Supporting information for

An azide functionalized naphthoxyloside as a tool for glycosaminoglycan investigations.

Daniel Willén,[†] Roberto Mastio,[†] Zackarias Söderlund,[‡] Sophie Manner,[†] Gunilla Westergren-Thorsson,[‡] Emil Tykesson, [‡] Ulf Ellervik^{†‡*}

[†] Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden

‡ Department of Experimental Medical Science, Lund University, P.O. Box 117, SE-221 00 Lund, Sweden.

* Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden. E-mail: ulf.ellervik@chem.lu.se.

1.	Synthesis of non-evaluated naphthoxylosides	S2-S5
2.	¹ H- and ¹³ C-NMR of synthesized compounds	S6-S20
3.	References	S21

Synthesis of non-evaluated naphthoxylosides

6-(bromomethyl)naphthalen-2-yl acetate (2). PBr₃ (95 μL, 0.99 mmol) was added to a stirred solution of 6-(hydroxymethyl)naphthalen-2-yl acetate¹ **1** (214 mg, 0.99 mmol) in CH₂Cl₂ (8 mL) at 0 °C. After 1.5 h, H₂O (5 mL) was added and the reaction mixture was extracted with CH₂Cl₂ (3x5 mL). The combined organic phases were dried before removal of solvent under reduced pressure. The crude residue was purified by column chromatography (SiO₂, Petroleum ether: pentane, 98:2) to yield **2** (155 mg, 0.56 mmol, 56%) as an amorphous white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.84-7.78 (m, 3H, Ar-H), 7.56-7.51 (m, 2H, Ar-H), 7.25 (dd, *J* = 8.8, 2.8 Hz, 1H, Ar-H), 4.66 (s, 3H, -CH₂-Br), 2.36 (2, 3H, Ac). ¹³C NMR (101 MHz, CDCl₃) δ 169.69, 149.05, 135.21, 133.57, 131.30, 129.60, 128.65, 127.85, 127.69, 121.94, 118.66, 33.96, 21.35.

6-(azidomethyl)naphthalen-2-yl acetate (*3*). *N*aN₃ (91 mg, 1.41 mmol) was added to a stirred solution of **2** (155 mg, 0.55 mmol) in DMSO (2 mL) at 0 °C. After 2 h, H₂O (5 mL) was added and the reaction mixture was extracted with EtOAc (3x5 mL). The combined organic phases were washed with brine (10 mL) and dried before removal of the solvent under vacuum. The crude residue was purified by column chromatography (SiO₂, Petroleum ether: pentane, 95% to 85%) to yield **3** (119 mg, 0.49 mmol, 89 %) as an amorphous white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (dd, *J* = 12.8, 8.8 Hz, 2H, Ar-H), 7.77 (s, 1H, Ar-H), 7.58 (d, *J* = 2.0 Hz, 1H, Ar-H), 7.44 (dd, *J* = 8.8, 2.0 Hz, 1H, Ar-H), 7.27 (dd, *J* = 9.2, 2.4 Hz, 1H, Ar-H), 4.49 (s, 2H, -CH₂-N₃). ¹³C NMR (101 MHz, CDCl₃) δ 169.70, 148.82, 133.51, 132.86, 131.33, 129.55, 128.60, 127.13, 126.72, 121.89, 118.61, 54.95, 21.30. IR 2094 cm⁻¹ (N₃).

6-(azidomethyl)naphthalen-2-ol (4). 1M NaOMe (50 μ L, 0.05 mmol) was added to a stirred solution of **3** (32 mg, 0.13 mmol) in MeOH (1 mL) at r.t. After 2 h, Amberlite IR-120H⁺ was added until neutral pH. The reaction mixture was filtered before removal of the solvent in vacuo. The crude residue was purified by column chromatography (SiO₂, Petroleum ether: pentane, 9:1) to yield **4** (19 mg, 0.10 mmol, 73 %) as an amorphous white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 8.8 Hz, 1H, Ar-H), 7.70 (s, 1H, Ar-H), 7.69 (d, *J* = 8.8 Hz, 1H, Ar-H), 7.38 (dd, *J* = 8.4, 2.0 Hz, 1H, Ar-H), 7-15-7.12 (m, 2H, Ar-H), 5.30 (s, 1H, OH), 4.46 (s, 2H, -CH₂-N₃). ¹³C NMR (101 MHz, CDCl₃) δ 153.90, 134.42, 130.57, 130.05, 128.75, 127.40, 127.37, 126.81, 118.44, 109.63, 55.15.

(6-(2-azidomethyl)naphthalen-2-yl) β-D-xylopyranoside (5). BF₃·OEt₂ (38 μL, 0.30 mmol) was added to a stirred solution of Et₃N (8 μL, 0.06 mmol), 4 (32 mg, 0.16 mmol), and peracetylated xylose (38 mg, 0.12 mmol) in CH₂Cl₂ (0.5 mL) at 0 °C. After 5 h, saturated aqueous NaHCO₃ (5 mL) was added and the reaction mixture was extracted with CH₂Cl₂ (3x5 mL) and EtOAc (1x5 mL). The combined organic phases were dried before removal of solvent under reduced pressure. The crude mixture was dissolved in MeOH (1 mL) before addition of 1M NaOMe (30 μL, 0.03 mmol). After 1 h, Amberlite IR-120H⁺ was added until neutral pH. The reaction mixture was filtered before removal of the solvent in vacuo. The crude residue was purified by column chromatography (SiO₂, CH₂Cl₂: MeOH, 98:2) to yield **5** (8 mg, 0.02 mmol, 13 % starting from **4**) as an amorphous white solid. ¹H NMR (400 MHz, MeOD) δ 7.82-

7.80 (m, 2H, Ar-H), 7.77 (s, 1H, Ar-H), 7.44-7.41 (m, 2H, Ar-H), 7.30 (dd, J = 8.8, 2.4 Hz, 1H, Ar-H), 5.04 (d, H = 7.2 Hz, 1H, H-5), 4.49 (s, 2H, -CH₂-N₃), 3.98 (dd, J = 11.6, 5.6 hz, 1H, H-5), 3.64-3.58 (m, 1H, H-4), 3.53-3.43 (m, 3H, H-2, H-3, H-5). ¹³C NMR (101 MHz, MeOD) δ 147.60, 126.01, 123.48, 121.49, 121.00, 119.42, 118.70. 118.27, 111.05, 102.28, 93.33, 68.25, 65.31, 61.57, 57.53, 46.27. IR 2089 cm⁻¹ (N₃).

2-(6-acetoxynaphthalen-2-yl)acetic acid (7). Acetic anhydride (30 mL, 317 mmol) was added to a stirred solution of 2-(6-hydroxynaphthalen-2-yl)acetic acid **6** (5 g, 24.7 mol) in dry pyridine (45 mL) at r.t. After 24 h, the solvent was removed under reduced pressure. The crude residue was co-eavaporated with toluene several times. The crude residue was purified by column chromatography (SiO₂, CH₂Cl₂: MeOH, 98:2) to yield **7** (4.08 g, 16.7 mmol, 68 %) as a brown grey solid. ¹H NMR (400 MHz, DMSO-d₆) δ 7.91 (d, *J* = 8.9 Hz, 1H, Ar-H), 7.85 (d, *J* = 8.5 Hz, 1H, Ar-H), 7.74 (s, 1H, Ar-H), 7.64 (d, *J* = 2.3 Hz, 1H, Ar-H), 7.37 (dd, *J* = 8.4, 1.7 Hz, 1H, Ar-H), 7.29 (dd, *J* = 8.8, 2.4 Hz, 1H, Ar-H), 3.94 (s, 2H, -CH₂-), 2.32 (s, 3H, Ac). ¹³C NMR (101 MHz, DMSO-d₆) δ 206.03, 169.44, 147.99, 132.60, 132.11, 131.0, 128.9 (2C), 127.89, 127.38, 121.78, 118.34, 49.61f, 20.92.

6-(2-hydroxyethyl)naphthalen-2-yl acetate (8). 2M BH₃·THF (8 mL, 16.4 mmol) was added dropwise to a stirred solution of **7** (4.08 g, 16.7 mmol) in dry THF (40 mL) at 0 °C. After 2 h at r.t., more 2M BH₃·THF (6 mL, 12.0 mmol) was added. After 2 h, the temperature was lowered to 0 °C where after 0.5 M HCl (20 mL) was added dropwise. After 20 h at r.t., the reaction mixture was extracted with diethyl ether (3x 25 mL). The combined organic phases were washed with sat. aqueous NaHCO₃ (50 mL) and dried before removal of the solvent under reduced pressure. The crude residue was purified by column chromatography (SiO₂, petroleum ether:diethyl ether, 4:6) to yield **8** (2.63 g, 11.4 mmol, 68 %) as an amorphous yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 8.8 Hz, 1H, Ar-H), 7.74 (d, *J* = 8.4 Hz, 1H, Ar-H), 7.65 (s, 1H, Ar-H), 7.53 (d, *J* = 2.2 Hz, 1H, Ar-H), 7.35 (dd, *J* = 8.4, 1.8 Hz, 1H, Ar-H), 7.22 (dd, *J* = 8.9, 2.4 Hz, 1H, Ar-H), 3.89 (t, *J* = 6.6 Hz, 2H, -CH₂-OH), 2.99 (t, *J* = 6.6 Hz, 2H, Ar-CH₂-), 2.35 (s, 3H, Ac). ¹³C NMR (101 MHz, CDCl₃) δ 169.84, 148.11, 136.09, 132.56, 131.65, 129.04, 128.26, 128.00, 127.41, 121.40, 118.41, 63.51, 39.27, 21.28.

6-(2-((methylsulfonyl)oxy)ethyl)naphthalen-2-yl acetate (9). Methanesulfonyl chloride (109 μ L, 1.41 mmol) was added to a stirred solution of 6-(2-hydroxyethyl)naphthalen-2-yl acetate¹ **8** (217 mg, 0.94 mmol) in pyridine (5 mL) at 0 °C. After 3 h, H₂O (4 mL) was added and the aqueous phase were extracted with diethyl ether (3x5 mL). The combined organic phases were washed with saturated aqueous NaHCO₃ (10 mL), aqueous saturated NH₄Cl (10 mL), and brine (10 mL). The organic phase was dried and concentrated in vacuo. The crude residue was purified by column chromatography (SiO₂, Heptane: EtOAc, 9:1) to yield **9** (231 mg, 0.75 mmol, 79%) as an amorphous yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 8,8 Hz, 1H, Ar-H), 7.78 (d, *J* = 8.4 Hz, 1H, Ar-H) 7.70 (s, 1H, Ar-H), 7.54 (dd, J = 2.0 Hz, 1H, Ar-H), 7.37 (dd, *J* = 8.4, 1.6 Hz, 1H, Ar-H), 7.24 (dd, *J* = 8.8, 2.4 Hz, 1H, Ar-H) 4.50 (t, *J* = 6.8 Hz, 2H, -CH₂-), 3.22 (t, *J* = 3.22 Hz, 2H, -CH₂-N₃), 2.85 (s, 3H, CH₃-) 2.36 (s, 3H, CH₃-). ¹³C NMR (101 MHz, CDCl₃) δ 169.80. 148.49, 133.87, 132.89, 131.66, 129.21, 128.35, 127.91, 127.74, 121.78, 118.57, 70.15, 37.57, 35.86, 21.36.

6-(2-azidoethyl)naphthalen-2-yl acetate (*10*). NaN₃ (98 mg, 1.51 mmol) was added to a stirred solution of **9** (233 mg, 0.76 mmol) in DMF (2 mL) at 0 °C and the temperature was let to r.t. After 5 h, another portion of NaN₃ (50 mg, 1.51 mmol) was added. After 24 h, H₂O (5 mL) was added and the reaction mixture was extacted with EtOAc (3x5 mL). The combined organic phases were washed with brine (10 mL) and dried before removal of the solvent under vacuum. The crude residue was purified by column chromatography (SiO₂, Heptane: EtOAc, 9:1) to yield **10** (143 mg, 0.56 mmol, 74 %) as an amorphous white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.80 (d, *J* = 8.8 Hz, 1H, Ar-H) 7.77 (d, *J* = 8.4 Hz, 1H, Ar-H), 7.57 (s, 1H, Ar-H), 7.56 (d, *J* = 2.4 Hz, 1H, Ar-H), 7.35 (dd, *J* = 8.4, 1.6 Hz, 1H, Ar-H), 7.25 (dd, *J* = 8.8, 2.4 Hz, 1H, Ar-H), 3.58 (t, *J* = 7.2 Hz, 2H, -CH₂-), 3.18 (t, *J* = 7.2 Hz, 2H, -CH₂-N₃). ¹³C NMR (101 MHz, CDCl₃) δ 169.68, 148.27, 135.52, 132.68, 131.61, 129.08, 128.09, 127.80, 127.24, 121.52, 118.43, 52.34, 35.42, 21.24.

6-(2-azidoethyl)naphthalen-2-ol (*11*). 1M NaOMe (50 μL, 0.05 mmol) was added to a stirred solution of **10** (140 mg, 0.55 mmol) in MeOH (1 mL) at r.t. After 2 h, Amberlite IR-120H⁺ was added until neutral pH. The reaction mixture was filtered before removal of the solvent in vacuo. The crude residue was purified by column chromatography (SiO₂, Heptane: EtOAc, 8:2) to yield **11** (105 mg, 0.49 mmol, 89 %) as an amorphous white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 8.8 Hz, 1H, Ar-H), 7.65 (d, J = 8.4 Hz, 1H, Ar-H), 7.60 (s, 1H, Ar-H), 7.30 (dd, J = 8.4, 1.6 Hz, 1H, Ar-H), 7.13 (d, J = 2.4 Hz, 1H, Ar-H), 7.10 (dd, J = 8.4, 2.4 Hz, 1H, Ar-H), 3.58 (t, J = 7.2 Hz, 2H, -CH₂-), 3.02 (t, J = 7.2 Hz, 2H, -CH₂-N₃). ¹³C NMR (101 MHz, CDCl₃) δ 153.35, 133.59, 133.30, 129.62, 129.17, 127.83, 127.36, 126.94, 118.16, 109.52, 52.61, 35.46.

(6-(2-azidoethyl)naphthalen-2-yl) 2,3,4-tri-*O*-acetyl-β-D-xylopyranoside (*19*). BF₃·OEt₂ (117 μL, 0.93 mmol) was added to a stirred solution of Et₃N (26 μL, 0.19 mmol), **11** (102 mg, 0.48 mmol), and peracetylated xylose (118 mg, 0.37 mmol) in CH₂Cl₂ (2 mL) at 0 °C. After 20 h at r.t, saturated aqueous NaHCO₃ (5 mL) was added and the reaction mixture was extracted with DCM (3x5 mL). The combined organic phases were dried before removal of solvent under reduced pressure. The crude residue was purified by column chromatography (SiO₂, Toluen: EtOAc, 9:1) to yield **19** (31 mg, 0.07 mmol, 18 %) as a clear oil. ¹H NMR (400 MHz, CDCl₃) δ 7.74-7.70 (m, 2H, Ar-H), 7.62 (s, 1H, Ar-H), 7.35-7.31 (m, 2H, Ar-H), 7.18 (dd, *J* = 8.8, 2.4 Hz, 1H, Ar-H), 5.28 (d, *J* = 5.6 Hz, 1H, H-1), 5.29-5.21 (m, 2H, H2, H-3), 5.07-5.02 (m, 1H, H-4), 4.27 (dd, *J* = 12.4, 4.8 Hz, 1H, H-5), 3.62-3.56 (m, 3H, H-5, -CH₂-), 3.03 (t, *J* = 7.2 Hz, 2H, -CH₂-N₃). ¹³C NMR (101 MHz, CDCl₃) δ 170.08, 169.99, 169.55, 154.33, 134.38, 133.14, 130.24, 129.41, 127.87, 127.69, 127.26, 119.22, 111.33, 98.65, 70.66, 70.20, 68.58, 61.96, 52.50, 35.46, 20.91, 20.89, 20.86.

(6-(2-azidoethyl)naphthalen-2-yl) β-D-xylopyranoside (12). 1M NaOMe (50 µL, 0.05 mmol) was added to a stirred solution of 19 (52 mg, 0.11 mmol) in MeOH (1 mL) at r.t. After 2 h, Amberlite IR 120 H⁺ was added until neutral pH. The reaction mixture was filtered before removal of solvent under reduced pressure. The crude residue was purified by column chromatography (SiO₂, CH₂Cl₂: MeOH, 98:2) to yield 12 (34 mg, 0.10 mmol, 90 %) as an amorphous white solid. ¹H NMR (400 MHz, MeOD) δ 7.74 (d, J = 8.4 Hz, 1H, Ar-H), 7.72 (d, J = 8.0 Hz, 1H, Ar-H), 7.64 (s, 1H, Ar-H), 7.39 (d, J = 2.4 Hz, 1H, Ar-H), 7.34 (dd, J = 8.4, 1.6 Hz, 1H, Ar-H), 7.25 (dd J = 9.2, 2.4 Hz, 1H, Ar-H), 5.01 (d, J = 8.0 Hz, 1H, H-1), 3.97 (dd, J = 11.2, 5.2 Hz, 1H, H-5), 3.64-3.41 (m, 6H, H-2, H-3, H-4, H-5, -CH₂-), 2.99 (t, J = 6.8 Hz, 2H, -CH₂- N₃).

NMR-spectra of synthesized compounds

Figure S1 – ¹H and ¹³C spectra for compound 2

Figure S2 - ¹H and ¹³C spectra for compound 3

Figure S3 - ¹H and ¹³C spectra for compound 4

Figure S4 – 1 H and 13 C spectra for compound 5

Figure S5 – 1 H and 13 C spectra for compound 7

Figure S6 - ¹H and ¹³C spectra for compound 8

Figure S7 - ¹H and ¹³C spectra for compound 9

Figure $S8 - {}^{1}H$ and ${}^{13}C$ spectra for compound 10

Figure $S9 - {}^{1}H$ and ${}^{13}C$ spectra for compound 11

Figure $S10 - {}^{1}H$ and ${}^{13}C$ spectra for compound 19

Figure S11 – ¹H spectra for compound 12

Figure $S12 - {}^{1}H$ and ${}^{13}C$ spectra for compound 16

Figure S13 - ¹H and ¹³C spectra for compound 17

Figure S14 - ¹H and ¹³C spectra for compound 18

Figure S15 – ¹H and ¹³C spectra for compound XylNapN3

References

- (1) Jin, Y.; Yang, H.; Wang, C. Nickel-Catalyzed Asymmetric Reductive Arylbenzylation of Unactivated Alkenes. *Org. Lett.* **2020**, *22* (7), 2724–2729.
- Johnsson, R.; Mani, K.; Ellervik, U. Evaluation of Fluorescently Labeled Xylopyranosides as Probes for Proteoglycan Biosynthesis. *Bioorg. Med. Chem. Lett.* 2007, 17 (8), 2338–2341.
- (3) Trapella, C.; Fischetti, C.; Pela', M.; Lazzari, I.; Guerrini, R.; Calo', G.; Rizzi, A.; Camarda, V.; Lambert, D. G.; McDonald, J.; Regoli, D.; Salvadori, S. Structure– Activity Studies on the Nociceptin/Orphanin FQ Receptor Antagonist 1-Benzyl-N-{3-[Spiroisobenzofuran-1(3H),4'-Piperidin-1-Y1]Propyl} Pyrrolidine-2-Carboxamide. *Bioorg. Med. Chem.* 2009, *17* (14), 5080–5095.
- (4) Stachtea, X. N.; Tykesson, E.; van Kuppevelt, T. H.; Feinstein, R.; Malmström, A.; Reijmers, R. M.; Maccarana, M. Dermatan Sulfate-Free Mice Display Embryological Defects and Are Neonatal Lethal Despite Normal Lymphoid and Non-Lymphoid Organogenesis. *PLoS One* 2015, *10* (10), e0140279.