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Supplementary Results 

For Denison, Carrasco, Heeger, “A dynamic normalization model of temporal attention,” Nature 
Human Behaviour 
 

Model recovery 

To confirm the distinguishability of the Main model from its no limit variant, we performed a 
model recovery analysis. We simulated data from each model variant using its best-fitting 
parameters. Then we tested the ability of the two model variants to fit these simulated data sets. 
Each simulated data point was sampled from a normal distribution with mean equal to the model 
prediction and standard deviation equal to the standard error of the mean across observers. We 
generated 100 simulated datasets, 50 from each model variant, and then fit all datasets with 
both model variants. To reduce the computational demand for fitting 100 datasets, we 
performed optimization using a grid search only (the first stage of our standard fitting procedure). 
For each dataset, we determined which model variant best fit the data by comparing their AIC 
scores. The simulated data were more likely to be best fit by the generating model than by the 
other model, demonstrating successful model recovery (Supplementary Figure 1).  

Because of the structural differences between the Main and no limit model variants, we 
expected that errors in model recovery would be driven by the simulated noise. To confirm this, 
we performed a second model recovery analysis without noise. We simulated one dataset from 
each model variant using the best-fitting parameters and fit the data using our standard 
optimization procedure, which includes optimizations from 40 starting points of different 
parameter sets. For the data generated by the Main model, the Main model always fit better 
than the no limit model; and vice versa for the data generated by the no limit model variant. That 
is, the model recovery was perfect in the absence of noise, for all parameter starting points. 
Together, these analyses show that, in the regime of the empirical data, the models are 
distinguishable, and the superior performance of the Main model for our empirical data was not 
merely due to the greater flexibility of that model or some aspect of the fitting procedure. 

 

Supplementary Figure 1. Model recovery. Probability that each fitted model was the best fit to noisy 
simulated data generated by each model variant, across 100 simulated datasets. 

Description of model variants 

In addition to the model variant described in the main text (which we call Main), we explored 
three other model variants that fit the data reasonably well, as well as three counterparts to 
those models, without a limit on voluntary attention, that were unable to fit the data. Here we 
describe how each alternative model variant differs from the Main model. Supplementary 
Table 1 summarizes the differences among the model variants. A full list of parameters can be 
found in Supplementary Table 2. 
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Sensory layers Attention layers Involuntary attention 

Main 2 Voluntary and involuntary Excitatory 

No IA 2 Voluntary None 

EG 2 Voluntary and involuntary Excitatory and inhibitory 

LC 3 Voluntary and involuntary Excitatory 

Supplementary Table 1. Model properties; differences among model variants. 

 
Parameter Description No IA EG LC 
All layers     

n exponent 1.5 1.5 1.5 

Sensory layer 1     

τS1 time constant 62 69 47 

σS1 semi-saturation constant 1.4 1.4 1.3 

Sensory layer 2     

τS2 time constant 93 83 120 

σS2 semi-saturation constant 0.1 0.1 0.1 

Sensory layer 3     

τS3 time constant -- -- 2 

σS3 semi-saturation constant -- -- 0.3 

Decision layer     

τD time constant 1e5 1e5 1e5 

σD semi-saturation constant 0.7 0.7 0.7 

Voluntary attention layer     

τVA time constant 50 50 50 

σA (shared with IA) semi-saturation constant 20 20 20 

bVA amplitude of voluntary gain modulation 48 25 32 

tVAOn latency of voluntary control signal onset -28 -77 -68 

tVADur duration of voluntary control signal 152 217 184 

tR recovery time of voluntary gain 851 809 924 

wN 
weight to treat neutral precue more like 
precue T1 or precue T2 0.34 0.24 0.20 

Involuntary attention layer     

τIA time constant -- 2 2 

σA (shared with VA) semi-saturation constant -- 20 20 

bIA amplitude of involuntary gain modulation -- 5.1 19.8 

hIA:pex 

shape parameter for excitatory 
component of involuntary temporal 
prefilter -- 1.5 2.9 
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hIA:qex 

scaling parameter for excitatory 
component of involuntary temporal 
prefilter -- 0.040 0.017 

hIA:pinh 

shape parameter for inhibitory 
component of involuntary temporal 
prefilter -- 20.5 -- 

hIA:qinh 

scaling parameter for inhibitory 
component of involuntary temporal 
prefilter -- 0.010 -- 

bIAinh 
amplitude of inhibitory component of 
involuntary temporal prefilter -- 0.48 -- 

Fitting     

sT1 
scaling constant to relate model output to 
d’ for T1 1 1 1 

sT2  
scaling constant to relate model output to 
d’ for T2 0.82 0.83 0.81 

Number of parameters     

Total  16 23 22 

Fitted  9 15 12 

Supplementary Table 2. Model parameters. Dashes indicate that the parameter is not used by the 
model variant. Light gray shading indicates that the parameter was fixed to a set value and not optimized 
during fitting. All times are in ms. 

No involuntary attention (No-IA). The No-IA model variant was identical to the Main model 
variant, but without an involuntary attention layer. The purpose of this model variant was to test 
whether involuntary attention was necessary to explain the psychophysical data in the present 
study. Supplementary Figure 2a shows the model architecture, and Supplementary Figure 
2b shows simulated example time series. 
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Supplementary Figure 2. Model architecture and example simulated time series for each model variant. 
a, c, e) Architectures show sensory input as a thick gray arrow and connections between the layers as 
thin arrows. An upward arrow indicates input drive, and a downward arrow indicates attentional 
modulation. b, d, f) Time series simulated for one trial using a 300 ms SOA, precue to attend to T1, T1 
orientation CCW of vertical, and T2 orientation CCW of horizontal. Plots show responses ri of each 
neuron (different lines) in each layer (different subplots). The decision layer plots show decision windows 
as shaded horizontal lines. Time series are scaled to a uniform amplitude for visualization. 

Early gain (EG). The EG model variant was identical to the Main model variant, except it 
included inhibition due to involuntary attention. The purpose of this model variant was to test 
involuntary inhibition as an alternative to limited voluntary attention for creating competition 
between the two targets. Because this alternative mechanism is a sensory gain modulation, we 
call this an “early gain” model variant. Supplementary Figure 2c shows the model architecture, 
and Supplementary Figure 2d shows simulated example time series.  

The involuntary layer of EG had a biphasic temporal response function, which was first 
excitatory and then inhibitory (Supplementary Figure 2d, Involuntary attention). Involuntary 
attention in the Main model, in contrast, was purely excitatory. To obtain a biphasic temporal 
response function, we let the temporal prefilter for z be a difference of gamma functions, which 
is equivalent to a difference between two cascades of exponential filters. The excitatory and 
inhibitory gamma functions were governed by shape parameters pex and pinh and scale 
parameters qex	 and qinh. To control the relative amplitudes of excitation and inhibition, we fixed 
the excitatory amplitude at 1 and set the amplitude of the negative gamma function to a 
parameter bIAinh. To allow the neurons to generate both excitatory (positive) and inhibitory 
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(negative) responses while still raising the input drive to the power n, we took the difference of a 
pair of rectified and exponentiated input drives that used temporal filters of opposite phases 
(one was the negative of the other), 

 			ei
IA = wIA ⋅z+

⎢⎣ ⎥⎦
n
− wIA ⋅z−
⎢⎣ ⎥⎦

n
,  (1) 

where the opposite phases are denoted by + and –. 

Late competition (LC). The LC model variant differed from the Main model variant only in the 
addition of a third sensory layer (S3). The purpose of this model was to test normalization 
between sustained neural responses as an alternative to limited voluntary attention for creating 
competition between the two targets. We call this a “late competition” model variant. 
Supplementary Figure 2e shows the model architecture, and Supplementary Figure 2f 
shows simulated example time series. 

The addition of layer S3 allowed normalization over longer timescales. Because normalization 
applies to a layer’s input drive (Equation 1 of main text), normalization between T1 and T2 
responses occur in a given sensory layer only if its T1 and T2 inputs (e.g., responses of the 
previous sensory layer) overlap in time. In LC, S3 received T1 and T2 inputs from sustained 
responses in S2, which could result in normalization over longer SOAs compared to a model 
with only two sensory layers (Supplementary Figure 2f). 

The excitatory drive of S3 had an identical form to that of S2, 

 		ei
S3 = ri

S2( )n .  (2) 

The decision was read out from S3.  

Though we have labeled all layers with stimulus representations “sensory” layers, the sustained 
responses in later sensory layers 2 and 3 could be consistent with either later-stage visual areas 
like IT or higher-order areas like PFC that are thought to store working memory representations. 

No limit model variants. To test whether the limit on voluntary attentional gain was needed to 
explain the behavioral data, we created a “no limit” version of each of the model variants, as 
was done for the Main model variant. 

Fitting procedures. The fitting procedures were identical to those described for the Main model 
variant. Supplementary Table 2 shows all parameter values (fixed or best-fit) for each model 
variant. In the LC model variant, the time constant τS3 was fixed to a small value, letting S3 
inherit the time course of S2, but with the potential for normalization.  

Performance of model variants 

Within the normalization model of dynamic attention framework, we developed three additional 
model variants. These model variants make different predictions about circuit architecture and 
attentional gain dynamics. One of the variants tested the necessity of involuntary attention to 
explain the present data. The other two variants were designed to include mechanisms with the 
potential for attentional tradeoffs without voluntary gain limits. All the model variants captured 
the four main behavioral features (voluntary attentional tradeoffs, largest precueing effects at 
intermediate SOAs, masking-like behavior, and AB-like behavior; Supplementary Figure 3) 
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and produced good fits to the data. We found, however, that limited voluntary attention was still 
required to capture the behavioral data in all these model variants.  

 

Supplementary Figure 3. Model fits to perceptual sensitivity data for each model variant; d’ and 
precueing effect data (points) and model predictions (lines). Top row (a, c, e): model variants with a 
voluntary attention limit. Bottom row (b, d, f): corresponding model variants with no limit. Some curves are 
dashed to reveal overlapping model predictions. In model variants with voluntary attention limits, neutral 
overlaps invalid for T1 and valid for T2, similar to the data (tradeoffs). In no limit variants, unlike the data, 
neutral overlaps valid for both T1 and T2 (no tradeoffs or tradeoff incentives). 

No involuntary attention. The no involuntary attention (No-IA) model variant performed almost 
as well, quantitatively, as the Main model variant (R2=0.89) (Supplementary Figure 3a). 
Qualitatively, it was unable to capture any portion of the dip observed around 300 ms for T2 
valid and neutral trials. Voluntary attention alone can therefore explain most, if not all, features 
of the present data. The attentional dynamics of the fitted model are summarized in 
Supplementary Table 3. 

No limit variant. No-IA-no limit produced a poorer fit (R2=0.82) and had the same qualitative 
failures as the Main no limit model (Supplementary Figure 3b). This result was expected, as 
there was no additional mechanism in this model to produce tradeoff incentives. 

Early gain. In the early gain (EG) model variant, involuntary attention had a biphasic (excitatory 
then inhibitory) temporal response profile (Supplementary Figure 2c,d), unlike in the Main 
model variant. The involuntary inhibition contributed to AB-like behavior for T2. EG had potential 
for tradeoff incentives, because greater voluntary attention to T1 led to stronger sensory 
responses to T1 and, consequently, stronger involuntary attentional inhibition of T2. This model 
variant fit the data well (R2=0.90) and captured the four main features of the data 
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(Supplementary Figure 3c). The attentional dynamics of the fitted model are summarized in 
Supplementary Table 3. 

No limit variant. EG-no limit produced a poorer fit (R2=0.84) and had the same qualitative 
failures as the Main no limit model (Supplementary Figure 3d). Involuntary inhibition did not 
result in a meaningful difference between valid and neutral performance, i.e., the no limit model 
did not produce tradeoff incentives. 

Late competition. In the late competition (LC) model variant, we investigated an alternative 
mechanism for creating competition between the two targets: normalization between sustained 
T1 and T2 responses. The only difference from Main was that LC had three sensory layers 
instead of two (Supplementary Figure 2e,f). The third sensory layer was added to allow T1 
and T2 responses to normalize one another at longer SOAs (see Supplementary Methods). The 
normalization between T1 and T2 did not affect T1 performance, because the readout of T1 
ended at T2 onset, but it could impair T2 performance. T2 impairment was larger at shorter 
SOAs, because of greater overlap of the T1 and T2 responses. Voluntary attention to T1 could 
lead to stronger suppression of T2 responses through normalization, creating potential for 
tradeoff incentives. This model variant could also fit the behavioral data (R2=0.90). The 
attentional dynamics are given in Supplementary Table 3. 

The model did not reproduce the dip in T2 performance around 300 ms for valid and neutral 
conditions. In principle, the possibility for sustained normalization gave it the capability to do so; 
however, the fit resulted in relatively short time constants for layer S2, such that T2 performance 
impairments due to normalization were restricted to SOAs below 200 ms. As a result, limited 
voluntary attention, and not normalization, was mainly responsible for the AB-like behavior on 
invalid trials. 

No-limit variant. LC-no limit produced a poorer fit (R2=0.83) and had the same qualitative 
failures as the Main no limit model (Supplementary Figure 3f). Valid and neutral performance 
were very similar in the fitted no limit model, indicating no tradeoff incentives, despite 
normalization. 

It is interesting that the EG and LC model variants, when fit to data, entered a regime in which 
the mechanism designed to generate tradeoff incentives had little impact on performance. 
Future work will be required to determine whether such tradeoff-inducing mechanisms, when 
combined with mechanisms for the strategic allocation of temporal attention, would allow 
parameter solutions that do not depend on limited voluntary attention. 

Voluntary attention  

 Excitatory response Recovery 

 

Peak 
latency 

Peak 
amplitude 

Normalized 
amplitude Duration tR 

Main 88 ms 1.92 1 348 ms 918 ms 

No IA 122 ms 2.34 1 376 ms 851 ms 

EG 138 ms 1.26 1 442 ms 809 ms 

LC 114 ms 1.63 1 408 ms 924 ms 

 



 8 

Involuntary attention   

 Excitatory response Inhibitory response  

 

Peak 
latency 

Peak 
amplitude 

Normalized 
amplitude Duration 

Peak 
latency 

Peak 
amplitude 

Normalized 
amplitude Duration 

Main 82 ms 0.51 0.27 324 ms - - - - 

No IA - - - - - - - - 

EG 90 ms 0.28 0.22 192 ms 270 ms -0.15 -0.12 334 ms 

LC 82 ms 1.23 0.75 290 ms - - - - 

Supplementary Table 3. Attentional dynamics. Temporal characteristics of voluntary and involuntary 
attentional responses derived from the fitted parameters. Latencies are with respect to stimulus onset. 
Amplitude is in arbitrary units, comparable only within a model, so amplitudes normalized with respect to 
the voluntary excitatory peak amplitude are also given.  

Model comparison 

Model comparison metrics are summarized in Supplementary Table 4. All model variants had 
similar R2 values. No-IA had the lowest AIC score, as it had the fewest parameters, so was the 
best model by this measure. All the no limit model variants had poorer quantitative fits as well as 
qualitative failures. Although No-IA had the lowest AIC score, we chose to feature the Main 
model variant, because existing literature supports a distinction between voluntary and 
involuntary attention. To make the current modeling framework as general as possible, we 
therefore include both types of attention layers. Although the present experiment provides 
specific support only for voluntary gain dynamics, the dynamics of involuntary attention (from 
the best-fit Main model) are consistent with reported dynamics for transient involuntary spatial 
attention 1. 

 Limited voluntary attention No limit 

 
R2 ΔAIC R2 ΔAIC 

Main 0.90 5.8 0.83 31.9 

No IA 0.89 0 0.82 26.2 

EG 0.90 7.0 0.84 31.6 

LC 0.90 6.9 0.83 33.7 

Supplementary Table 4. Model comparison. ΔAIC is with respect to the best model variant, No-IA with 
limited voluntary attention. 

Attentional blink simulation 

We simulated an attentional blink (AB) experiment using our dynamic normalization modeling 
framework. To simulate a typical AB task, a stimulus was presented every 100 ms. Two of the 
stimuli (T1 and T2) were targets, and the rest were distractors, with two distractors before T1 
and after T2. We tested ten “lags” between T1 and T2, where lag 1 corresponded to a 100 ms 
SOA. Targets were oriented stimuli tilted clockwise or counterclockwise about either of the 
cardinal axes. Distractors were oblique oriented stimuli. The decision layer integrated evidence 
from the cardinal axes only, allowing the model to differentiate targets from distractors. All 
stimuli elicited involuntary attention in a bottom-up fashion. Only targets elicited voluntary 
attention. We assumed that both targets elicited the maximum available voluntary attention at 
their time of appearance. Due to the limited resource of voluntary attention in the model, T1 
elicited more voluntary attention than T2 at shorter SOAs.  
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We compared the performance of the Main model on the AB simulation to the performance of 
the Early Gain 1 (EG1) model, which has greater flexibility in its attentional dynamics. Both 
models captured the major qualitative features of the AB (Supplementary Figure 4). T2 
performance was high at lag 1, capturing the “lag 1 sparing” effect found in the AB literature 2, 3, 
dropped at lag 2, and returned to a high level performance at the longest lags. 

 

Supplementary Figure 4. Attentional blink simulation. The following changes to model parameters were 
made for the AB simulation: The number of orientation channels was increased to 24 so that oblique 
distractors would not contribute to cardinal target decision readouts. Because the target times are 
unpredictable in an AB task, anticipatory voluntary attention is not possible; therefore, the voluntary 
control signal was set to turn on when the stimulus appeared (tVAOn = 0 ms). For both Main and EG1, τVA 
= 20, bVA = 100, tVADur = 90. For Main, σS1 = 5. For EG1, bIA = 20 and hIA:pex = 1. 

Although the main purpose of the current study was to investigate and model voluntary temporal 
attention, this simulation shows that the dynamic normalization model of attention framework 
can generalize to different tasks, such as the AB. The AB protocol differs from the two-target 
temporal cueing protocol in that it involves: a rapid stream of stimuli, both targets and distractors, 
unpredictable timing for both targets, no temporal cues, and a requirement to report both targets. 
In addition, AB studies have generally used letters and numbers as stimuli. In the future, it will 
be informative to run both the two-target temporal cueing protocol and an AB protocol with 
Gabors in the same observers and fit the model variants to the combined dataset. 
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