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1 Setup
Denote individual i’s phenotype by y?i . For some genetic variant j, denote the allele count for individual i
by x?ij . Without loss of generality in this derivation, we use mean-centered transformation of the phenotype
and allele counts, yi ≡ y?i − E (y?i ) and xij ≡ x?ij − E

(
x?ij
)
. We denote the vector of mean-centered allele

counts across J SNPs for individual i by xi = (xi1, xi2, . . . , xiJ).
As a benchmark, consider the standardized best linear predictor of yi given the J SNPs, xi:

gi ≡
xiγ

sd (xiγ)
, (1)

where
γ ≡ arg min

γ̃
E
[
(yi − xiγ̃)

2
]
. (2)

Thus, gi is the weighted sum of genotypes that maximizes the expected power for predicting yi using a
linear combination of genotypes. If the set of J genetic variants is the set of all genetic variants, then gi
is referred to as the standardized additive genetic factor. The variance of yi explained by the standardized
additive genetic factor is called the narrow-sense heritability. When the set of J genetic variants is some set
of genotyped SNPs, we refer to gi as the standardized additive SNP factor and the variance of yi is referred
to as the SNP heritability.

We use h2SNP to denote the SNP heritability, which is the variation in yi explained by the additive SNP
factor. Because gi is standardized, the SNP heritability of yi is also the squared correlation of yi and gi:

h2SNP ≡
[Cov (yi, gi)]

2

Var (yi)Var (gi)
=

[Cov (yi, gi)]
2

Var (yi)
.

By basic properties of population regression, we can decompose yi into two uncorrelated components,

yi =
Cov (yi, gi)

Var (yi)
gi + εy,i

=
Cov (yi, gi)√

Var (yi)

1√
Var (yi)

gi + εy,i

=
hSNP√
Var (yi)

gi + εy,i,

where εi is the component of the phenotype that is uncorrelated with gi. We have ignored covariates in this
definition of the additive SNP factor. For a model that includes covariates, we may define yi and each xij
as the phenotype and genotypes after having been residualized for the set of covariates.

A PGI for phenotype yi is also a weighted sum of genotypes,

ĝi ≡
∑
j

xij γ̂j . (3)

The PGI will have maximum predictive power only when γ̂j = γj for every SNP j. In practice, methods
for constructing a PGI calculate the γ̂j ’s using GWAS summary statistics together with some procedure to
account for linkage disequilibrium (e.g., pruning and thresholding, LD-based shrinkage-based methods). The
PGI is then usually standardized to have mean zero and variance one. In the theory below, we treat the
PGI as if it has been standardized.

Projecting the PGI onto the space spanned by the standardized additive SNP factor, we can express the
PGI as

ĝi =
gi + ei

sd (gi + ei)
, (4)

where Cov (gi, ei) = 0. In Section 2.2 below, we assume that ei is uncorrelated with all other variables
when the prediction sample is independent of the sample used to estimate γ̂. (We highlight there where the
assumption is used.) As shown in Section 4, this assumption will be a very good approximation when the
PGI is constructed using LDpred-inf, as is the case for all the PGIs in the Repository.
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The predictive power of the PGI, R2, is therefore

R2 ≡ [Cov (yi, ĝi)]
2

Var (yi)Var (ĝi)

=
[Cov (yi, ĝi)]

2

Var (yi)

=

[
Cov

(
yi,

gi+ei
sd(gi+ei)

)]2
Var (yi)

=

[
Cov

(
yi,

gi
sd(gi+ei)

)]2
Var (yi)

=
1

Var (gi + ei)

[Cov (yi, gi)]
2

Var (yi)

=
h2SNP

Var (gi + ei)

=
h2SNP

Var (gi) + Var (ei)

=
h2SNP

1 + Var (ei)
< h2SNP .

This inequality shows that the predictive power of the PGI is strictly less than the heritability, but the
predictive power increases asymptotically towards h2SNP as the error in the PGI decreases. Also note that
this calculation implies

h2SNP
R2

= 1 + Var (ei) .

We denote this ratio by

ρ2 ≡ h2SNP
R2

. (5)

Using this notation, the PGI can be written as

ĝi =
gi + ei

sd (gi + ei)
=

gi + ei√
1 + Var (ei)

=
gi + ei
ρ

. (6)

The error in the PGI will bias any analysis that uses the PGI as a regressor instead of the additive SNP
factor. (We use the term bias in this case to refer to a difference between expected parameter estimates of a
model that includes the additive SNP factor and expected parameter estimates of a model that instead uses
the PGI. This is in contrast to whether the PGI itself is a biased predictor of the additive SNP factor or
of the phenotype1.) The “errors-in-variables” bias described here is closely related to what is often referred
to as “attenuation bias” because in special cases (such as a univariate regression), measurement error in the
regressor attenuates the coefficient on that regressor.

In the following sections, we describe a correction for this bias. We assume that R2 and h2SNP are known
parameters. In practice, these parameters are not known and would need to be estimated. Using estimates
of R2 and h2SNP , as opposed to the true value of the parameters, affects the standard errors of the regression
estimates. We discuss this issue in section 5 below.

2 Measurement-Error-Corrected Estimator

2.1 The Theoretical Regression and the Feasible Regression
Let φi denote a mean zero phenotype of interest, and let gi denote a standardized additive SNP factor. Note
that φi and gi may correspond to different phenotypes. In addition to gi, the model may include a vector of
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mean-zero covariates, which we denote by zi, where Σz ≡ Var (zi). The model may also include interactions
between gi and some subset of covariates in zi. Let zint,i denote the subset of covariates that we would like
to interact with gi where Σint,z ≡ Var (zint,i). We denote the vector of interactions by wi ≡ gizint,i, where
Σw ≡ Var (wi) and Σg,w ≡ Cov (gi,wi). The theoretical regression model we would like to estimate is:

φi = giβg + wiζg + ziδg + εg,i. (7)

We collect the coefficients of this regression into a single vector, denoted αg ≡ (βg, ζg, δg). We group all
genetic variables (which are the variables affected by the measurement error) using the vector Gi ≡ (gi, wi),
where ΣG ≡ Var (Gi) and ΣG,z ≡ Cov (Gi, zi). The coefficients αg ≡ (βg, ζg, δg) of the regression (7) are:

αg =

[
Var (Gi) Cov (Gi, zi)

Var (zi)

]−1 [ Cov (Gi, φi)
Cov (zi, φi)

]
=

[
ΣG ΣG,z

Σz

]−1 [ Cov (Gi, φi)
Cov (zi, φi)

]
= V−1g

[
Cov (Gi, φi)
Cov (zi, φi)

]
,

where

Vg ≡ Var
[

Gi

zi

]
=

[
ΣG ΣG,z

Σz

]
is the variance-covariance of all the regressors in the theoretical regression (7).

In practice, however, we do not observe gi and instead observe the PGI ĝi. Similarly, instead of wi,
we observe ŵi ≡ ĝizint,i, where Σŵ ≡ Var (ŵi); and instead of Gi, we observe Ĝi = (ĝi, ŵi), where
ΣĜ ≡ Var

(
Ĝi

)
. We use ΣĜz ≡ Cov

(
Ĝi, zi

)
to denote the covariance between Ĝi and zi. So the feasible

regression in this case is
φi = ĝiβĝ + ŵiζĝ + ziδĝ + εĝ,i, (8)

where we now subscript the regressors and error term by ĝ instead of g to distinguish them from the regressors
and error term in the theoretical regression. As before, we collect the coefficients of this regression into a
single vector, denoted αĝ ≡ (βĝ, ζĝ, δĝ).

2.2 Bias from Estimating the Feasible Regression
To construct a measurement-error correction, we must first derive the relationship between αg and αĝ. The
relationship we derive is closely related to results previously derived by Abel (2017). The primary differences
between the relationship we derive and that of Abel (2017) are: (i) in our context, we can describe the amount
of measurement error as a function of estimable parameters, h2SNP and R2 (whereas Abel’s formula treats
the amount of measurement error as known), and (ii) our formula accounts for the standardization of PGIs
rather than just assuming that the measurement error is an additive component of the observed value of the
regressor.

We begin by writing the coefficients of the feasible regression, αĝ ≡ (βĝ, ζĝ, δĝ) in terms of the notation
defined above. The coefficient vector is equal to

αĝ =

[
Var

(
Ĝi

)
Cov

(
Ĝi, zi

)
Var (zi)

]−1 [
Cov

(
Ĝi, φi

)
Cov (zi, φi)

]

=

[
ΣĜ ΣĜz

Σz

]−1 [ Cov
(
Ĝi, φi

)
Cov (zi, φi)

]

= V−1ĝ

[
Cov

(
Ĝi, φi

)
Cov (zi, φi)

]
, (9)
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where
Vĝ ≡

[
ΣĜ ΣĜz

Σz

]
.

We now take each term that is related to the PGI and derive its relationship with a term related to the
additive SNP factor. Considering the first term in the right column vector of (9),

Cov
(
Ĝi, φi

)
=

[
Cov (ĝi, φi)
Cov (ŵi, φi)

]

=

 Cov
(
gi+ei
ρ , φi

)
Cov

(
gi+ei
ρ zint,i, φi

) 
=

1

ρ

[
Cov (gi, φi) + Cov (ei, φi)

Cov (gizint,i, φi) + Cov (eizint,i, φi)

]
=

1

ρ

[
Cov (gi, φi)

Cov (gizint,i, φi)

]
=

1

ρ

[
Cov (gi, φi)
Cov (wi, φi)

]
=

1

ρ
Cov (Gi, φi) .

Note that in the fourth line, we have used the assumption that ei is independent of all other varables. The
above calculation implies that [

Cov
(
Ĝi, φi

)
Cov (zi, φi)

]
= P−1

[
Cov (Gi, φi)
Cov (zi, φi)

]
, (10)

where
P =

[
ρI|G| 0

I|z|

]
.

Substituting (10) into (9), we get

αĝ = V−1ĝ

[
Cov

(
Ĝi, φi

)
Cov (zi, φi)

]

= V−1ĝ P−1
[

Cov (Gi, φi)
Cov (zi, φi)

]
= V−1ĝ P−1VgV

−1
g

[
Cov (Gi, φi)
Cov (zi, φi)

]
= V−1ĝ P−1Vgαg. (11)

We now need to derive the relationship between Vĝ and Vg. We begin by calculating

ΣĜ =

[
Var (ĝi) Cov (ŵi, ĝi)

Var (ŵi)

]
=

[
Var (ĝi) Cov (ĝizint,i, ĝi)

Var (ĝizint,i)

]

=

 Var
(
gi+ei
ρ

)
Cov

(
gi+ei
ρ zint,i,

gi+ei
ρ

)
Var

(
gi+ei
ρ zint,i

) 
=

(
1

ρ
I|G|

)[
Var (gi) + Var (ei) Cov (gizint,i, gi) + Cov (eizint,i, ei)

Var (gizint,i) + Var (eizint,i)

](
1

ρ
I|G|

)
=

(
1

ρ
I|G|

)
(ΣG + ΩG)

(
1

ρ
I|G|

)
,
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where
ΩG ≡

[
Var (ei) Cov (eizint,i, ei)

Var (eizint,i)

]
is the component of the variance-covariance matrix of Ĝi that is due to error before standardization. Notice
that, in the fourth line above, we have again used the assumption of the independence of ei. Defining

Ω ≡
[

ΩG 0
0

]
,

we have
Vĝ = P−1 (Vg + Ω) P−1. (12)

Finally, substituting (12) into (11) gives us an equation for how the coefficients from the feasible regression,
αĝ, are biased relative to the coefficients from the theoretical regression, αg:

αĝ = V−1ĝ P−1Vgαg

=
[
P−1 (Vg + Ω) P−1

]−1
P−1Vgαg

= P (Vg + Ω)
−1

Vgαg. (13)

2.3 Estimator for Coefficients from the Theoretical Regression
Equation (13) can be rearranged to yield the simple regression-disattenuation estimator mentioned in the
main text:

αcorr ≡ V−1g (Vg + Ω) P−1αĝ. (14)

This estimator, however, is written in terms of Vg and Vg + Ω, which are unobserved. To obtain the
estimator we implement, we now derive expressions for Vg and Vg + Ω in terms of estimable quantities.

Beginning with Vg + Ω, equation (12) gives us

(Vg + Ω) = PP−1 (Vg + Ω) P−1P

= PVĝP. (15)

Now, turning to Vg, we begin by deriving expressions for ΣG and ΣG,z, which are quadrants of the matrix
Vg. We calculate

ΣG =

[
Var (gi) Cov (wi, gi)

Var (wi)

]
=

[
Var (gi) Cov (wi, gi)− ρ2Cov (ŵi, ĝi) + ρ2Cov (ŵi, ĝi)

Var (wi)− ρ2Var (ŵi) + ρ2Var (ŵi)

]

=

 Var (gi) Cov (wi, gi)− ρ2Cov
(
gi+ei
ρ zint,i,

gi+ei
ρ

)
+ ρ2Cov (ŵi, ĝi)

Var (wi)− ρ2Var
(
gi+ei
ρ zint,i

)
+ ρ2Var (ŵi)


=

[
Var (gi) Cov (wi, gi)− Cov (gizint,i, gi)− Cov (eizint,i, ei) + ρ2Cov (ŵi, ĝi)

Var (wi)−Var (gizint,i)−Var (eizint,i) + ρ2Var (ŵi)

]
=

[
Var (gi) Cov (wi, gi)− Cov (wi, gi)−Var (ei)E (zint,i) + ρ2Cov (ŵi, ĝi)

Var (wi)−Var (wi)−Var (ei)Var (zint,i) + ρ2Var (ŵi)

]
=

[
1 ρ2Cov (ŵi, ĝi)−

(
ρ2 − 1

)
E (zint,i)

ρ2Σŵ −
(
ρ2 − 1

)
Σint,z

]
. (16)
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Also,

ΣĜ,z =

[
Cov (ĝi, zi)
Cov (ŵi, zi)

]
=

[
Cov (ĝi, zi)

Cov (ĝizint,i, zi)

]

=

 Cov
(
gi+ei
ρ , zi

)
Cov

(
gi+ei
ρ zint,i, zi

) 
=

1

ρ

[
Cov (gi, zi)

Cov (gizint,i, zi)

]
=

1

ρ

[
Cov (gi, zi)
Cov (wi, zi)

]
=

1

ρ
ΣG,z.

Hence,

ΣG,z = ρΣĜ,z. (17)

Equations (16) and (17) then give us an expression for Vg in terms of observables:

Vg =

[
ΣG ρΣĜ,z

Σz

]
= P

[ 1
ρ2 ΣG ΣĜ,z

Σz

]
P, (18)

where the estimable expression for ΣG is given by(16) above.
Substituting these expressions for Vg and Vg + Ω, equations (18) and (15), into the estimator, equation

(14), gives us our estimator in terms of estimable quantities:

αcorr ≡ V−1g (Vg + Ω) P−1αĝ

=

(
P

[ 1
ρ2 ΣG ΣĜ,z

Σz

]
P

)−1
(PVĝP) P−1αĝ

= P−1
[ 1

ρ2 ΣG ΣĜ,z

Σz

]−1
Vĝαĝ

= Cαĝ, (19)

where

C ≡ P−1
[ 1

ρ2 ΣG ΣĜ,z

Σz

]−1
Vĝ. (20)

2.4 Standard Errors
To obtain standard errors for our estimator, note that equation (19) implies

Var (αcorr) = CAĝC
′. (21)

where Aĝ ≡ Var (αĝ). We calculate standard errors by taking the square root of the diagonal of this matrix.
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2.5 Two Special Cases
To understand the intuition for the estimator, we consider two special cases. First consider a univariate
regression of the phenotype on the PGI. In this case, Gi = [gi] and zi is empty. Thus

αcorr =

[
1

ρ

] [
1

ρ2

]−1
[1]αĝ

= ραĝ.

In this case, our estimator simply re-inflates the coefficient corresponding to the amount of attenuation due
to error in the PGI.

Turning to the standard error, by (21), the sampling variance of the corrected estimate is

Var (αcorr) = CAĝC
′

= ρVar (αĝ) ρ

= ρ2Var (αĝ) .

This means the standard error of the corrected estimate is

s.e. (α̂corr) = ρ s.e. (α̂ĝ) .

Since the standard error is inflated by exactly the same factor ρ as the regression coefficient, the t-statistic
and p-value of the measurement-error-corrected regression coefficient remains the same as without the
measurement-error correction.

As a second special case, consider a multivariate regression with a single covariate that is independent of
the PGI and an interaction between the covariate and the PGI. In this case, we have

αcorr =

 1
ρ 0 0

1
ρ 0

1

 1
ρ2 0 0

1
ρ2 Σz 0

Σz

−1  1 0 0
Σz 0

Σz

αĝ
=

 ρ 0 0
ρ 0

1

αĝ,
where the first element of αĝ is the coefficient associated with the PGI, the second element is the coefficient
associated with the interaction, and the third element is the coefficient associated with the covariate. Similar
to the univariate special case, the estimator in the simple, independent gene-by-environment interaction case
with no other covariates simply inflates the coefficients corresponding to covariates related to the PGI. We
conclude from this special that that as a first approximation, we should expect that the estimator will inflate
each of the coefficients associated with the PGI or its interactions by ρ. The estimator will deviate from this
benchmark to the extent that the PGI is correlated with the interacted environmental factor or any other
covariates included in the model.

Using (21), we calculate the variance of the corrected estimates:

Var (αcorr) = CAĝC
′

=

 ρ 0 0
ρ 0

1

Var (αĝ)

 ρ 0 0
ρ 0

1


=

 ρ2Var (αĝ,1) ρ2Cov (αĝ,1, αĝ,2) ρCov (αĝ,1, αĝ,3)
ρ2Var (αĝ,2) ρCov (αĝ,2, αĝ,3)

Var (αĝ,3)

 ,
where αĝ,1, αĝ,2, and αĝ,3 are the three elements of αĝ. The standard errors are the square root of the
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diagonal of this matrix, giving us

s.e. (α̂corr) =


√
ρ2Var (α̂ĝ,1)√
ρ2Var (α̂ĝ,2)√
Var (α̂ĝ,3)


=

 ρ 0 0
ρ 0

1

Var (α̂ĝ) .

Thus, each of the standard errors of the corrected estimates is inflated by exactly the same proportion as
the inflation of its corresponding corrected estimates. Therefore, in this special case, the t-statistics and
p-values of all three measurement-error-corrected regression coefficients remain the same as without the
measurement-error correction.

3 Implementation of the Estimator
In the derivation above, we have expressed everything in terms of population parameters. In order to obtain
a consistent estimator of αcorr and its standard error, we must write them in terms of the data that we
observe.

First, consider the parameter ρ. Our estimator ρ̂ is

ρ̂ ≡

√
ĥ2SNP
R̂2

.

The value ĥ2SNP is an estimate of SNP heritability of the phenotype yi in the prediction dataset, based on
the same set of J SNPs that make up the PGI. The value R̂2 is the estimated predictive power of the PGI
for yi in the prediction dataset.

Note that ĥ2SNP and R̂2 each correspond to the PGI phenotype yi rather than the (possibly different)
phenotype in the regression analysis φi. If the phenotype yi is not available in the prediction dataset or
if the sample is too small to obtain reliable estimates, ĥ2SNP and R̂2, ρ̂ could instead be estimated from a
different sample without introducing any bias as long as the genetic correlation of yi is perfect between the
two samples. (The heritability may differ in the samples, but the genetic correlation must be one. This
may happen if the individuals are drawn from the same population in the two samples, but the phenotype
is measured with greater error in one of them.) Given that a researcher would choose to do this only in the
absence of enough data on yi in the regression sample, perfect genetic correlation cannot be reliably tested
and would therefore become an important assumption underlying use of the correction.

Turning to the other parameters besides ρ, in all cases we replace the population variance-covariance
matrices with the consistent (sample-analog) estimates of these matrices. For example,

Σ̂z ≡
1

N
Z′Z,

were N is the sample size in the regression sample and Z is the N×|zi| matrix of covariates in the regression.
Since ρ̂ and each variance-covariance matrix is a consistent estimator of its population counterpart, α̂corr

is a consistent estimator of αcorr.

4 Assumption That ei is Uncorrelated With Other Variables
Recall from equation (4), we have expressed the PGI as

ĝi =
gi + ei

sd (gi + ei)
,

where, by construction, Cov (gi, ei) = 0. We assumed that ei is uncorrelated with all other covariates in
the model. In this section, we show that if the SNP weights for the PGI are unbiased estimates of the
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SNP weights for the additive SNP factor, then this uncorrelatedness assumption is exactly true. We then
show that when SNP weights for the PGI are estimated using LDpred-inf—which is the method we use
for the Repository and which does not generate unbiased estimates—given typical parameter values for
PGIs in the Repository, the bias in our measurement-error-corrected estimator due to the violation of the
uncorrelatedness assumption is negligible.

4.1 Uncorrelatedness Is Implied When Unbiased Estimates of γj Are Used
A sufficient condition for our Cov (gi, ei) = 0 assumption to hold is that the SNP weights for the PGI are
unbiased estimates of the SNP weights for the additive SNP factor. To state it more formally, recall that
the standardized additive SNP factor is

gi =
xiγ

sd (xiγ)
,

and the PGI is
ĝi =

xiγ̂

sd (xiγ̂)
.

The sufficient condition is that γ̂ is an unbiased estimate of γ. This would be the case, for example, if γ̂ is
estimated by ordinary least squares or logistic regression (rather than a Bayesian approach, such as LDpred,
which tends to shrink coefficient estimates relative to those from ordinary least squares). This is roughly
equivalent to what is done when PGIs are constructed using “Pruning and Thresholding” methods as long
as the PGI weights are estimated in a different sample than the sample used to select the SNPs that are
included in the PGI. (Note, however, that because “Pruning and Thresholding” methods construct a PGI
using fewer SNPs, the resulting PGI is proxying for an additive SNP factor that is based on fewer SNPs and
hence has a lower h2SNP .) Because γ̂ is unbiased,

γ̂ = γ + eγ ,

where E (eγ) = 0. Since eγ is sampling error, eγ is independent of all variables in independent samples.
Therefore, the measurement error in the PGI, ei = xieγ , is also independent of all variables in independent
samples.

4.2 Magnitude of the Bias When γj Is Estimated Using LDpred-inf
For the Repository, we construct the PGI weights using LDpred-inf. To be precise about this method, it is
helpful to express the length-N vector of phenotype values for the N individuals in the discovery sample as

Y = Xγ + E,

where X is the N ×K matrix of K genotypes, and E is a vector of residuals, which is uncorrelated with X.
The LDpred-inf estimator for γ̂ is:

γ̂ =

(
X′X +

1

σ2
γ

I

)−1
X′Y,

where σ2
γ ≡ Var (γ) =

h2
SNP

K is the prior variance of the additive SNP factor weights. This is equivalent to the
ridge regression estimator, with a particular choice of the regularization parameter. This estimator reduces
the problem of multicollinearity (due to LD) at the cost of some bias in the estimates. We can calculate the
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relationship between γ̂ and γ as

γ̂ =

(
X′X +

1

σ2
γ

I

)−1
X′Y

=

(
X′X +

1

σ2
γ

I

)−1
X′ (Xγ + E)

=

(
N Σ̂X +

1

σ2
γ

I

)−1 (
N Σ̂X

)
γ + eγ̂

=

(
Σ̂X +

1

Nσ2
γ

I

)−1
Σ̂Xγ + eγ̂ , (22)

where Σ̂X ≡ 1
NX′X is the sample variance-covariance matrix of X and eγ̂ ≡

(
X′X + 1

σ2
γ
I
)−1

X′E is the
estimation error of γ̂.

To evaluate the magnitude of the bias in finite samples, we quantify it in a simple case where we regress
the phenotype φi on the standardized additive SNP factor gi and a single (scalar) covariate zi. Without loss
of generality, we orient zi such that gi and zi have positive covariance. As in the main text, we use αg to
denote the coefficients of this theoretical regression:

φi =
[
gi zi

]
αg + εi.

The coefficients from the feasible regression are

αĝ =

[
Var (ĝi) Cov (ĝi, zi)

Var (zi)

]−1 [ Cov (ĝi, φi)
Cov (zi, φi)

]
.

Our measurement-error-corrected estimator is

αcorr =

[ 1
ρ 0

1

] [ 1
ρ2 Cov (ĝi, zi)

Var (zi)

]−1 [
Var (ĝi) Cov (ĝi, zi)

Var (zi)

]
αĝ

=

[ 1
ρ 0

1

] [ 1
ρ2 Cov (ĝi, zi)

Var (zi)

]−1 [
Cov (ĝi, φi)
Cov (zi, φi)

]
=

[ 1
ρ 0

1

] [ 1
ρ2 Cov (ĝi, zi)

Var (zi)

]−1 [
Cov

(
ĝi,
[
gi zi

]
α+ εi

)
Cov

(
zi,
[
gi zi

]
α+ εi

) ]
=

[ 1
ρ 0

1

] [ 1
ρ2 Cov (ĝi, zi)

Var (zi)

]−1 [
Cov (ĝi, gi) Cov (ĝi, zi)
Cov (gi, zi) Var (zi)

]
α

=
1

Var(zi)
ρ2 − Cov (ĝi, zi)

2

[ 1
ρ 0

1

] [
Var (zi) −Cov (ĝi, zi)

1
ρ2

] [
Cov (ĝi, gi) Cov (ĝi, zi)
Cov (gi, zi) Var (zi)

]
α

=
1

Var(zi)
ρ2 − Cov (ĝi, zi)

2

[ 1
ρVar (zi) − 1

ρCov (ĝi, zi)

−Cov (ĝi, zi)
1
ρ2

] [
Cov (ĝi, gi) Cov (ĝi, zi)
Cov (gi, zi) Var (zi)

]
α

=


1
ρVar(zi)Cov(ĝi,gi)−

1
ρCov(gi,zi)Cov(ĝi,zi)

Var(zi)
ρ2

−Cov(ĝi,zi)2
0

1
ρ2

Cov(gi,zi)−Cov(ĝi,zi)Cov(ĝi,gi)
Var(zi)
ρ2

−Cov(ĝi,zi)2
1

α

=


1
ρVar(zi)Cov(ĝi,gi)−

1
ρCov(gi,zi)Cov(ĝi,zi)

Var(zi)
ρ2

−Cov(ĝi,zi)2
0

1
ρ2

Cov(gi,zi)−Cov(ĝi,zi)Cov(ĝi,gi)
Var(zi)
ρ2

−Cov(ĝi,zi)2
1

α.
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Using Cov (ĝi, gi) = Cov
(
gi+ei
ρ , gi

)
= 1

ρ , we have

αcorr =


1
ρ2

Var(zi)− 1
ρCov(gi,zi)Cov(ĝi,zi)

Var(zi)
ρ2

−Cov(ĝi,zi)2
0

1
ρ2

Cov(gi,zi)− 1
ρCov(ĝi,zi)

Var(zi)
ρ2

−Cov(ĝi,zi)2
1

α

=


1
ρ2

Var(zi)−Cov(ĝi,zi)2+Cov(ĝi,zi)2− 1
ρCov(gi,zi)Cov(ĝi,zi)

Var(zi)
ρ2

−Cov(ĝi,zi)2
0

1
ρ2

Cov(gi,zi)− 1
ρCov(ĝi,zi)

Var(zi)
ρ2

−Cov(ĝi,zi)2
1

α

=

 1 +
Cov(ĝi,zi)[Cov(ĝi,zi)− 1

ρCov(gi,zi)]
Var(zi)
ρ2

−Cov(ĝi,zi)2
0

− 1
ρ [Cov(ĝi,zi)− 1

ρCov(gi,zi)]
Var(zi)
ρ2

−Cov(ĝi,zi)2
1

α.
This means that the bias is

αcorr − α =

 1 +
Cov(ĝi,zi)[Cov(ĝi,zi)− 1

ρCov(gi,zi)]
Var(zi)
ρ2

−Cov(ĝi,zi)2
0

− 1
ρ [Cov(ĝi,zi)− 1

ρCov(gi,zi)]
Var(zi)
ρ2

−Cov(ĝi,zi)2
1

α− α

=


Cov(ĝi,zi)[Cov(ĝi,zi)− 1

ρCov(gi,zi)]
Var(zi)
ρ2

−Cov(ĝi,zi)2
0

− 1
ρ [Cov(ĝi,zi)− 1

ρCov(gi,zi)]
Var(zi)
ρ2

−Cov(ĝi,zi)2
0

α

=

[
Cov (ĝi, zi)−

1

ρ
Cov (gi, zi)

]
Cov(ĝi,zi)

Var(zi)
ρ2

−Cov(ĝi,zi)2

− 1
ρ

Var(zi)
ρ2

−Cov(ĝi,zi)2

α1, (23)

where α1 is the first element of α.
We next express the first factor,

[
Cov (ĝi, zi)− 1

ρCov (gi, zi)
]
, in terms of observable or estimable quanti-

ties. To do this, consider the best linear predictor of zi using the same SNPs that make up gi. That predictor
would have weights

ξ ≡ arg min
ξ̃

E
[(
yi − xiξ̃

)2]
(so xiξ is the additive SNP factor for zi). Therefore,[

Cov (ĝi, zi)−
1

ρ
Cov (gi, zi)

]
=

[
Cov

(
xiγ̂

ρ
, xiξ

)
− 1

ρ
Cov (xiγ, xiξ)

]
=

1

ρ

[
Cov

(
xi

[(
Σ̂X +

1

Nσ2
γ

I

)−1
Σ̂Xγ + eγ̂

]
, xiξ

)
− Cov (xiγ, xiξ)

]

=
1

ρ

[
Cov

(
xi

(
Σ̂X +

1

Nσ2
γ

I

)−1
Σ̂Xγ, xiξ

)
− Cov (xiγ, xiξ)

]

=
1

ρ

[
γ′Σ̂X

(
Σ̂X +

1

Nσ2
γ

I

)−1
Var (xi)− γ′Var (xi)

]
ξ

=
1

ρ
γ′

[
Σ̂X

(
Σ̂X +

1

Nσ2
γ

I

)−1
ΣX − ΣX

]
ξ.

12



The second line follows from substituting equation (22) into the first line. By Woodbury’s Identity, we have[
Cov (ĝi, zi)−

1

ρ
Cov (gi, zi)

]
=

1

ρ
γ′
[
Σ̂X

(
Σ̂−1X − Σ̂−1X

(
Σ̂−1X + nσ2

γI
)−1

Σ̂−1X

)
ΣX − ΣX

]
ξ

=
1

ρ
γ′
[
Σ̂XΣ̂−1X ΣX − Σ̂XΣ̂−1X

(
Σ̂−1X + nσ2

γI
)−1

Σ̂−1X ΣX − ΣX

]
ξ

=
1

ρ
γ′
[
ΣX −

(
Σ̂−1X + nσ2

γI
)−1

Σ̂−1X ΣX − ΣX

]
ξ

= −1

ρ
γ′
(

Σ̂−1X + nσ2
γI
)−1

Σ̂−1X ΣXξ. (24)

Next imagine a weighted regression of ξ onto γ with weights
(
Σ−1X + nσ2

γI
)−1

. This produces

ξ =
σξγ
σ2
γ

γ + µ,

with σγξ ≡ Cov (γ, ξ) and with the residual µ having the property γ′
(
Σ−1X + nσ2

γI
)−1

Σ̂−1X ΣXµ = 0. Since
we have oriented gi and zi to have positive covariance, σγξ > 0. Substituting both of these equations into
(24) gives us[

Cov (ĝi, zi)−
1

ρ
Cov (gi, zi)

]
= −1

ρ
γ′
(

Σ̂−1X + nσ2
γI
)−1

Σ̂−1X ΣX

(
σξγ
σ2
γ

γ + µ

)
= −1

ρ

[
σξγ
σ2
γ

γ′
(
Σ−1X + nσ2

γI
)−1

Σ̂−1X ΣXγ + γ′
(
Σ−1X + nσ2

γI
)−1

Σ̂−1X ΣXµ

]
= −1

ρ

σξγ
σ2
γ

γ′
(
Σ−1X + nσ2

γI
)−1

Σ̂−1X ΣXγ.

Next, in order to put an upper bound on the magnitude of bias, we will show that γ′
(
Σ−1X + nσ2

γI
)−1

Σ̂−1X ΣXγ <
1
nσ2

γ
γ′γ. Again using Woodbury’s Identity, we have

γ′
(
Σ−1X + nσ2

γI
)−1

Σ̂−1X ΣXγ −
1

nσ2
γ

γ′γ = γ′
[(

Σ−1X + nσ2
γI
)−1

Σ̂−1X ΣX −
1

nσ2
γ

I

]
γ

= γ′

[
1

nσ2
γ

I−
(

1

nσ2
γ

I

)(
ΣX +

1

nσ2
γ

I

)−1(
1

nσ2
γ

I

)
Σ̂−1X ΣX −

1

nσ2
γ

I

]
γ

= − 1

n2σ4
γ

γ′
(

ΣX +
1

nσ2
γ

I

)−1
Σ̂−1X ΣXγ

< 0.

The last step here follows because ΣX and 1
nσ2

γ
I are positive definite matrices. So this implies that
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γ′
(
Σ−1X + nσ2

γI
)−1

Σ̂−1X ΣXγ <
1
nσ2

γ
γ′γ. Since both sides of this inequality are positive, this implies that[

Cov (ĝi, zi)−
1

ρ
Cov (gi, zi)

]
= −1

ρ

σξγ
σ2
γ

γ′
(
Σ−1X + nσ2

γI
)−1

Σ̂−1X ΣXγ

> −1

ρ

σξγ
σ2
γ

1

nσ2
γ

γ′γ

= −1

ρ

σξγ
σ2
γ

1

nσ2
γ

Meσ
2
γ

= −1

ρ

σξγ
σ2
γ

Me

n

= −1

ρ
rξγ

σξ
σγ

Me

n

= −1

ρ
rξγ

√
h2z

h2SNP

Me

n
.

whereMe is the effective population size, rξγ is the correlation of ξ and γ, and h2z is the SNP heritability of zi.
The parameters rξγ and h2z are unknown, but the magnitude of this term will be largest when rξγ = h2z = 1.
So we have [

Cov (ĝi, zi)−
1

ρ
Cov (gi, zi)

]
> −1

ρ

Me

nhSNP
. (25)

Substituting (25) into (23) therefore gives us an upper bound on the magnitude of the bias of the corrected
estimates:

bupper = −1

ρ

1

nhSNP


Cov(ĝi,zi)

Var(zi)
ρ2

−Cov(ĝi,zi)2

− 1
ρ

Var(zi)
ρ2

−Cov(ĝi,zi)2

α1. (26)

Each of the values in this expression is observed or estimable. This means we can replace each of these
parameters with their corresponding estimates to approximate the magnitude of the bias. Calculations
using equation (26) imply that when Repository PGIs are used (for which the weights are calculated using
LDpred-inf), the bias due to the violation of the Cov (ei, zi) = 0 assumption will typically be small.

For example, using values from the Papageorge and Thom application used in this paper, if zi represents
mother’s educational attainment, we estimate ρ̂ = 1.51, ĥ2SNP = 0.25, n = 293, 723, Var (zi) = 9.02,
Cov (ĝi, zi) = 0.53 and α̂1 = 1.16. (Note that this value of α1 is actually based on controlling for mother and
father’s education, but since this exercise is just meant to get a approximation of the order or magnitude of
the bias, we have not re-evaluated the model with only one covariate.) Substituting these values into (26)
gives us

bupper =

[
−6.50× 10−7

8.13× 10−7

]
.

This is several orders of magnitude smaller than the measurement-error correction.

5 Potential Bias in the Standard Errors
The standard errors from (21) ignore the estimation error introduced by using ρ̂ rather than ρ. We argue here
that ignoring this source of uncertainty induces little bias to our standard errors for α̂corr if ρ is estimated
in the same sample as αĝ.

Consider the univariate case: regressing the phenotype φi on only the PGI ĝi. In that case,

α̂corr = ρ̂α̂ĝ

=
ĥSNP

R̂
α̂ĝ.
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Note that R̂ and α̂ĝ correspond to how well the PGI predicts yi and φi, respectively, in sample. For this
reason, the error in R̂ and α̂ĝ will be positively correlated, which will reduce the standard error of α̂corr.
In contrast, the error in ĥSNP will also be correlated with the error in α̂ĝ, which will increase the standard
error. In the further simple setting where φi = yi, note that α̂ĝ = R̂, which implies that

α̂corr = ρ̂α̂ĝ

=
ĥSNP

R̂
R̂

= ĥSNP .

So the true standard error is equal to the standard error of ĥSNP .
If ρ̂ is calculated in a different dataset than the dataset used in the regression, the error in ĥSNP and R̂

will be uncorrelated with the error in α̂ĝ. This means that the standard errors reported by our measurement-
error software will be anti-conservative. However, since the error in ĥSNP and R̂ will be positively correlated,
the sampling variance in ρ̂ will likely be small, suggesting that the bias in the standard errors will also likely
be small relative to the magnitude of the reported standard error.

6 Theoretical Framework with GWAS Controls
The theoretical framework in the main text is derived for PGI weights estimated in a GWAS conducted using
ordinary least squares (OLS), without any control variables. In practice, PGI weights are virtually always
derived from a GWAS that includes at least some basic set of control variables (typically sex, age, and at least
four principal components (PCs) of the genotype data). We omit the covariates in the main text because
doing so simplifies the exposition without altering any of the theoretical properties of the true additive SNP
factor that we focus on in the main text. However, the choice of covariates is one of many dimensions of
GWAS methodology that may matter in important ways in practical applications where a researcher is trying
to interpret a PGI from a specific GWAS. To illustrate, we show below that the theoretical framework can be
extended to account for the vector of control variables, C, included in the GWAS. The theoretical regression
equation that defines the vector needs to be modified to include the control variables:

(γC , κ) = arg min
(γ̃C ,κ̃)

E[(yi − x′iγ̃C − C ′iκ̃)2],

where we use the C superscript to highlight the fact that the optimal weight vector with controls, γc, generally
differs from the optimal weight vector without controls, which we denoted γ in the main text. Although the
additive SNP factor gCi ≡ x′iγ

C is in general different from gi ≡ x′iγ, as it is derived from γC rather than
γ, everything proceeds from here onward like in the main text. Since gci is a best linear predictor, it can
be understood as a standardized, noisy measure of an unobserved, latent variable, and the error-in-variables
bias and the measurement-error-corrected estimator formulas remain the same, with coefficients from the
conditional analyses replacing the univariate coefficients. Compared to the main text, the only difference is
that gci is now the best linear predictor of the phenotype conditional on the controls.

7 Polygenic Index Repository User Guide
In this guide, we summarize the key information regarding the construction of the Repository PGIs, lay
out some of the interpretational issues that are likely to arise as researchers begin to use PGIs from the
Repository, and outline how we suggest thinking through those issues.

7.1 Summary information about Repository PGIs
Here, we provide a brief summary of how the PGIs were constructed (please see Methods for a more detailed
description). We refer the reader to the relevant tables where more information can be found.
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7.1.1 Phenotype definitions and GWAS for single-trait PGIs

The single-trait PGIs are based on meta-analyses of summary statistics from three sources: GWAS conducted
in 23andMe and UKB (some of which are novel), and published GWAS. Supplementary Table 5 lists the
phenotype measures used in the UKB GWAS that we conducted ourselves, including information on how
repeated measures were handled and the sample size in each of the three UKB partitions. Supplementary
Table 6 lists the phenotype definitions and describes the association models for all novel or published 23andMe
GWAS, and for published GWAS, it cites the relevant publications.

In order to avoid sample overlap between the GWAS and Repository datasets, we conducted multiple
versions of the GWAS meta-analysis for each phenotype (so as to have, for each dataset, a version of the
meta-analysis that excludes that dataset). Supplementary Table 8 lists all GWAS meta-analyses used as
inputs for the single-trait PGIs. The “Repository Datasets Sumstats are Used for” column shows which
meta-analysis the PGI weights come from for each Repository dataset.

7.1.2 Supplementary phenotypes and MTAG for multi-trait PGIs

The multi-trait PGIs are based on MTAG analyses2 of genetically correlated (pairwise rg > 0.6) phenotypes.
Supplementary Table 9 lists genetic correlations between all pairs of phenotypes considered in the Repository.
Based on these genetic correlations, MTAG groups were formed for each phenotype. These groups are listed
in Supplementary Table 10. The “Input Files” column lists, for each group, the codes for the single-trait
GWAS (see Supplementary Table 8 for the GWAS that the codes refer to) that were included in the multi-
trait MTAG analysis. As is the case for the single-trait PGIs, there are multiple versions for each phenotype
because of sample overlap with the Repository datasets and the “Repository Datasets Sumstats are Used
for” column shows which MTAG analysis the PGI weights for each Repository dataset comes from.

7.1.3 PGI construction

The PGIs were made using LDpred3 applied to HapMap3 SNPs. The inclusion criterion was that the
“expected” out-of-sample predictive power of a PGI be greater than 1%. The expected predictive power was
calculated from the results of the GWAS meta-analysis4. The expected predictive power of each single- and
multi-trait PGI (including the ones not included in the Repository because they did not pass the cutoff of
1%) are shown in Supplementary Tables 1 and 2, respectively. Notably, even though the expected predictive
power of each PGI is greater than 1%, in many instances, the actual predictive power of the PGI in a
particular dataset may be less than 1%.

7.1.4 PC construction

As part of the Repository, we also release 20 principal components (PCs) based on the genome-wide data
in each of the praticipating cohorts. The primary purpose of the release is to make them available for users
who wish to use them as controls for population stratification. In order to make the PCs, we first restricted
the samples to European-ancestry individuals and removed markers with imputation accuracy less than 70%
or minor allele frequency less than 1%, as well as markers in long-range LD blocks (chr5:44mb-51.5mb,
chr6:25mb-33.5mb, chr8:8mb-12mb, chr11:45mb-57mb). We then pruned all SNPs that survived these filters
using a 1Mb rolling window (incremented in steps of 5 variants) and an r2 threshold of 0.1 Next, we calculated
the pairwise relatedness between all individuals in our full sample and generated a sample of conventionally
unrelated individuals by dropping one individual from each pair of individuals with an estimated relatedness
greater than 0.05. We then estimated SNP loadings for the top 20 PCs in this sample of approximately
unrelated individuals. Finally, we used the estimated SNP loadings to compute 20 PCs for all individuals
in the full sample (including both members from all pairs whose estimated relatedness exceeded our 0.05
threshold).

In HRS, we re-labeled the PCs in sets of five in order to address identifiability concerns. Therefore, it is
only possible to infer from the variable name of a PC if it is one of the first five PCs (PC 1-5), one of the
next five PC (PCs 6-10), etc.
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7.1.5 Genotyping, imputation, and phenotype definitions in Repository datasets

Details on genotyping and imputation of the Repository datasets are listed in Supplementary Table 11.
Supplementary Table 12 lists the phenotype definitions for the subset of these datasets that we used to
validate our PGIs, excluding UK Biobank. The phenotype definitions for UK Biobank can be found in
Supplementary Table 5.

7.1.6 PGIs from publicly available GWAS

In order to assess the gains in predictive power when using the Repository PGIs as opposed to PGIs obtained
using publicly available GWAS, we constructed a set of “public PGIs.” These “public PGIs” were obtained
using the same methodology that we used for our Repository PGIs and weights from the largest GWAS in
the public domain that does not have sample overlap with the validation dataset. Supplementary Table 13
lists these publicly available GWAS. Again, there are multiple versions for each phenotype that were used
for different validation datasets in order to avoid sample overlap. The table shows which version was used
for which dataset.

7.1.7 Predictive power of Repository PGIs in validation datasets

Supplementary Table 3 shows the observed predictive power of the single- and multi-trait Repository PGIs
in our five validation datasets, together with 95% confidence intervals obtained using a bootstrap with 1000
repetitions. The table also shows the difference between the predictive power of “public PGIs” and single-
/multi-trait Repository PGIs, as well as the difference between the predictive power of single- and multi-trait
PGIs. Note that the HRS sample used in our validation exercise (2006-2010) is smaller than the HRS sample
for which we are releasing PGIs (2006-2012) because we only had access to phenotype data in the former.

7.1.8 Estimates of ρ in HRS, WLS, and UKB

In Supplementary Table 4, we provide estimates of the amount of measurement error, ρ, corresponding to
single- and multi-trait PGIs for phenotypes available in three of our validation datasets: HRS, WLS, and
UKB (third partition). In HRS and WLS, we also provide jackknife standard errors for the ρ estimates.
Because producing jackknife standard errors in UKB is very computationally expensive, for UKB we provide
standard errors only for three phenotypes: friend satisfaction, educational attainment and height. We
chose these three phenotypes so as to have one each corresponding to a single-trait PGI with low (friend
satisfaction), medium (educational attainment)and high predictive power (height).

7.2 Interpretational considerations
In this section, we lay out some of the interpretational issues that are likely to arise as researchers begin to
use PGIs from the Repository, and we outline how we suggest thinking through those issues. The executive
summary is as follows:

1. The methodologies used to conduct the GWAS and to construct the PGI weights jointly determine the
additive SNP factor that is proxied for by the PGI.

2. These methodologies, together with the PGI phenotype, determine the relative importance of various
potential confounds to a causal interpretation of PGI associations. In most applications, researchers
should control for PCs (which are available from the datasets, along with the PGIs, as part of the
Repository).

3. Whether and which confounds should be highlighted (or can be safely ignored) depends on the appli-
cation.

4. While a multi-trait PGI generally has higher predictive power than its corresponding single-trait PGI, it
is subject to additional potential confounds. This tradeoff should be evaluated when deciding whether
to use a single-trait or multi-trait PGI.
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5. Currently, the most feasible way to cleanly identify causal effects of a PGI is to conduct a within-family
analysis (where the PGI is analyzed in a sibling sample, with sibling fixed effects). In the absence of
clean identification of a causal effect, researchers should highlight the potential confounds to a causal
interpretation.

6. In interpreting PGI associations (whether causal or not), it is important to keep in mind that genetic
effects can operate through environmental mechanisms, and these mechanisms may be modifiable. For
this reason, terminology such as “genetic endowment” should be avoided. Researchers should remind
readers of the potential role of environmental mechanisms in explaining PGI associations.

The following subsections, numbered 1 through 6, provide more detail on the points above. In addition to
attending to these interpretational issues, we urge users of the Repository to conduct power calculations
prior to undertaking analyses; to pursue analyses only if they are adequately powered; and, when feasible,
to preregister planned analyses (along with the power calculations).

We note that the GWAS from which the Repository PGIs are constructed were conducted in European-
ancestry samples (where “European-ancestry” is operationalized differently depending on the study but
almost always involves sample restrictions based on the genetic PCs; e.g., for our UKB GWAS, see the
“UKB GWAS” subsection of Section I in Methods). Due to the limited portability of such GWAS results
to other ancestries, for the PGIs released to participating datasets, the current version of the Repository is
restricted to individuals of European ancestries, as defined by how their genetic PCs cluster together with
those classified as having European ancestries in the 1000 Genomes Project (see the “Subject-level QC in
Repository Cohorts” subsection of Section II in Methods).

7.2.1 GWAS and PGI-Weight Methodologies and the Additive SNP Factor

In the Supplementary Methods section 6, we showed how the set of control variables used in a GWAS affects
the additive SNP factor proxied for by a PGI. The choice of controls, however, is just one of many dimensions
of GWAS methodology. A change to any of these dimensions is likely to result in a different additive SNP
factor (with a different interpretation). For example, it is increasingly common for researchers to conduct
association analyses using mixed-linear models5,6 rather than OLS. Since mixed-linear models often produce
estimates that are more robust to stratification, the additive SNP factor will be akin to that generated
by an OLS-based GWAS with some additional controls for stratification. Knowledge of the methodology
of the GWAS underlying a particular PGI is therefore often a necessary first step for understanding what
additive SNP factor a specific PGI is proxying for. For example, the methodologies underlying the GWASs
we conducted in UKB for the PGIs in the Repository are described in the “UKB GWAS” subsection of
Section I in Methods. Information about the association models in the 23andMe GWASs can be found in
Supplementary Table 6.

The PGI-weight methodology can matter, as well. For example, our Repository PGI weights are calcu-
lated from the GWAS results using the HapMap3 set of SNPs, which primarily captures common genetic
variation. If PGI weights were instead calculated based on results from SNPs that capture a different mix
of common and rare genetic variation, then the additive SNP factor corresponding to that PGI would have
a different interpretation: it would be the best linear predictor based on that set of SNPs.

7.2.2 Potential Confounds to a Causal Interpretation

It is increasingly understood that standard GWAS approaches with a limited set of controls – for example,
sex, age, and up to 10 PCs, as in most of the GWASs underlying the Repository PGIs – generate PGIs
that can be subject to a number of confounds to a causal interpretation7–10. For example, PGIs for educa-
tional attainment derive a substantial share of their overall predictive power from their positive association
with rearing environment. In behavior-genetic parlance, this positive correlation arises due to the vertical
transmission of the parental phenotypes (parents’ phenotypes impact their children’s phenotypes). In recent
molecular-genetic research, this source of positive gene-environment correlation has been labelled “genetic
nurture” 8. This effect can be further exacerbated by assortative mating at the genetic level.

As another example, when the PCs are estimated in a small sample, they are often not very accurate
proxies for ancestry. Failure to adequately control for genetic ancestry gives rise to “population stratifica-
tion” 11: because the PGI is correlated with ancestry, which in turn is correlated with ethnicity and regional
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background, it picks up cultural or environmental factors that are correlated with these factors. In many
empirical applications, the goal is to estimate an association that is net of any such cultural and environ-
mental confounds. In such cases, it may be possible to mitigate concerns that the underlying GWAS may
have relied on inaccurate ancestry controls by including a richer-than-usual set of environmental controls in
the analysis of the PGI (i.e., in the vector zi in equations (1) and (2) in the main text).

Indeed, in most applications, researchers should include PCs in the set of environmental controls. When
estimating PGI-by-environment interactions, researchers should additionally control for interactions between
PCs and the “environment” variable12. For these purposes, dataset-specific PCs are made available as part
of the Repository. However, it is important to recognize and acknowledge that the PCs are not fully accurate
measures of ancestry, so even after controlling for PCs, residual confounding almost surely remains.

The relevance of potential confounds could vary across phenotypes7,9,10. For example, genetic nurture
effects are much smaller for height than educational attainment. Although the noisiness of PCs as measures
of ancestry in a given sample is the same across phenotypes, the noisiness is likely to be substantially more
problematic for educational attainment than for height because finer ancestral distinctions (which require
more PCs to capture) probably matter for the social and environmental factors that influence educational
attainment. More generally, it seems likely that potential confounds to a causal interpretation matter more
for PGIs for social and behavioral phenotypes than for PGIs for more biologically proximal phenotypes.

7.2.3 Importance of Confounds Depends On the Application

The degree to which potential confounds to a causal interpretation matter depends on how the PGI is
used. For example, if a PGI is used as a control variable to increase precision for a randomized treatment
evaluation 13,14, then the goal is simply to use controls that absorb as much residual variance as possible (and
avoid controlling for any variables realized after the randomized intervention). Since the PGI is simply being
used as a predictive variable, its interpretation is irrelevant in that case. As a contrasting example, consider
the illustrative application in the main text that tests how much parental education mediates the predictive
power of the PGI for educational attainment. There, the PGI should be understood as capturing some of
the genetic nurture effects and ancestry associations with education. In most applications, the potential
confounds do matter and should be highlighted.

7.2.4 Single- Versus Multi-Trait PGIs

MTAG coefficient estimates are a weighted sum of GWAS coefficient estimates. Relative to GWAS estimates,
MTAG coefficients have a lower expected mean-squared error, which means that multi-trait PGIs will in
general have greater predictive power.

Multi-trait PGIs, however, do not necessarily have the same interpretation as single-trait PGIs. Because
MTAG estimates are a weighted average of GWAS estimates for several traits, the multi-trait PGI based on
MTAG estimates is roughly a weighted average of PGIs for the set of included traits. As a result, a multi-
trait PGI may be correlated with an outcome variable if that outcome variable is genetically correlated with
a supplementary phenotype for the multi-trait PGI. This can even be the case if the outcome variable and
the target phenotype are not genetically correlated.

Therefore, results using the multi-trait PGI have the same interpretation as results using the
single-trait PGI in analyses where

(i) the dependent variable and the PGI correspond to the same phenotype, and

(ii) no other covariates are included in the regression that are genetically correlated with any of the
supplementary phenotypes used to construct the multi-trait PGI.

However, results from the multi-trait PGI should be interpreted differently than results from the
single-trait PGI—perhaps being driven by a supplementary phenotype rather than the target
phenotype—if either (i) or (ii) is violated. In that case, the risk of spurious results increases when (a)
the GWAS sample size for the target GWAS is small relative to the GWAS sample size of the supplementary
phenotypes, and (b) the genetic correlation between the target phenotype and the supplementary phenotypes
is only moderate. Researchers who use multi-trait PGIs should make clear to readers how large the potential
for a confounded interpretation is and how much it matters for the application at hand. To facilitate this,
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we report the average weight that MTAG assigns to each traits that enter into the multi-trait PGIs in
Supplementary Table 10. Although these weights may vary by SNP when there is variation in the sample
size across SNPs, they are informative about where the predictive power comes from.

As described in Section 7.5 above, in settings where the PGI is just being used as a covariate (e.g.,
as a control variable in a randomized controlled trial), the confounds associated with using the multi-trait
PGI may be less important. In all settings, however, it is good practice to describe which supplementary
phenotypes were included in the multi-trait PGI whenever an analysis employs the multi-trait PGI.

7.2.5 Identifying Causal Effects of a PGI

A clean way to identify the causal effects of a PGI is to conduct the analysis of the PGI in a sibling sample
and control for family fixed effects (even if the PGI itself is generated from currently-standard (between-
family) GWAS, as the Repository PGIs are). The family fixed effects control for all common factors shared
by siblings within a family, including the parents that the siblings share. This empirical strategy exploits a
natural experiment: conditional on a pair of biological parents, genetic inheritance is random. A robustly
estimated non-zero within-family association from a large and attrition-free sample would provide strong
evidence of a causal effect of the PGI. The coefficient estimate could be interpreted as a weighted average of
treatment effects from hypothetical experiments that randomly modify, at conception, the genotypes of the
causal SNPs responsible for the predictive power of the PGI15,16.

The additive SNP factors corresponding to the PGIs in the Repository are not the best linear predic-
tors conditional on a pair of biological parents (because the GWAS underlying the PGI weights do not
control for the biological parents). The PGIs proxying for additive SNP factors that would be the best
linear predictors for such a “within-family analysis” would be PGIs constructed from GWAS that control for
parental genotypes or from GWAS (in sibling samples) that control for family fixed effects. Unfortunately,
to date genotyped family-based samples have been too small to produce reliable “within-family PGIs.” The
Repository does not yet contain any such PGIs. Ultimately, however, when genotyped family-based samples
become sufficiently large, the resulting within-family PGIs will be more predictive for within-family analyses
than PGIs constructed from currently-standard (between-family) GWAS.

7.2.6 Genetic Effects Can Operate Through Environmental Mechanisms

We urge researchers who use PGIs in their research to be mindful of three important issues of interpretation
for the causal effects of a PGI. First, a PGI could exert its effects through the environment17. Consider a
PGI for BMI13. Suppose a within-family association analysis yields unambiguous evidence of a within-family
association between the PGI and BMI. Even though the within-family design provides strong support for
a causal interpretation, this does not imply that the SNPs in the PGI must be influencing BMI through
some narrowly physiological mechanism. In principle, the sibling differences in BMI could arise because
of sibling differences in genes that influence the proneness to eat sweets, exercise habits, or myriad other
behaviors with downstream effects on BMI. PGIs for seemingly “biological” phenotypes can thus have a
substantial behavioral component. A PGI for lung health may similarly derive predictive power from SNPs
that influence lung health very indirectly, through smoking habits18,19.

Second and relatedly, it is therefore a fallacy to assume that any genetic sources of heterogeneity captured
by a PGI are immutable—or even at least harder to modify than environmental sources of heterogeneity.
Indeed, the possibility of identifying modifiable mechanisms through which PGIs exert some of their effects
motivates some of the research using PGIs20,21. To continue the BMI example, the widespread replacement
of sugar by low-calorie sweeteners or better behavioral tools for avoiding temptation could eliminate or reduce
the effect of the PGI on BMI. Because of these issues, we urge researchers to avoid describing PGIs as “genetic
endowments” or other terms that may, however inadvertently, promote the common misunderstanding that
genes are a resource that is easily separable from choices made in light of that resource.

Third, because the additive genetic factor is defined conditional on the GWAS phenotype, population, and
environment, the same PGI may have different predictive power in different samples if there are differences in
the phenotype measure, population sampled, the sampling methodology, or the environmental context. For
example, the research participants from the UKB were recruited through the mail and had a 5.5% response
rate. Those that responded to the recruitment mailers were more healthy and more educated than the UK
population as a whole22,23. Because UKB participants make up a large fraction of the discovery sample for
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many phenotypes, it may be that the PGI from this Repository does not correspond to a PGI that would
be produced from a representative sample or a sample of individuals not from the UK.

References
[1] Goddard, M.E., et al. Estimating effects and making predictions from genome-wide marker data.

Statistical Science, 24, 517–529 (2009).

[2] Turley, P., et al. Multi-trait analysis of genome-wide association summary statistics using MTAG.
Nature Genetics, 50, 229–237 (2018).

[3] Vilhjálmsson, B.J., et al. Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores.
American Journal of Human Genetics, 97, 576–592 (2015).

[4] Daetwyler, H.D., Villanueva, B., and Woolliams, J.A. Accuracy of predicting the genetic risk of disease
using a genome-wide approach. PLoS One, 3, e3395 (2008).

[5] Kang, H.M., et al. Variance component model to account for sample structure in genome-wide associa-
tion studies. Nature Genetics, 42, 348–354 (2010).

[6] Loh, P.R., et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts.
Nature Genetics, 47, 284–290 (2015).

[7] Lee, J.J., et al. Gene discovery and polygenic prediction from a genome-wide association study of
educational attainment in 1.1 million individuals. Nature Genetics, 50, 1112–1121 (2018).

[8] Kong, A., et al. The nature of nurture: Effects of parental genotypes. Science, 359, 424–428 (2018).

[9] Young, A.I., et al. Relatedness disequilibrium regression estimates heritability without environmental
bias. Nature Genetics (2018).

[10] Morris, T.T., et al. Population phenomena inflate genetic associations of complex social traits. Science
Advances (2020).

[11] Hamer, D. and Sirota, L. Beware the chopsticks gene. Molecular Psychiatry, 5, 11–13 (2000).

[12] Keller, M.C. Gene x Environment Interaction Studies Have Not Properly Controlled for Potential
Confounders: The Problem and the (Simple) Solution. Biological Psychiatry, 75, 18–24 (2013).

[13] Benjamin, D.J., et al. The Promises and Pitfalls of Genoeconomics. Annual Review of Economics, 4,
627–662 (2012).

[14] Rietveld, C.A., et al. GWAS of 126,559 individuals identifies genetic variants associated with educational
attainment. Science, 340, 1467–1471 (2013).

[15] Angrist, J.D. and Pischke, J.S. Mostly harmless econometrics: An empiricist’s companion (2008).

[16] Yitzhaki, S. On using linear regressions in welfare economics. Journal of Business and Economic
Statistics (1996).

[17] Jencks, C. Heredity, environment, and public policy reconsidered. American Sociological Review, 45,
723–736 (1980).

[18] Thorgeirsson, T.E., et al. A variant associated with nicotine dependence, lung cancer and peripheral
arterial disease. Nature, 452, 638–642 (2008).

[19] Amos, C.I., et al. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung
cancer at 15q25.1. Nature Genetics, 40, 616–622 (2008).

21



[20] Belsky, D.W. and Harden, K.P. Phenotypic Annotation: Using Polygenic Scores to Translate Discoveries
From Genome-Wide Association Studies From the Top Down. Current Directions in Psychological
Science, 28, 82–90 (2019).

[21] Conley, D. Socio-genomic research using genome-wide molecular data. Annual Review of Sociology, 42,
275–299 (2016).

[22] Fry, A., et al. Comparison of Sociodemographic and Health-Related Characteristics of UK Biobank
Participants with Those of the General Population. American Journal of Epidemiology, 186, 1026–1034
(2017).

[23] Keyes, K.M. and Westreich, D. UK Biobank, big data, and the consequences of non-representativeness.
The Lancet, 393, 1297 (2019).

22



Supplementary Note

April 9, 2021

Contents

1 Data Access Procedures 2

2 Dataset Pro�les 4

3 Dataset-Speci�c Acknowledgments 5

4 Dataset Authorship Contributions 7

1



1 Data Access Procedures

23andMe

Upon publication of this paper, investigators at non-pro�t institutions can obtain access to the genome-wide
summary statistics from 23andMe used in this paper by completing the 23andMe Publication Dataset Access
Request Form. The information provided on this form will be used to generate a Statement of Work (SOW)
that will allow 23andMe to transfer data for use in the described research project. The SOW and a Data
Transfer Agreement will need to be signed by the institution and 23andMe before data can be shared. The
form, as well as additional information and requirements, are available at https://research.23andme.com/dataset-
access/.

Add Health

Access to the polygenic indexes and full phenotype data in Add Health is publicly available via a restricted
data use contract with the University of North Carolina at Chapel Hill. Obtain access by visiting the CPC
Data Portal at data.cpc.unc.edu/projects/2/view or see the Add Health contracts page at
www.cpc.unc.edu/projects/addhealth/contracts. Add Health genotype data can be accessed via the
database of Genotypes and Phenotypes (dbGaP, www.ncbi.nlm.nih.gov/gap, accession number
phs001367.v1.p1).

Dunedin Multidisciplinary Health and Development Study

The datasets reported in the current article are available on request by quali�ed scientists. Requests
require a concept paper describing the purpose of data access, ethical approval at the applicant's
university, and provision for secure data access. We o�er secure access on the Duke, Otago and King's
College campuses. All data analysis scripts and results �les are available for review. For more information,
see mo�ttcaspi.trinity.duke.edu/research-topics/dunedin.

ELSA

Polygenic indexes and genotype data are publicly available and are available here:
https://www.elsa-project.ac.uk/genetics. Phenotype and other publicly available data can be downloaded
from the UK Data Service: https://beta.ukdataservice.ac.uk/datacatalogue/studies/study?id=5050. Use is
limited to non-pro�t research use only. For more information regarding the data please contact
o.ajnakna@ucl.ac.uk.

E-Risk

The datasets reported in the current article are available on request by quali�ed scientists. Requests
require a concept paper describing the purpose of data access, ethical approval at the applicant's
university, and provision for secure data access. We o�er secure access on the Duke and King's College
campuses. All data analysis scripts and results �les are available for review. For more information, see
mo�ttcaspi.trinity.duke.edu/research-topics/erisk.

EGCUT

Estonian Biobank data is available for academic research. To request phenotype, polygenic index, and/or
genotype data, researchers need to �ll out a preliminary request form (available at
genomics.ut.ee/en/biobank.ee/data-access) and submit it via e-mail to releases@ut.ee. The preliminary
request will be evaluated by the Estonian Committee on Bioethics and Human Research. Upon positive
review, researchers need to �ll out a request form (also available at
genomics.ut.ee/en/biobank.ee/data-access) and submit it via e-mail to releases@ut.ee. The data will then
be shared pursuant to a Data Use Agreement. For further details, see
genomics.ut.ee/en/biobank.ee/data-access.
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HRS

Polygenic scores are publicly available and can be downloaded here:
https://hrsdata.isr.umich.edu/data-products/ssgac-polygenic-index-pgi-repository. Phenotype and other
publicly available data can be downloaded here: hrs.isr.umich.edu/data-products. Genotype data can be
accessed via the database of Genotypes and Phenotypes (dbGaP, www.ncbi.nlm.nih.gov/gap, accession
number phs000428.v1.p1 and phs000428.v2.p2) with the most recent version forthcoming via NIAGADS
(www.niagads.org/). Use is limited to non-pro�t research use only.

MCTFR

Access to the MCTFR PGIs is available by contacting Matt McGue (mcgue001@umn.edu), who will
provide access authorization. Access to MCTFR phenotypic data will require a research proposal the
structure of which can be provided by Matt McGue. Please note that the MCTFR is a complex,
longitudinal study with thousands of relevant phenotypes assessed at multiple points in time. An overview
of the range of phenotypes and developmental periods can be found in Wilson et al. (2019). Use of
phenotypic data requires an approved proposal that is approved by the MCTFR Principal Investigator
Committee; access to the MCTFR PGIs does not require an approved proposal. Because of the
complexities involved, developing a proposal typically involves multiple iterations with MCTFR sta� and
are dealt with on a case-by-case basis.

STR

Researchers interested in using STR data must obtain approval from the Swedish Ethical Review Authority
and from the Steering Committee of the Swedish Twin Registry. Researchers using STR data are required
to follow the terms of a number of clauses designed to ensure protection of privacy and compliance with
relevant laws. For further information please visit ki.se/en/research/the-swedish-twin-registry.

TTP

Access to the polygenic indexes and phenotype data from the Texas Twin Project is available via a
restricted data use contract with the University of Texas at Austin. Restricted data users must develop an
IRB-approved research proposal and security plan that ensures secure use of the data to minimize
deductive disclosure risks. To apply for restricted-use data, please visit
https://redcap.prc.utexas.edu/redcap/surveys/?s=FHJW9KCW8K.

UKB

All bona �de researchers can apply to use the UK Biobank resource for health related research that is in
the public interest. Researchers can register and apply for data access at
https://www.ukbiobank.ac.uk/register-apply/. Prior to publication of this paper, we will return the
Repository PGIs to the UKB in accordance with their �returning results� procedure:
https://biobank.ndph.ox.ac.uk/showcase/exinfo.cgi?src=returning_results. UKB will subsequently make
the PGIs available to researchers as �Derived data-�elds.�

WLS

In addition to phenotype data, the polygenic index data is publicly available. As of February 2019,
researchers who wish to use these polygenic indexes should email a brief research proposal and a copy or
link to their CV to wls@ssc.wisc.edu. Given the need to preserve participant con�dentiality, to access the
complete genotyped data, researchers will additionally need to receive IRB approval from their home
institution and enter into a Data Use Agreement between the researcher's home institution and the
University of Wisconsin-Madison. For the most up-do-date instructions, see
www.ssc.wisc.edu/wlsresearch/documentation/GWAS/.

3



2 Dataset Pro�les

23andMe

Eriksson, N. et al. Web-Based, Participant-Driven Studies Yield Novel Genetic Associations for Common
Traits. PLOS Genetics 6(6), 1�20 (2010).

Add Health

Harris, K. M. et al. Cohort Pro�le: The National Longitudinal Study of Adolescent to Adult Health (Add
Health). International Journal of Epidemiology 48(5), 1415�1425 (2019).

Dunedin Multidisciplinary Health and Development Study

Poulton, R, et at.. The Dunedin Multidisciplinary Health and Development Study: Overview of the �rst 40
years, with an eye to the future. Social Psychiatry and Psychiatric Epidemiology 50, 679�693 (2015).

ELSA

Steptoe, A. et al. �Cohort Pro�le: The English Longitudinal Study of Ageing (ELSA).� International Journal
of Epidemiology 42(6), 1640�1648 (2013).

E-Risk

None.

EGCUT

Leitsalu, L. et al. Cohort Pro�le: Estonian Biobank of the Estonian Genome Center (EGCUT), International
Journal of Epidemiology 44, 1137�1147 (2015).

HRS

Sonnega, A. et al. Cohort Pro�le: the Health and Retirement Study (HRS), International Journal of
Epidemiology 43(2), 576�85 (2014).

MCTFR

Wilson, S. et al. Minnesota Center for Twin and Family Research (MCTFR). Twin Research and Human

Genetics 22(6), 746�752 (2019).

STR

Zagai, U. et al. The Swedish Twin Registry (STR): Content and Management as a Research Infrastructure.
Twin Research and Human Genetics 22(6), 672�680 (2019).

TTP

Harden, K.P. et al. The Texas Twin Project (TTP). Twin Research and Human Genetics 16(1), 385�90
(2013).

UKB

Sudlow, C et al. UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of
Complex Diseases of Middle and Old Age. PLoS Med 12(3) (2015).
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WLS

Herd, P. et al. Cohort pro�le: Wisconsin Longitudinal Study (WLS). International Journal of Epidemiology

43, 34�41 (2014).

3 Dataset-Speci�c Acknowledgments

We gratefully acknowledge research participants from all cohorts.

23andMe

We gratefully acknowledge the contributions of members of 23andMe's Research Team, whose names are
listed below: Michelle Agee, Babak Alipanahi, Adam Auton, Robert K. Bell, Katarzyna, Bryc, Sarah L.
Elson, Pierre Fontanillas, Nicholas A. Furlotte, Karen E. Huber, Nadia K. Litterman, Jennifer C.
McCreight, Matthew H. McIntyre, Joanna L. Mountain, Carrie A.M. Northover, Steven J. Pitts, J. Fah
Sathirapongsasuti, Olga V. Sazonova, Janie F. Shelton, Suyash Shringarpure, Chao Tian, Joyce Y. Tung,
Vladimir Vacic, and Catherine H. Wilson.

Add Health

The National Longitudinal Study of Adolescent to Adult Health (Add Health) is supported by grant P01
HD031921 to Kathleen Mullan Harris from the Eunice Kennedy Shriver National Institute of Child Health
and Human Development (NICHD), with cooperative funding from 23 other federal agencies and
foundations. Add Health GWAS data were funded by NICHD grants to Harris (R01 HD073342) and to
Harris, Boardman, and McQueen (R01 HD060726). For information about access to the data from this
study, contact addhealth@unc.edu.

Dunedin Multidisciplinary Health and Development Study

Dunedin Multidisciplinary Health and Development Study research is supported by National Institute on
Aging grants R01AG032282, R01AG049789, UK Medical Research Council grant MR/P005918, the New
Zealand Health Research Council and New Zealand Ministry of Business, Innovation, and Employment.

ELSA

The English Longitudinal Study of Ageing is jointly run by University College London, Institute for Fiscal
Studies, University of Manchester and National Centre for Social Research. Genetic analyses have been
carried out by UCL Genomics and funded by the Economic and Social Research Council (ES/K005774/1)
and the National Institute on Aging (R01 AG017644). All GWAS data has been deposited in the European
Genome-phenome Archive. For more information please refer to www.elsa-project.ac.uk/genetics, or
contact o.ajnakina@ucl.ac.uk.

E-Risk

The E-Risk study is funded by grant G1002190 from the UK Medical Research Council and grant
HD077482 from the National Institute of Child Health and Development.

EGCUT

EGCUT received funding from the Estonian Research Council Grant PUT1660 and PRG184, Mobilitas
Pluss ERA-NET grant SP1GI18045T, Horizon 2020 program grants MMVCM18418R, and European
Union through the European Regional Development Fund SLTMR16142T. For more information, please
contact Tõnu Esko (tonu.esko@ut.ee).
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MCTFR

This project was led by William G. Iacono, PhD. and Matt McGue, PhD (Co-Principal Investigators) at
the University of Minnesota, Minneapolis, MN, USA. Co-investigators from the same institution included:
Irene J. Elkins, Margaret A. Keyes, James J. Lee, Lisa N. Legrand, Stephen M. Malone, William S. Oetting,
Michael B. Miller, Saonli Basu and Scott Vrieze. Funding support for this project was provided through
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grants: R37DA05147, R01AA09367, R01AA11886, R01DA13240, R01MH66140.

STR

The Swedish Twin Registry (STR) is managed by Karolinska Institutet and receives additional funding
through the Swedish Research Council under the grant no 2017-00641. Other funding for the project come
from the Ragnar Söderberg Foundation (E9/11), the Swedish Research Council (421-2013-1061).

TTP

The Texas Twin Project is supported by grants R01HD083613 and R01HD092548 from NIH/NICHD and
Jacobs Foundation Research Fellowships.

WLS

This research uses data from the Wisconsin Longitudinal Study (WLS) of the University of
Wisconsin-Madison. Since 1991, the WLS has been supported principally by the National Institute on
Aging (AG-9775, AG-21079, AG-033285, and AG-041868, R01 AG041868-01A1), with additional support
from the Vilas Estate Trust, the National Science Foundation, the Spencer Foundation, and the Graduate
School of the University of Wisconsin-Madison. Since 1992, data have been collected by the University of
Wisconsin Survey Center. The opinions expressed herein are those of the authors. A public use �le of data
from the Wisconsin Longitudinal Study is available from the Wisconsin Longitudinal Study, University of
Wisconsin-Madison, 1180 Observatory Drive, Madison, Wisconsin 53706 and at
www.ssc.wisc.edu/WLSresearch/data/.
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4 Dataset Authorship Contributions

Dataset Author

Study

design

&

mgmt.

Data

collec-

tion

Geno-

typing

Geno-

type

prep.

Pheno-

type

prep.

Data

analysis
Writing

23andMe Aaron Kleinman X X X

23andMe David A. Hinds X X X

23andMe
23andMe Research

Group
X X X X

Add Health Kathleen Mullan Harris X X X X X

Dunedin Study Daniel W. Belsky X X X

Dunedin Study Avshalom Caspi X X X X

Dunedin Study David L. Corcoran X X X

Dunedin Study Terrie E. Mo�tt X X X X

Dunedin Study Richie Poulton X X X X

Dunedin Study Karen Sugden X X X X X

Dunedin Study Benjamin S. Williams X X X

ELSA Andrew Steptoe X X

ELSA Olesya Ajnakina X

E-Risk Daniel W. Belsky X X X

E-Risk Avshalom Caspi X X X X

E-Risk David L. Corcoran X X X

E-Risk Terrie E. Mo�tt X X X X

E-Risk Karen Sugden X X X X X

E-Risk Benjamin S. Williams X X X

EGCUT Lili Milani X X X X X X

EGCUT Tõnu Esko X X X X X X

MCTFR William G. Iacono X X

MCTFR Matt McGue X X X

STR Rafael Ahlskog X

STR Patrik K.E. Magnusson X X X

TTP Travis T. Mallard X

TTP K. Paige Harden X

TTP Elliot M. Tucker-Drob X

WLS Pamela Herd X X X

WLS Jeremy Freese X X X
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Supplementary Figure 1. Predictive power of Repository multi-trait PGIs 
(A) 
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Notes: Error bars show 95% confidence intervals from bootstrapping with 1,000 repetitions. Panel (A): Incremental 𝑅" from adding Repository’s multi-trait PGI to a regression of the phenotype on 10 
principal components of the genetic relatedness matrix for HRS, WLS, Dunedin, and E-Risk, and on 20 principal components and 106 genotyping batch dummies for UKB. Prior to the regression, 
phenotypes are residualized on a second-degree polynomial for age or birth year, sex, and their interactions (see Supplementary Tables 5 and 12). For the GWAS-equivalent sample sizes of the summary 
statistics that the PGIs are based on, see Supplementary Table 10. Panel (B): Difference in incremental 𝑅" between Repository multi-trait PGI and PGI constructed from publicly available summary 
statistics using our Repository pipeline. (Note that the latter do not include PGI directly available from datasets, such as the ones accessible from the HRS website.) If no publicly available summary 
statistics are available for a phenotype, then the difference in incremental 𝑅" is equal to the incremental 𝑅" of the single-trait PGI and is represented by an open circle. For the GWAS sample sizes of the 
PGIs based on publicly available summary statistics, see Supplementary Table 13. Panel (C): Difference in incremental 𝑅" between Repository multi-trait PGI and the single-trait PGI corresponding to 
the same phenotype. 
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Frequently Asked Questions (FAQs) 

 

 

This document provides information about the study:  

 

Becker et al. (2021) “Resource Profile and User Guide of the Polygenic Index Repository” Nature 
Human Behaviour, in press. 

 

The document was prepared by Daniel Benjamin, David Laibson, Michelle N. Meyer, and Patrick 

Turley. It draws from and builds on the FAQs for earlier SSGAC papers. It has the following sections:  

 

1. Background  

2. Study design and results 

3. Social and ethical implications of the study  

4. Appendices 

 

For clarifications or additional questions, please contact Daniel Benjamin 

(daniel.benjamin@gmail.com). 

  

mailto:daniel.benjamin@gmail.com
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1. Background 

1.1. Who conducted this study? What are the group’s overarching goals? 

The authors of the study are researchers affiliated with the Social Science Genetic Association 

Consortium (SSGAC) as well as data providers (i.e., individuals who act as stewards for datasets and 

provide other researchers with access to these data for research purposes). The SSGAC is a multi-

institutional, international research group that aims to identify statistically robust associations between 

variation in DNA and variation in social-science-relevant outcomes.  

We study the most common sources of genetic variation—single-nucleotide polymorphisms (SNPs). 

SNPs are sites in the genome where single DNA base pairs commonly differ across individuals. Each 

SNP usually has two different possible base pairs, which are called alleles. Although there are tens of 

millions of sites where SNPs are located in the human genome, our work (like most genetic research 

today that aims to link variation in DNA to variation in disease and other outcomes) investigates only 

SNPs that can be easily measured with a high level of accuracy. These days, we can easily and 

accurately measure millions of SNPs, which together capture most of the common genetic variation 

across people. 

The social-science-relevant outcomes that we analyze include differences across people in behavior, 

preferences, and personality that are traditionally studied by social and behavioral scientists (e.g., 

anthropologists, economists, political scientists, psychologists, and sociologists). These traits are often 

also of interest to health and other researchers. 

The SSGAC was formed in 2011 to address a specific set of scientific challenges. Most outcomes and 

behaviors are weakly associated with a very large number of SNPs. Although their collective effect can 

be meaningful (see FAQs 1.2 & 2.3), we now know that almost every one of these SNPs has an 

extremely weak association on its own. To identify specific SNPs with such small effects, scientists 

must study at least hundreds of thousands of people (to separate weak signals from sampling noise). 

One promising strategy for doing this is for many investigators to pool their data into one large study. 

This approach has borne considerable fruit when used by medical geneticists interested in a range of 

medical conditions (Visscher et al., 2017). Most of these advances would not have been possible without 

large research collaborations between multiple research groups interested in similar questions. The 

SSGAC was formed in an attempt by social scientists to adopt this research model. 

The SSGAC is organized as a working group of the Cohorts for Heart and Aging Research in Genomic 

Epidemiology (CHARGE), a successful medical consortium. (In genetics research, “cohort” is a term 

that means “dataset.”) The SSGAC was founded by three social scientists—Daniel Benjamin 

(University of California – Los Angeles), David Cesarini (New York University), and Philipp 

Koellinger (University of Wisconsin and Vrije Universiteit Amsterdam)—who believe that studying 

SNPs associated with social scientific outcomes can have substantial positive impacts across many 

research fields. This includes research that aims to better understand the effects of the environment 

(e.g., research on policy interventions) and interactions between genetic and environmental effects. The 
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potential benefits also span a diverse set of research questions in the biomedical sciences, such as why 

and how educational attainment is linked to longevity and better overall health outcomes. 

To conduct such research, the SSGAC implements genome-wide association studies (GWAS) of social-

scientific outcomes. For example, to conduct a GWAS of educational attainment (e.g., Lee et al., 2018) 

every participating cohort calculates the cross-sectional (i.e., within-cohort) correlation between 

educational attainment and DNA-base-pair variation at a single location on the genome: a SNP. As first 

discussed above, a SNP is a base-pair of the genome where there is common variation in the human 

population. This statistical analysis is repeated for each SNP on the genome. The cohort-level results 

do not contain individual-level data—just summary statistics about these within-cohort statistical 

associations. The SSGAC then combines these cohort results to produce the overall GWAS results. By 

using existing datasets and combining cohort results, we can study the genetics of large numbers of 

individuals (for example, ~1.1 million people in Lee et al. (2018)) at very low cost. The SSGAC publicly 

shares overall, aggregated results (subject to some Terms of Service; see FAQ 3.7) so that other 

scientists can build on this work. These publicly available data have already catalyzed many research 

projects and analyses across the social and biomedical sciences. Among the most useful products of 

these GWASs for other research are the polygenic indexes that are based on GWAS associations. 

Polygenic indexes are variables that aggregate the predictive power of many SNPs for predicting the 

outcome of the GWAS (see FAQ 1.2), and they are the focus on the current paper.   

The Advisory Board for the SSGAC is composed of prominent researchers representing various 

disciplines: Dalton Conley (Sociology, Princeton University), George Davey Smith (Epidemiology, 

University of Bristol), Tõnu Esko (Molecular Biology and Human Genetics, University of Tartu and 

Estonian Genome Center), Albert Hofman (Epidemiology, Harvard University), Robert Krueger 

(Psychology, University of Minnesota), David Laibson (Economics, Harvard University), James Lee 

(Psychology, University of Minnesota), Sarah Medland (Genetic Epidemiology, QIMR Berghofer 

Medical Research Institute), Michelle Meyer (Bioethics and Law, Geisinger Health System), and Peter 

Visscher (Statistical Genetics, University of Queensland). 

The SSGAC is committed to the principles of reproducibility and transparency. Major SSGAC 

publications are usually accompanied by a FAQ document (such as this one). The FAQ document is 

written to communicate what was found less tersely and technically than in the paper, as well as what 

can and cannot be concluded from the research findings more broadly. FAQ documents produced for 

SSGAC publications are available on the SSGAC website. 

To date, SSGAC-affiliated papers have studied educational attainment, cognitive performance, 

subjective well-being, reproductive behavior, risk tolerance, and dietary intake. The SSGAC website 

contains a list of our major publications, which have been published in journals such as Science, Nature, 

Nature Genetics, Proceedings of the National Academy of Sciences, Psychological Science, and 

Molecular Psychiatry. 

1.2. What is a polygenic index (PGI)? Why this terminology? 

A polygenic index (we use the acronym PGI throughout the paper) is an index composed of a large 

number of SNPs from across the genome. Each polygenic index is associated with a particular outcome 

http://www.thessgac.org/data
https://www.thessgac.org/faqs
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(for details, see FAQ 1.3). Because a polygenic index aggregates the information from many SNPs, it 

can “predict” (see FAQ 1.6) far more of the variation among individuals than any single SNP. (Note 

that even polygenic indexes are not good predictors of outcomes for one person; see FAQ 3.3). Often, 

the polygenic indexes with the most predictive power are those created using all the (millions of) SNPs 

measured in a SNP array. A SNP array is the currently standard way of measuring common genetic 

differences across individuals. A SNP array data does not measure the entire genetic sequence of each 

individual, but it does measure most of the places on the genome where individuals differ. 

Our terminology of polygenic index is currently non-standard, but most of the authors of the paper 

prefer it to current terms and hope that this paper, and the Polygenic Index Repository introduced in 

this paper, make polygenic index a standard term. The traditional terms include polygenic risk score 

and polygenic score. The word risk makes little sense when the polygenic index is for a non-disease 

outcome (such as height). The word score was intended to echo statistical nomenclature but can instead 

convey an unintended value judgment or valence (i.e., “a higher score must be better”). The word index 

is at least as accurate statistically and does not convey a value judgment. 

1.3. How is a polygenic index constructed? 

A polygenic index is constructed in three steps. First, a genome-wide association study (GWAS) is 

conducted, looking at SNPs measured across the entire human genome to see which of them are 

associated with higher or lower levels of some outcome. As explained above, SNPs are sites in the 

genome where single DNA base pairs commonly differ across individuals. SNPs usually have two 

different possible base pairs, or alleles. Although there are tens of millions of sites where SNPs are 

located in the human genome, GWASs typically investigate only SNPs that can be easily measured (or 

imputed) with a high level of accuracy. These days, we can easily and accurately measure millions of 

SNPs, which together capture most of the common genetic variation across people. For each of these 

millions of SNPs, the GWAS generates an “effect size” corresponding to the (typically miniscule) 

magnitude of the association between that SNP and the outcome. (We use the term “effect size” because 

it is a common scientific shorthand for “magnitude of association,” but we emphasize that use of the 

term is not intended to imply that the SNP, or polygenic index, causes the outcome; see FAQ 1.5.) 

Second, the effect sizes are used to determine the “weight” each SNP will get in the polygenic index. 

The simplest scheme is to weight each SNP by its effect size as estimated in the GWAS. This simple 

weighting scheme has one main problem: because SNPs tend to be correlated with nearby SNPs on the 

genome (a phenomenon called linkage disequilibrium), if one SNP is associated with the outcome, 

nearby SNPs will also be associated with the outcome. State-of-the-art approaches to determining the 

weights for a polygenic index are designed to address this problem. We use a common approach called 

LDpred (Vilhjálmsson et al., 2015). Using the results of a GWAS, LDpred generates a weight for each 

SNP. These weights are not equal to the SNPs’ effect sizes as estimated in the GWAS, mostly because 

the weights take into account each SNP’s correlation with other SNPs. (Even though LDpred addresses 

the issue of linkage disequilibrium, it does so only for the purpose of generating weights for optimal 

prediction. LDpred will not necessarily assign more weight to the SNP whose association with the 

outcome is responsible for nearby SNPs’ associations with the outcome. Thus, LDpred is a tool to 

address the issue of linkage disequilibrium for the purpose of prediction—which is the purpose of a 

polygenic index—but not for the purpose of unbiased estimation of SNPs’ effect sizes. See FAQ 1.5.)  
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Third, the set of weights for the SNPs are used in a formula for calculating a polygenic index for any 

particular individual. The formula is a weighted sum of alleles at each SNP (using the weights from the 

second step). The formula is used to calculate a numerical value of the polygenic index for each 

individual in some dataset (that was not included in the GWAS). 

The sample used for the GWAS in the first step is the training sample for the polygenic index. The 

larger the GWAS sample size, the greater the predictive power of a polygenic index constructed in the 

third step. However, this predictive power of a polygenic index has a maximum for each outcome that 

the polygenic index can approach as the sample size gets bigger, but it can never exceed.   

1.4. How might polygenic indexes be useful? 

A polygenic index for an outcome provides one measure of the genetic influence on that outcome that 

can be used in research in a variety of ways. For example, polygenic indexes have been used to: 

• partially control for genetic influences in order to generate less noisy estimates of how changes 

in school policy influence health outcomes (Davies et al., 2018); 

• examine how the effect of school policy on health outcomes depends in part on genetic 

influences (Barcellos, Carvalho and Turley, 2018a); 

• study why SNPs predict educational attainment – for example, it appears that some genetic 

effects on educational attainment operate through associations with cognitive function and traits 

such as self-control (Belsky et al., 2016), which in turn affect educational attainment; 

• investigate how genetic influences on educational attainment differ across environmental 

contexts (Schmitz and Conley, 2017; Barcellos, Carvalho and Turley, 2018b);  

• investigate how genetic influences on BMI vary over the lifecycle (Khera et al., 2019); 

• infer the degree of assortative mating (Robinson et al., 2017; Yengo et al., 2018); 

• trace recent migration patterns (Domingue et al., 2018; Abdellaoui et al., 2019); 

• examine whether polygenic indexes for disease risk are sufficiently predictive to be 

incorporated into clinical practice for preventative medicine (Khera et al., 2018); and 

• develop new statistical tools that may advance our understanding of how parenting and other 

features of a child’s rearing environment influence his or her developmental outcomes 

(Koellinger and Harden, 2018; Kong et al., 2018). 

The idea of using GWAS results to create a polygenic index was initially proposed in 2007 (Wray, 

Goddard and Visscher, 2007), and the first polygenic index was created in 2009 in a GWAS of 

schizophrenia and bipolar disorder (Purcell et al., 2009). Since then, polygenic indexes have become a 

significant part of research that builds on genetics in the medical and social sciences. For example, in 

the current paper we analyze presentations at the annual meeting of the Behavior Genetics Association. 

We report that the fraction of presentations that used polygenic indexes increased from 0% in 2009 to 

20% in 2019. The list above represents a few illustrative examples of research that uses polygenic 

indexes. 

As discussed in FAQ 1.9 below, one goal of this paper, and the Polygenic Index Repository it 

introduces, is to facilitate further work using polygenic indexes by making a much wider range of more 

predictive polygenic indexes available to researchers. 
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1.5. Does a polygenic index “cause” the outcome of interest? 

Polygenic indexes available today, including those we construct in this paper, should not be interpreted 

as a measure of causal mechanisms. 

The genome-wide association studies (GWASs) used as the training data for the polygenic indexes (see 

FAQ 1.3) identify SNPs that are associated with the outcome, but an observed empirical correlation 

with a specific SNP need not imply that the SNP causes the outcome, for a variety of reasons. First, 

SNPs are often highly correlated with other, nearby SNPs on the same chromosome. As a result, when 

one or more SNPs in a region causally influence an outcome (in that particular environment), many 

non-causal SNPs in that region may also be identified as associated with the outcome (in FAQ 1.3, see 

the parenthetical “Even though LDpred…” for why LDpred does not solve this problem for the purpose 

of identifying the causal SNP). In fact, the causal SNP may not have even been measured directly. For 

example, GWAS that focus on common SNPs would not be able to identify rare or structural types of 

genetic variation (e.g., deletions or insertions of an entire genetic region) that are causal, but they may 

identify SNPs that are correlated with these unobserved variants. For these and other reasons, polygenic 

indexes are likely to be composed of a mix of causal and non-causal SNPs, and the weights used in the 

formula for constructing the polygenic index (see FAQ 1.3) should not be interpreted as estimates of 

the causal effects of the SNPs. As a very rough estimate, for social and behavioral outcomes, no more 

than about one-third of the predictive power of a polygenic index (i.e., the percentage of the variance 

in the outcome among individuals that the polygenic index explains) is explained by causal genetic 

effects (Howe et al., 2021). For instance, the most predictive polygenic index for educational attainment 

currently available explains about 12% of the variance between people, but only one-third of that—

about 4%—is causal. (These causal SNPs may be among the SNPs included in the polygenic index or 

may be physically close to, and therefore correlated with, SNPs that are included.) In contrast, for 

anthropometric outcomes such as height, it is possible that nearly all of the predictive power of a 

polygenic index is explained by causal SNPs. 

Second, at a particular SNP the frequency of different alleles might vary systematically across 

environments. If those environmental factors are not accounted for in the association analyses, some of 

the measured SNP associations with social-science outcomes may be spurious. To use a well-known 

example often used to explain this idea (Lander and Schork, 1994), any genetic variants common in 

people of Asian ancestries will be associated statistically with more frequent than average chopstick 

use, but these variants would not cause greater chopstick use; rather, these genetic variants and the 

outcome of chopstick use are both distributed unevenly among people with different ancestries. This is 

called the problem of “population stratification.” The GWAS underlying the polygenic indexes in this 

paper employ standard strategies to try to minimize this problem, but the issues raised by population 

stratification cannot be ruled out entirely. As a result, the polygenic indexes likely reflect population 

stratification to some extent. In the User Guide that accompanies the Polygenic Index Repository 

(reproduced in the Supplementary Methods of the paper), we discuss this problem in more detail and 

discuss strategies for addressing the population stratification in the polygenic indexes 

Even in GWAS (such as those we rely on or conduct ourselves) that attempt to address and correct for 

heterogeneity in genetic ancestry, allele frequencies may nonetheless vary systematically with 

environmental factors even within a group of people of similar genetic ancestry. For example, a SNP 

that is associated with improved educational outcomes in the parental generation may have downstream 

effects on parental income and other factors known to influence children’s educational outcomes (such 
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as neighborhood characteristics). This same SNP is likely to be inherited by the children of these 

parents, creating a correlation between the presence of the SNP in a child’s genome and the extent to 

which the child was reared in an environment with specific characteristics. A recent study of Icelandic 

families showed that a parental allele associated with higher educational attainment of the parent that is 

not passed on to the parent’s offspring is still associated with the child’s educational attainment, 

suggesting that GWAS results for educational attainment partly represent these intergenerational 

environmental pathways (Kong et al., 2018). 

Third, a SNP’s effects on an outcome may be indirect, so a SNP that may be “causal” in one 

environment may have a diminished effect or no effect at all in other environments. For example, 

variation in a particular SNP on chromosome 15 is associated with lung cancer (Amos et al., 2008; 

Hung et al., 2008; Thorgeirsson et al., 2008). From this observation alone we cannot conclude that 

variation in this SNP can cause lung cancer through some direct biological mechanism. In fact, it is 

likely that variation in this SNP, which is part of the nicotinic acetylcholine receptor gene cluster that 

affects nicotine metabolism, increases lung cancer risk through effects on smoking behavior. In a 

tobacco-free environment, it is plausible that this association with lung cancer would be substantially 

weaker and perhaps disappear altogether. Thus, even if we have credible evidence that a specific 

association is not spurious, it is entirely possible that the SNP in question influences the outcome 

through channels that we, in common parlance, would label environmental (e.g., smoking). Nearly forty 

years ago, the sociologist Christopher Jencks criticized the widespread tendency to mistakenly treat 

environmental and genetic sources of variation as mutually exclusive (see also Turkheimer, 2000). As 

the example of smoking illustrates, it is often overly simplistic to assume that “genetic explanations of 

behavior are likely to be exclusively physical explanations while environmental explanations are likely 

to be social” (Jencks, 1980, p723). 

1.6. In what sense does a polygenic index “predict” the outcome of interest? 

When we and other scientists say that polygenic indexes (and other variables, such as demographics or 

other environmental factors) “predict” certain outcomes, our use of the word differs in several important 

ways from how “predict” is used in standard language (e.g., outside of social science research papers). 

First, we do not mean that the polygenic index guarantees an outcome with 100% probability, or even 

with a high degree of likelihood. Rather, we mean that the polygenic index is, on average across people, 

statistically associated with an outcome. In other words, on average, people with a higher numerical 

value of the polygenic index have a higher likelihood of the outcome compared to people with a lower 

numerical value. A polygenic index is said to be statistically “predictive” of an outcome even if the 

polygenic index has only a weak association with the outcome—as is the case, for instance, with almost 

all of the polygenic indexes in this paper. In such cases, the polygenic index is only weakly predictive 

of the outcome. 

Second, in standard language, “prediction” usually refers to the future. In contrast, when scientists say 

that a polygenic index “predicts” an outcome, they mean that they expect to see the association in new 

data. “New data” means data that haven’t been analyzed yet—regardless of whether those data will be 

collected in the future or have already been collected. In other words, in social science, it makes perfect 

sense to ask how well a polygenic index predicts outcomes that have already occurred, like how many 

years of education were attained by older adults. 
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Finally, in standard language, a “prediction” is often an unconditional guess about what will happen. 

Instead of meaning it unconditionally, scientists mean that they expect to see an association in new data 

under certain conditions, for example, that the environment for the new data is the same as the 

environment in which the GWAS that underlies the polygenic index (see FAQ 1.3) was conducted. In 

the example given in FAQ 1.5, in which a SNP is associated with lung cancer due to an effect on 

smoking, we would not expect the SNP to be as strongly predictive of lung cancer, or predictive at all, 

in an environment where tobacco-based products are hard to obtain or absent entirely. 

1.7. What polygenic indexes were available to researchers prior to this project? 

Prior to this project, only a few datasets had constructed polygenic indexes that researchers could 

download and use. Notable examples of data providers that did make polygenic indexes directly 

available to researchers —all of which recognized early on the value of doing so—are the Health and 

Retirement Study, the Wisconsin Longitudinal Study, and the National Longitudinal Adolescent to 

Adult Health Study. The UK Biobank does not construct polygenic indexes for its users, but it provides 

a mechanism by which researchers who use the data and construct polygenic indexes can “return” them 

to the UK Biobank for use by other researchers. Through this mechanism, polygenic indexes 

constructed from several GWASs have been made available for researchers to download from the UK 

Biobank. 

To study polygenic indexes in other datasets or for other outcomes, prior to this paper, researchers 

would need to construct the polygenic indexes themselves, following the steps described in FAQ 1.3. 

For the first step, most researchers would need to rely on publicly available GWAS results, which 

include less data and are therefore less predictive than some polygenic indexes in published work that 

rely on non-public GWAS results (see FAQ 2.3). Recently, to make it easier for researchers to construct 

polygenic indexes themselves, the Polygenic Score Catalog (Lambert et al., 2020) collected together 

weights for a range of polygenic indexes (also based on publicly available GWAS results). 

As we discuss in more detail in FAQ 2.1, for the Polygenic Index Repository, we constructed a large 

number of polygenic indexes in each of 11 datasets (including the four mentioned above) and have 

made the polygenic indexes directly available for researchers to download. The polygenic indexes are 

often based on more data than is publicly available, and the polygenic indexes are constructed according 

to a uniform methodology across both outcomes and datasets. For examples of Repository polygenic 

indexes that were previously not available at all or that were less accurate (i.e., predictive), see FAQ 

2.3.  

1.8. How do different polygenic indexes for the same outcome differ? How comparable are 

results across studies that use different polygenic indexes for the same outcome? 

There are several reasons why polygenic indexes for the same outcome can differ from each other. As 

described in FAQ 1.3, there are three steps to creating a polygenic index, and differences can arise at 

each of these steps. For example, in the first step, researchers could base the polygenic index on different 

GWAS studies of the same outcome. Different GWAS studies may be based on samples who live under 

different environmental conditions, may have different measures of the outcome, and/or may have 

measured different SNPs. As another example, in the second step, researchers could use a different 

https://hrs.isr.umich.edu/data-products/genetic-data/products#pgs
https://hrs.isr.umich.edu/data-products/genetic-data/products#pgs
https://www.ssc.wisc.edu/wlsresearch/documentation/GWAS/
https://addhealth.cpc.unc.edu/wp-content/uploads/docs/user_guides/WaveIVPGSRelease2UserGuide.pdf
https://addhealth.cpc.unc.edu/wp-content/uploads/docs/user_guides/WaveIVPGSRelease2UserGuide.pdf
https://www.pgscatalog.org/
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method of determining polygenic-index weights from the results of a GWAS. For these and other 

reasons, it has been common for different studies to use different polygenic indexes, even when the 

polygenic indexes are for the same outcome and are being studied in the same dataset. 

The results are typically difficult to compare across such studies for three main reasons: 

1. If the polygenic indexes are constructed using different methods, then even though they are 

both measuring genetic influences on the outcome, the precise definition of these “genetic 

influences” may differ (see FAQs 3.1 and 3.2). 

2. The units for measuring the strength of associations between the polygenic index and other 
variables generally differ across studies. Researchers usually report results in terms of standard 

deviations (a statistical unit) of the polygenic index, but if the polygenic index in one study is 

a more powerful predictor than that in the other study, then one standard deviation of one 

polygenic index means something different than one standard deviation of the other. 
3. If one of the polygenic indexes is a more powerful predictor than the other, then they differ in 

their signal-to-noise ratio for capturing genetic influences on the outcome. Whenever an 

explanatory variable is measured with noise, results based on that variable will be distorted, 

sometimes in unanticipated ways. Since the signal-to-noise ratio differs across the polygenic 

indexes, results based on them are distorted differentially, further making the results difficult 

to compare. 

1.9. Why create the Polygenic Index Repository? 

In brief, the Polygenic Index Repository introduced in this paper has three main goals: (i) to make 

polygenic indexes for a large number of outcomes more accessible to a wider range of researchers from 

many fields and disciplines, including early career researchers, researchers without access to the data 

and/or training required to create the most state-of-the-art polygenic indexes, and researchers who wish 

to probe the limitations of polygenic indexes; (ii) to increase the use of polygenic indexes that are more 

accurate (i.e., predictive) than polygenic indexes researchers could construct from publicly available 

GWAS results; and (iii) to facilitate the comparability of results across studies that use these polygenic 

indexes. 

In more detail, the Polygenic Index Repository addresses several practical obstacles that researchers 

interested in using polygenic indexes must often confront, including: 

1. Constructing a polygenic index from genotype data requires special expertise. Even for 

researchers with that expertise, it can be a time-consuming process. 

2. It is generally desirable to generate polygenic-index weights from the GWAS with the largest 

sample size because the predictive accuracy of a polygenic index is expected to be largest in 

that case. However, there are administrative hurdles for accessing some GWAS results, such as 

those from 23andMe. In practice, researchers often end up constructing polygenic indexes using 

only publicly available GWAS results. Such polygenic indexes tend to have less predictive 

power. 

3. Publicly available GWAS results are sometimes based on a sample that includes the dataset (or 

close relatives of dataset members) in which the researcher wants to analyze the polygenic 

index. Such “sample overlap” spuriously inflates the predictive power of the polygenic index, 

which can lead to highly misleading results. 

https://research.23andme.com/dataset-access/
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4. Because different researchers construct polygenic indexes in different ways, it is hard to 

compare and interpret results from different studies (see FAQ 1.8) 

As we explain in the paper: 

We overcome #1 by constructing the [polygenic indexes] ourselves and releasing them to the 

data providers, who in turn will make them available to researchers. This simultaneously 

addresses #2 because we use all the data available to us that may not be easily available to other 

researchers or to the data providers, including genome-wide summary statistics from 23andMe. 

Using these genome-wide summary statistics from 23andMe is what primarily distinguishes 

our Repository from existing efforts by data providers to construct PGIs and make them 

available…It also distinguishes our Repository from efforts to make publicly available 

[polygenic index] weights directly available for download (although we also do that, for 

weights constructed without 23andMe data). To deal with #3, for each [outcome] and each 

dataset, we construct a [polygenic index] from GWAS summary statistics that excludes that 

dataset. We overcome #4 by using a uniform methodology across the [outcomes]. 

In addition to providing polygenic indexes constructed using a uniform methodology (which deals with 

problem #1 listed in FAQ 1.8), we aim to improve comparability of results based on polygenic indexes 

in another way (which deals with problems #2 and #3 listed in FAQ 1.8): we derive a “measurement-

error-corrected estimator” and provide software for calculating it. This estimator deals with the fact that 

polygenic indexes can differ from each other in their signal-to-noise ratios. It estimates what the results 

of an analysis would be if the polygenic index had no noise. It thereby avoids the distortions in results 

that arise from having a noisy measure. Because it puts results about the polygenic index in the units of 

the “noiseless” polygenic index, the results from polygenic indexes with different signal-to-noise ratios 

are expressed in the same units. For more details, see FAQ 2.4. 

2. Study Design and Results 

2.1. What outcomes are included in the Polygenic Index Repository? How did you choose 

the outcomes? 

We constructed polygenic indexes for 47 outcomes in 11 datasets, using a consistent methodology. The 

outcomes (listed in Table 1 in the paper) can be categorized into five groups: 

• anthropometric (height and body mass index); 

• cognition and education (including number of years of formal schooling and performance on 

cognitive tests); 

• fertility and sexual development (including number of children separately for men and women, 

and age at first menses); 

• health and health behaviors (the largest category, which includes self-rated overall health, 

several alcohol and smoking-related behaviors, and depressive symptoms); and 

• personality and well-being (the next largest category, which includes self-rated risk tolerance, 

subjective well-being, and adventurousness). 
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The set of 47 outcomes we studied was selected from a larger set of 53 outcomes; we did not create 

polygenic indexes for the 6 outcomes for which statistical calculations indicated that, based on the 

GWAS results we had available, a polygenic index was predicted to explain less than 1% of the variation 

across individuals. Although the specific threshold of 1% is somewhat arbitrary (but see further 

discussion in FAQ 2.3 below), polygenic indexes with low predictive power are less useful and more 

likely to generate misleading results (such as false positives) if used. 

2.2. How did you create these polygenic indexes? 

In order to construct the polygenic indexes, we combined GWAS results from three sources. First, for 

the 34 outcomes where we could find previously published GWAS, we obtained the publicly available 

results. Second, we collaborated with the personal genomics company 23andMe. 23andMe contributes 

to academic research by analyzing the data of customers who consent to participate in research. For this 

paper, 23andMe provided GWAS results for 37 outcomes, 9 of which had not previously been 

published. Third, for 25 outcomes, we conducted a GWAS ourselves in the UK Biobank, a large-scale 

biomedical database accessible to researchers. When more than one of these sources of GWAS results 

was available for an outcome, we combined the GWAS results together using a statistical method called 

meta-analysis. In some cases, we constructed “multi-trait polygenic indexes” using GWAS results for 

multiple outcomes (Turley et al., 2018); these polygenic indexes are often more predictive than a 

standard “single-trait polygenic index” constructed from GWAS results from a single outcome (FAQ 

1.3), but the results from analyzing multi-trait polygenic indexes are sometimes more difficult to 

interpret (FAQ 2.5). 

2.3. How predictive are the polygenic indexes in the Repository? 

To assess the predictive power of the polygenic indexes, we used data from 5 of the 11 participating 

datasets (those for which we had access to both the outcome and genotype data we needed to construct 

the polygenic indexes). In each of these 5 datasets, we calculated the predictive power of every 

polygenic index for which the dataset contained data on the relevant outcome (see FAQ 2.1). 

The predictive power of the polygenic indexes varies substantially across the outcomes and validation 

datasets. The polygenic index for height has the greatest predictive power. It predicts 26% to 34% of 

the variation across individuals, depending on the validation dataset. Next is the polygenic index for 

body mass index (BMI), whose predictive power ranges from 13% to 15% in our validation datasets. 

Several outcomes—cognitive performance, age at first menses, and educational attainment—have a 

polygenic index with predictive power in the range of 6% to 12%. Among the least predictive are the 

polygenic indexes for satisfaction with family and satisfaction with friendships, whose predictive 

powers in our validation datasets range from 0.3% to 0.7% (they were included because their predictive 

power was statistically expected to exceed 1%; see FAQ 2.1). The predictive powers for the other 

polygenic indexes in the Repository lie somewhere between 1% and 6%.  

Although the effects explained by these polygenic indexes are small-to-modest, they can nevertheless 

be useful in research. For instance, the environmental factors studied in economics research typically 

have predictive power smaller than 5%, often 1% or smaller. Among the strongest predictors of 

educational attainment is family socioeconomic status, which has predictive power of roughly 15%. In 

https://research.23andme.com/collaborate/
https://www.ukbiobank.ac.uk/enable-your-research
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a standard categorization used in psychology (Cohen, 1992; percentages here are squared r values) 

predictive power less than 9% is “small” while predictive power greater than 25% (rarely attained in 

psychological research) is “large.” We caution, however, that these comparisons of the effect sizes of 

polygenic indexes and environmental influences aren’t apples-to-apples because researchers usually 

study one particular environmental factor or many on an outcome, whereas a polygenic index 

summarizes the predictive power of SNPs across the genome. As discussed further in FAQ 3.3, for 

social and behavioral outcomes, the sum of all environmental (i.e., non-genetic) influences substantially 

outweigh the sum of all genetic influences that a polygenic index aims to capture. 

As we discuss in FAQ 3.3, an individual’s polygenic indexes (even for height) do not very accurately 

predict that individual’s outcomes. However, polygenic indexes are useful for scientific studies 

(including social science, health research, etc.). Such studies are concerned with aggregate population 

trends and averages rather than with individual outcomes. For example, for a polygenic index that 

predicts 1% of the variation across individuals, studies of its association with other variables can be 

well powered in sample sizes as small as 785 individuals; 10 out of the 11 datasets participating in the 

Repository have sample sizes larger than that. 

A major goal of the Polygenic Index Repository is to enable other research that is valuable to social 

scientists and health researchers. Such studies are already being conducted with some polygenic indexes 

(see FAQ 1.9). For some outcomes, the polygenic indexes in the Repository are more predictive than 

those that were previously possible to construct; examples include having asthma/eczema/rhinitis, 

number of cigarettes smoked per day, having migraines, nearsightedness, self-reported physical 

activity, self-rated overall health, extraversion (i.e., being outgoing), and subjective well-being (i.e., 

self-reported happiness or life satisfaction). For other outcomes, polygenic indexes were not available 

prior to this paper because there had been no large published GWASs for those outcomes; examples 

include childhood reading, self-rated math ability, and self-reported narcissism, and several allergies 

including to pollen. 

2.4. What is the “measurement-error-corrected estimator”? How will it and the Repository 

improve comparability of results across future studies? 

To understand this tool, it’s helpful to imagine the theoretically ideal polygenic index that could result 

from an infinitely large GWAS. In the paper, we call the predictor that would result from this ideal 

GWAS the “additive SNP factor.” The actual polygenic indexes that exist in the world are “noisy” 

measures of, and therefore only proxies for, this additive SNP factor. The signal-to-noise ratio of a 

polygenic index—i.e., the extent to which it reflects the additive SNP factor—is determined by the 

sample size of the GWAS from which the polygenic index is constructed (a larger GWAS leads to less 

noise and therefore a higher signal-to-noise ratio). The fact that the polygenic index is noisy distorts the 

results of most analyses that use the polygenic index (relative to what the results would be with the ideal 

predictor). These distortions can lead researchers to reach incorrect conclusions. For example, in an 

analysis of how genes and environments interact in influencing some outcome, the noise in the 

polygenic index will usually cause a researcher to underestimate how strongly genes and environments 

interact. 

Moreover, as discussed in FAQ 1.8, there are many reasons why two polygenic indexes for the same 

outcome could differ from each other, including differences in the GWAS that the polygenic index is 
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based on and different methods for constructing the polygenic index. Many of these differences among 

GWASs produce differences in the signal-to-noise ratios of their resulting polygenic indexes. Two 

studies using polygenic indexes with different signal-to-noise ratios will, in turn, have results that are 

distorted to differing degrees, reducing comparability of results across studies that use the polygenic 

indexes. 

The “measurement-error-corrected estimator” we derive in the paper enables researchers to conduct 

analyses without the distortion that comes from the noise. It works because we (often) have a good 

estimate of how much noise a given polygenic index has. We can use that information to calculate what 

the results of an analysis would have been if the polygenic index had no noise. The estimator improves 

comparability of results across papers because it avoids the distortions in results that arise from having 

a noisy polygenic index. Rather than being distorted to different degrees, two studies using polygenic 

indexes with different signal-to-noise ratios that use our estimator will both have undistorted results. 

We have made available the software for this estimator. We will maintain and provide user support for 

this software. 

Moreover, across all the polygenic indexes and across all the datasets participating in the Repository, 

we constructed the polygenic indexes in a uniform way. To the extent that future studies use the 

polygenic indexes from the Repository, their results will therefore be more comparable. 

2.5. What is in the User Guide that accompanies the Repository? 

Along with the polygenic indexes, we have distributed to the participating datasets a User Guide. Data 

providers will distribute this User Guide to researchers as part of the Repository. The User Guide 

contains technical details about the construction of the polygenic indexes, as well as details about data 

and software availability. It also describes a set of key interpretational considerations that researchers 

should keep in mind when analyzing polygenic indexes. These include when to use a single-trait versus 

multi-trait polygenic index (see FAQ 2.1) and reasons why associations between a polygenic index and 

an outcome generally cannot be interpreted as causal (see FAQ 1.5). Finally, the User Guide contains a 

discussion of six “interpretational considerations” that we urge researchers who use polygenic indexes 

to consider as part of the responsible conduct and communication of their research (see FAQ 3.7).  

2.6. Who can access the Repository polygenic indexes, and how? 

Researchers can access the Repository polygenic indexes through the data access procedures for each 

of the datasets participating in the Repository. These are summarized in the Supplementary Note of the 

paper. Typically, data providers require researchers to submit a brief a description of the planned 

research and to sign a Data Use Agreement. The Data Use Agreement usually requires researchers to 

agree to protect the confidentiality of individuals in the dataset and, to that end, to analyze the data on 

computers that satisfy certain security protocols. 

We provided the polygenic indexes we created to the 11 datasets participating in the Repository, so that 

the data providers can distribute them to users of the datasets. We designed the Repository this way for 

three reasons (corresponding to problems #1, #2, and #3 in FAQ 1.9; problem #4 is addressed by using 



15 

 

a consistent methodology for constructing the polygenic indexes). First, because we are making 

available the polygenic indexes (rather than the GWAS results from which they are constructed), 

researchers do not need to spend time constructing the polygenic indexes from GWAS results. Second, 

for many outcomes, the polygenic indexes we construct are based on more data than are in the largest 

previously published GWAS. Because the Repository polygenic indexes for those outcomes are based 

on more data, they are more accurate (i.e., predictive) than polygenic indexes that could be constructed 

based only on publicly available GWAS results. Third, we tailored the polygenic indexes we 

constructed to each of the 11 datasets. Specifically, we ensured that for a given dataset, its polygenic 

indexes were not based on GWAS results that included that dataset (which would have led to “sample 

overlap” that would make it problematic to use the polygenic index with that dataset). 

2.7. How will the Repository be updated? 

We plan to update the Repository regularly as new GWAS are published or new data become available 

in which we can conduct our own GWAS. The updates will increase the predictive power of polygenic 

indexes already in the Repository, as well as expand the set of outcomes for which polygenic indexes 

are available. We also expect to include additional datasets whose stewards want to participate in the 

Repository and make their data broadly available to the research community. 

3. Ethical and social implications of the study 

3.1. Do GWAS or the polygenic indexes they produce identify the gene—or genes—“for” a 

particular outcome? 

No. GWAS of complex outcomes identify many SNPs that are associated with an outcome like height 

or educational attainment. Although it was once believed that scientists would discover numerous strong 

one-to-one associations between specific genes and outcomes, we have known for a number of years 

that the vast majority of human traits and other outcomes are complex and are influenced by thousands 

of genes, each of which alone tends to have a small influence on the relevant outcome.  

Furthermore, many complex outcomes are also influenced by parts of the genome that are not genes at 

all but instead serve to regulate genes (e.g., influencing when a gene is turned on or off). Genes typically 

contain many SNPs (often dozens or hundreds, in some cases thousands), and there are even more SNPs 

outside of genes than inside genes. Complex outcomes are often influenced by millions of SNPs. 

Although the GWAS that produced the polygenic indexes included in the Repository did find several 

SNPs that are associated with particular outcomes, we believe that characterizing these as “genes for 

X”—or, more accurately—“SNPs for X” (e.g., educational attainment, height) is still likely to mislead, 

for many reasons, and we urge researchers and reporters to avoid this usage.  

As an example, consider the outcome of educational attainment. First, most of the variation in people’s 

educational attainment is accounted for by social and other environmental factors, not by additive 
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genetic effects (See FAQ 3.3). “Genes for educational attainment” might be read to imply, incorrectly, 

that genes are the strongest predictor of variation in educational attainment.  

Second, the SNPs that are associated with educational attainment are also associated with many other 

things. These SNPs are no more “for” educational attainment than for the other outcomes with which 

they are associated.  

Third, the “predictive” power (see FAQ 1.6) of each individual SNP that we identify is very small. Our 

previous work (Lee et al., 2018) has shown that genetic associations with educational attainment are 

comprised of thousands, or even millions, of SNPs, each of which has a tiny effect size. Each SNP is 

therefore weakly associated with, rather than a strong influence on, educational attainment. “Genes for 

educational attainment” might misleadingly imply the latter.  

Fourth, environmental factors can increase or decrease the impact of specific SNPs (see FAQ 3.3). Put 

differently, even if a SNP is associated with higher or lower levels of educational attainment on average, 

it may have a much larger or smaller effect depending on environmental conditions. Indeed, in our most 

recent GWAS of educational attainment (Lee et al., 2018) and elsewhere, we report exploratory analyses 

that provide evidence of such gene-environment interactions. Educational attainment couldn’t even 

exist as a meaningful object of measurement if we didn’t have schools, and having schools introduces 

societal mechanisms that influence who goes to them. Accordingly, genetic associations with 

educational attainment necessarily will be mediated by societal systems and therefore genetic variation 

should often be expected to interact with environmental factors when it influences social phenomena, 

such as educational attainment. “Genes for educational attainment” suggests a stability in the 

relationship between these genes and the outcome of educational attainment that does not exist.  

Finally, SNPs do not affect educational attainment directly. As described in our previous work (Lee et 

al., 2018), the genes identified as associated with educational attainment tend to be especially active in 

the brain and involved in neural development and neuron-to-neuron communication. The “predictive” 

power (see FAQ 1.6) of SNPs on educational attainment may therefore be the result of a long process 

starting with brain development, followed by the emergence of particular psychological traits (e.g., 

cognitive abilities and personality). These traits may then lead to behavioral tendencies as well as 

experiences and treatment by parents, peers, and teachers. All of these factors may additionally interact 

with the environment in which a person lives. Eventually these traits, behaviors, and experiences may 

influence (but not completely determine) educational attainment.  

3.2. Do polygenic indexes show that these outcomes are determined, or fixed, at 

conception? 

Absolutely not. Social and other environmental factors account for most variation in most of the 

outcomes for which the Repository contains polygenic indexes. But even if it were true that genetic 

factors accounted for all of the differences among individuals in an outcome, it would still not follow 

that an individual’s outcome is “determined” at conception. There are at least three reasons for this.  
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First, some genetic effects may operate through environmental channels (Jencks, 1980). Again, consider 

educational attainment as an example. Suppose—hypothetically— that some of the SNPs in the index 

help students to memorize and, as a result, to become better at taking tests that rely on memorization. 

In this example, changes to the intermediate environmental channels—the type of tests administered in 

schools—could have large effects on individuals’ educational attainment, even though individuals’ 

genome would not have changed. Certain SNPs may not be associated with educational attainment at 

all if schools did not use tests that rely on memorization. More generally, the polygenic index for 

educational attainment in the Repository might be less predictive if the education system were organized 

differently than it is at present (see also FAQ 3.3).  

Second, even if the genetic associations with educational attainment operated entirely through non- 

environmental mechanisms that are difficult to modify (such as direct influences on the formation of 

neurons in the brain and the biochemical interactions among them), there could still exist powerful 

environmental interventions that could change the genetic relationships. In a famous example suggested 

by the economist Arthur Goldberger, even if all variation in unaided eyesight were due to genes, there 

would still be enormous benefits from introducing eyeglasses (Goldberger, 1979). Similarly, policies 

such as a required minimum number of years of education and dedicated resources for individuals with 

learning disabilities can increase educational attainment in the entire population and/or reduce 

differences among individuals. 

Third, even if the genetic effects on an outcome were not influenced by changes in the environment, 

those environmental changes themselves could still have a major impact on the outcome in the 

population as a whole. For example, if young children were given more nutritious diets, then everyone’s 

school performance might improve, and college graduation rates might increase. Or consider the 

outcome of height: 80%-90% of the variation across individuals in height is due to genetic factors. Yet 

the current generation of people is much taller than past generations due to changes in the environment 

such as improved nutrition. 

3.3. Can the polygenic indexes from the Repository be used to accurately predict a 

particular person’s outcomes? 

No. While the “predictive” power (see FAQ 1.6) of our polygenic indexes makes most of them useful 

in research for some purposes (see FAQ 2.3), these polygenic indexes fail to predict the majority of 

variation across individuals. Even for height—the outcome for which our polygenic index has the 

greatest predictive power—the index fails to predict 70% of the variation. 

Indeed, an important message of a number of our earlier papers is that DNA does not “determine” an 

individual’s behavioral and social outcomes, for at least four reasons: First, in the environments in 

which the outcomes have been measured, other studies have estimated that the additive effects of SNPs 

will only ever account (even with arbitrarily large samples used to construct polygenic indexes) for a 

minority of the variation across individuals in the outcomes we study. For example, we estimate that 

the theoretical upper bound for additive effects of SNPs would account for 46% of the variation in 

height, 24% in body mass index, 20% in age at first menses, and less than 10% for most of the 

social/behavioral outcomes we study. So even a hypothetical polygenic index that perfectly reflects the 

additive SNP factor (see FAQ 2.4) could only explain a small fraction of the variation across 
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individuals. Second, today’s polygenic indexes are not perfect; they are only able to predict a fraction 

of that already small fraction of cross-sectional predictive power. Third, since SNPs matter more or less 

depending on environmental context (see FAQ 3.2), a polygenic index might be less (or more) 

predictive for individuals in some environments than for individuals in others. Finally, and similarly, 

polygenic predictions only hold for as long as the environment in which they were developed remains 

substantially the same. 

To illustrate these final two reasons, consider the example of educational attainment (for which we have 

included a polygenic index in the Repository and on which we have done previous research): if the 

pedagogy underlying the educational system in which the GWAS that produced the polygenic index 

was conducted is substantially different than the pedagogy of the different population to which that 

polygenic index is being applied, the polygenic index may be less (or, conceivably, more) predictive in 

this second population (for an example, see FAQ 3.2). The same is true if the polygenic index is applied 

to the same population, but at a later time when the pedagogy has changed substantially. Just as 

eyeglasses allow those genetically predisposed to poor vision to have nearly perfect vision, innovations 

in education (say, an innovation that makes education irresistibly engaging, thus mitigating the risk to 

those with SNPs associated with lower ability to pay attention or maintain self-control) might result in 

those with lower polygenic indexes now achieving just as much education, on average, as those with 

higher polygenic indexes.  

As sample sizes for GWAS continue to grow, it will likely be possible to construct polygenic indexes 

for many outcomes whose predictive power comes closer to the total amount of variation that is 

theoretically predictable from additive effects of common SNPs for those outcomes (the upper bounds 

given above). Even these levels of predictive power would pale in comparison to some other scientific 

predictors. For example, professional weather forecasts correctly predict about 95% of the variation in 

day-to-day temperatures. Weather forecasters are therefore vastly more accurate forecasters than social 

science geneticists will ever be. 

Note: Polygenic indexes created by GWASs are increasingly used by commercial and research direct-

to-consumer platforms to predict individual outcomes. We recognize that returning individual genomic 

“results” can be a fun way to engage people in research and other projects and has at least the theoretical 

potential to stoke their interest in, and educate them about, genomics and how genes and environments 

interact. But it is important that participants/users understand that, at present, most of these individual 

results, including all social and behavioral outcomes, are not meaningful predictions (in the sense that 

they generally have very little predictive power at the individual level).  Failure to make this point clear 

risks sowing confusion and undermining trust in genetics research. 

3.4. Can the polygenic indexes accurately be used for research studies in non-European-

ancestry populations? 

No. We constructed polygenic indexes only for individuals classified as “European ancestry.” (The 

precise definition of “European ancestry” differs in different datasets, but it usually means that a 

person’s pattern of genetic variation across the genome is statistically close to the average pattern from 

a “reference sample” for some European country. The reference samples used by geneticists are based 

on samples of people who live in the European country today and whose recent ancestors also lived in 
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that country.) Therefore, the Polygenic Index Repository only includes polygenic indexes for these 

individuals. 

The main reason we only constructed polygenic indexes for these individuals is that the polygenic 

indexes are likely to be much less predictive—and hence much less useful—in a sample of people of 

non-European ancestries. That is because our original GWAS data was obtained from samples of people 

with European-ancestry, and GWAS results have been found to have only limited portability across 

ancestries (Belsky et al., 2013; Domingue et al., 2015, 2017; Martin et al., 2017; Vassos et al., 2017). 

There are a number of reasons for the limited portability. For one thing, the set of SNPs that are 

associated with an outcome in people of European ancestries is unlikely to overlap closely with the set 

of SNPs associated with the outcome in people of non-European ancestries. And even if a given SNP 

is associated in both ancestry groups, the effect size—in other words, the strength of the association—

will almost surely differ. This is primarily because linkage disequilibrium (LD) patterns (i.e., the 

correlation structure of the genome) vary by ancestry. This means that some SNP may be associated 

with the outcome because the SNP is in LD (i.e., correlated) with a SNP elsewhere in the genome that 

causally affects education (see FAQ 1.5). If the strength of the correlation is greater in one ancestry 

group than in another, then the size of the association will be larger in that ancestry group. Moreover, 

even if LD patterns were similar in each ancestry group, the association may differ in different groups 

because environmental conditions differ (see FAQ 1.6). The fact that there are differences across 

ancestry groups in the set of associated SNPs and their effect sizes means that the weights for 

constructing polygenic indexes in European-ancestry individuals (FAQ 1.3) would be the “wrong” 

weights for non-European-ancestry individuals. For a more extensive, excellent discussion of these and 

related issues, see Graham Coop’s blog post, “Polygenic scores and tea drinking.” 

Unfortunately, this attenuation of predictive power means that for non-European-ancestry populations, 

many of the benefits of having a polygenic index available will have to wait until large GWAS studies 

are conducted using samples from these populations. (Currently, most large genotyped samples are of 

European ancestries.) We intend that future versions of the Polygenic Index Repository will include 

polygenic indexes for non-European-ancestry populations, once it becomes possible to produce 

polygenic indexes with adequate predictive power. We believe that the relative scarcity of polygenic 

indexes that can be used for research that focuses on non-European ancestry groups is a disparity that 

should be rapidly eliminated by prioritizing GWAS studies that focus on non-European populations.  

3.5. Would it be appropriate to use the Repository social and behavioral polygenic indexes 

in policy or practice? 

No. We reiterate that polygenic indexes are poor predictors of social and behavioral outcomes (see 

FAQs 2.3 and 3.3). Their incremental predictive power over and above other, non-genetic predictors 

that are already used is even smaller than a polygenic index’s predictive power on its own. Moreover, 

the predictive power of the polygenic indexes for social and behavioral outcomes depends on the 

environment in which the GWAS participants live (FAQ 3.3). Thus, enshrining polygenic indexes in 

policy risks basing policy (which can be difficult to change) on weak predictions that could become 

even weaker or nonexistent as the environment changes. Furthermore, the polygenic indexes can 

operate through environmental channels (FAQ 3.2). Allocating resources based on polygenic indexes 

could therefore exacerbate inequalities that were originally due to environmental disparities (a similar 

https://gcbias.org/2018/03/14/polygenic-scores-and-tea-drinking/
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risk to that of other biased algorithms that bake in pre-existing discrimination). Using polygenic indexes 

in order to prioritize giving resources to individuals who are already advantaged would further limit the 

opportunities of individuals who are disadvantaged, which would be ethically inappropriate. Finally, 

even if polygenic indexes were used to offer additional resources to disadvantaged individuals, any 

small potential benefits of using such weak individual predictors would almost certainly be offset by 

the risk of stigmatization and by the fact that this technology is currently only accessible to people of 

European ancestries (FAQ 3.4). For all these reasons, we are deeply skeptical that the Repository social 

and behavioral polygenic indexes have any appropriate role to play in policy now or in the foreseeable 

future. 

3.6. Could research on polygenic indexes lead to discrimination against, or stigmatization 

of, people with higher or lower polygenic indexes for certain outcomes? If so, why 

facilitate the spread of polygenic indexes? 

Unfortunately, like a great deal of research—including, for instance, research identifying genomic 

variation associated with increased cancer risk—the results can be misunderstood and misapplied. This 

includes being used to discriminate against those with higher or lower polygenic indexes for certain 

outcomes (e.g., in insurance markets). Nevertheless, for a variety of reasons, in this instance, we do not 

think that the best response to the possibility that useful knowledge could be misused is to refrain from 

producing the knowledge. Moreover, many researchers already have access to and use polygenic 

indexes; against this background, the Repository helps ensure that a much wider array of researchers 

have the same opportunity to access and probe these research tools, and also that the polygenic indexes 

themselves will be more accurate. Here, we briefly discuss some of the broad potential benefits of this 

research. We then describe what we see as our ethical duty as researchers conducting this work.  

First, one benefit of conducting social-science genetics research in ever larger samples is that doing so 

allows us to correct the scientific record. An important theme in our earlier work has been to point out 

that most existing studies in social-science genetics that report genetic associations with behavioral 

outcomes have serious methodological limitations, fail to replicate, and are likely to be false-positive 

findings (Benjamin et al., 2012; Chabris et al., 2012, 2015). This same point was made in an editorial 

in Behavior Genetics (the leading journal for the genetics of behavioral outcomes), which stated that “it 

now seems likely that many of the published [behavior genetics] findings of the last decade are wrong 

or misleading and have not contributed to real advances in knowledge” (Hewitt, 2012). One of the most 

important reasons why earlier work has generated unreliable results is that the sample sizes were far too 

small, given that the true effects of individual SNPs on behavioral outcomes are tiny. Pre-existing claims 

of genetic associations with complex social-science outcomes have reported widely varying effect sizes, 

many of them purporting to “predict” as much of the variation across individuals as do the polygenic 

indexes we construct in this paper that aggregate the effects of millions of SNPs.  

Second, behavioral genetics research also has the potential to correct the social record and thereby to 

help combat discrimination and stigmatization. For instance, overestimating the role of genetics can be 

damaging, and the present work can help debunk the myth of genetic determinism. By quantifying how 

various outcomes are predicted by genetic data, we show that for all of the outcomes we study, the 

genetic data can explain a very small fraction of the variation across individuals (see FAQ 2.3). By 

clarifying the limits of deterministic views of complex outcomes, recent behavioral genetics research—
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if communicated responsibly—could make appeals to genetic justifications for discrimination and 

stigmatization less persuasive to the public in the future.  

Third, behavioral genetics research has the potential to yield many other benefits, especially as sample 

sizes continue to increase—as briefly summarized in FAQ 1.9. Foregoing this research necessarily 

entails foregoing these and any other possible benefits, some of which will likely be the result of 

serendipity. Indeed, very few of the uses of polygenic indexes were anticipated when they were first 

proposed (Wray, Goddard and Visscher, 2007). 

In sum, we agree with the U.K. Nuffield Council on Bioethics, which concluded in a report (Nuffield 

Council on Bioethics, 2002, p114) that “research in behavioural genetics has the potential to advance 

our understanding of human behaviour and that the research can therefore be justified,” but that 

“researchers and those who report research have a duty to communicate findings in a responsible 

manner” (see FAQ 3.7). 

3.7. What have you done to mitigate the risks of research using Repository polygenic 

indexes? 

In our view, the responsible behavioral genetics research called for by the Nuffield Council on Bioethics 

(see FAQ 3.6) includes sound methodology and analysis of data (e.g., only conducting analyses that are 

adequately powered and, when feasible, preregistering power calculations and planned analyses); a 

commitment to publish all results, including any negative results; and transparent, complete reporting 

of methodology and findings in publications, presentations, and communications with the media and 

the public. A critical aspect of the latter is particular vigilance regarding what research results do—and 

do not—show, and how polygenic indexes can—and cannot—be appropriately used. In an effort to 

reduce the risk that its results might be misinterpreted by readers, misreported by the media, or misused, 

the SSGAC has developed and publicly posted FAQs like this document with every major paper it has 

published since its first paper in 2013. 

In addition, the SSGAC will require researchers who download the SNP weights for constructing 

polygenic indexes to agree to Terms of Service. Among the many terms that we require researchers to 

agree to, we highlight two here: 

I agree to conduct research that strictly adheres to the principles articulated by the American 

Society of Human Genetics (ASHG) position statement: “ASHG Denounces Attempts to Link 

Genetics and Racial Supremacy.” (See also International Genetic Epidemiological Society 

Statement on Racism and Genetic Epidemiology.) In particular, I will not use these data to 

make comparisons across ancestral groups. Such comparisons could animate biological 

conceptualizations of racial superiority. In addition, such comparisons are usually scientifically 

confounded due to the effects of linkage disequilibrium, gene-environment correlation, gene-

environment interactions, and other methodological problems. 

I have read the principles articulated by the ASHG with respect to “Advancing Diverse 

Participation in Research with Special Consideration for Vulnerable Populations”. I agree to 

adhere to the principles articulated in the final two sections of this statement, “In the Conduct 

http://www.thessgac.org/faqs
https://www.cell.com/ajhg/fulltext/S0002-9297(18)30363-X
https://www.cell.com/ajhg/fulltext/S0002-9297(18)30363-X
https://iges.memberclicks.net/iges-statement-on-racism-genetic-epidemiology
https://www.cell.com/ajhg/fulltext/S0002-9297(20)30279-2
https://www.cell.com/ajhg/fulltext/S0002-9297(20)30279-2
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of Research with Vulnerable Populations, Researchers Must Address Concerns that 

Participation May Lead to Group Harm” and “The Benefits of Research Participation Are 

Profound, Yet the Potential Danger that Unethical Application of Genetics Might Stigmatize, 

Discriminate against, or Persecute Vulnerable Populations Persists.”  

These Terms of Service stem from the observation that SNP associations are not necessarily causal (see 

FAQ 1.5) and depend on the environment of the individuals included in the GWAS (see FAQ 1.6). 

Different ancestry groups arise in the population because they became partially separated from each 

other many generations ago, for example, due to geographic factors or social forces. When two groups 

are geographically or socially separated, they also face different environments, which not only may 

have direct effects on certain outcomes (such as disease risk) but may also change the strength of the 

association between the outcomes and certain SNPs. Therefore, when individuals from two ancestry 

groups have different average outcomes, it is extremely difficult to identify whether the difference is 

due to average genetic differences between the groups or to the different environments faced by the 

groups. For this reason, it is scientifically invalid to make general statements about ancestry group 

differences based on SNP associations identified in a GWAS. (Also see FAQ 3.2.) The Terms of Service 

also require users to securely store the data and to immediately report any breach of the Terms. 

Finally, we have developed and provided to participating data providers a User Guide to be distributed 

to researchers who use Repository polygenic indexes (see FAQ 2.5). We will also provide the User 

Guide to researchers who download the SNP weights. One section of the User Guide discusses six 

“interpretational considerations” that are likely to arise when conducting research with polygenic 

indexes and which we urge researchers to seriously consider as a critical part of responsibly conducting 

and communicating their research. One recurring ethical concern about genetic research is the tendency 

for its predictive power to become exaggerated in the media and in the public’s minds, at the expense 

of a more nuanced understanding of how genes and environment interact, the importance of 

environmental influences, and the ability of interventions to improve outcomes. Many of the 

interpretational considerations we discuss in the User Guide involve how to anticipate and address 

potential confounds and how to navigate complex questions about causality and ensure responsible 

communication of causality. 

For instance, the User Guide cautions researchers to appreciate and communicate that associations 

between a polygenic index and an outcome may operate through environmental (rather than biological) 

mechanisms (see FAQs 3.2 and 3.3). 
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