset (B). 204 

 205 

 206 

 207 

Supplemental Figure 2: Histogram of mortality score distribution for entire population (A) and 208 

non-comatose subset (B). 209 

 210 
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4. Methods: nested cross-validation 211 

 212 

 213 

 214 

 215 

 216 

 217 

 218 

 219 

 220 

Supplemental Figure 3: Diagram showing nested cross-validation. 221 

 222 

 223 

 224 

 225 

 226 

 227 

 228 

 229 

 230 

 231 

 232 

 233 

 234 
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5. EEG-based delirium severity prediction for the non-comatose subset 235 

Supplemental Table 2: Performance metrics delirium prediction comparing using entire 236 

population and non-comatose subset. 237 

Evaluation metrics All patients (n = 373) Non-comatose subset (n = 251) 

Correlation  

(CAM-S, E-CAM)  

0.68 [0.64 – 0.73] 0.52 [0.47 – 0.61] 

 238 

 239 

Supplemental Figure 4: Scatter plot of EEG-based delirium severity prediction (E-CAM-S) vs. 240 

CAM-S scores for non-comatose subset. The green line represents a fitted regression line with 241 

95% confidence interval. 242 

  243 
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6. EEG Features Predictive of Delirium Severity 244 

 245 

 246 

Supplemental Figure 5: Influence of most important features for E-CAM-S prediction using the 247 

entire cohort (A) and non-comatose subset (B), with dark green color reflecting positive 248 

correlation and light green color negative correlation with clinical CAM-S. For the features that 249 



2 
 

were calculated over the same frequency range, the median of these weights was taken (e.g. 250 

different features for delta power, either calculated from 0.5-2 Hz or 2-4 Hz). Abbreviations: std 251 

= standard deviation, min = minimum. The first abbreviation reflects the summary statistic (std, 252 

mean, min or max) and the second abbreviation reflects the extracted EEG feature. E.g. “std. δ/α 253 

power” refers to the standard deviation across all 6-second epochs of the δ/α power (that was 254 

calculated for each 6-second epoch).  255 
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