Supplemental Information

Synthesis, Characterization, and Cellular uptake of a Glycylglycine Chelate of Magnesium

Derek R. Case,[†] Ren Gonzalez,[‡] Jon Zubieta,[†] Robert P. Doyle^{†,*}

†111 College Place, Department of Chemistry, Syracuse University, Syracuse, New York, 13244, USA.
‡ Balchem Corporation, 52 Sunrise Park Road, New Hampton, NY 10958, USA.

* Correspondence: rpdoyle@syr.edu

Table of Contents

Page 2
Page 3
Page 4
Page 5
Page 6
Page 7
Page 8
Page 9
Page 10
Page 11
Page 12
Page 13

Figure S1. ESI-MS mass spectrum of **1** exhibiting an appropriate magnesium isotopic distribution pattern (IDP) and the presence of **1** along with an *in situ* formed 1:2 complex.

*NMR taken in D₂O

Figure S2. The full spectrum 1 H NMR of HG₂ showing a clean singlet and a signal with observed coupling – the observed integration coincides with the expected integration.

*NMR taken in D_2O

Figure S3. Full spectrum ¹H NMR of 1 showing two singlets and the presence of magnesium citrate. The observed integration coincides with the expected integration values.

Figure S4. ¹H NMR spectra overlay of HG₂ (**Top**) and the 1 complex (**Bottom**) – the ¹H NMR spectrum of **1** shows the presence of magnesium citrate, but the desired integration is conserved between HG₂ and **1**. Observed coupling of the H₂ proton of HG₂ is no longer observed for **1**.

* Denotes signals attributed to magnesium citrate **NMR taken in $\mathsf{D}_2\mathsf{O}$

Figure S5. ¹H NMR spectra overlay for citric acid (**Top**), magnesium citrate (**Second from Top**), HG_2 (**Third from Top**), and **1**(**Bottom**). The integration is conserved between HG_2 and **1**, consistent with the formation of magnesium citrate.

Figure S6. Full spectrum ¹³C NMR of HG₂.

Figure S7. Full spectra ¹³C NMR overlay of HG₂ (Top) and 1 (Bottom). 1 showed four signals attributed to magnesium citrate as marked by the asterisks, but the observation of four carbon signals attributed to HG₂ are conserved.

*NMR taken in D₂O

Figure S8. Full spectra 13 C NMR overlay of magnesium citrate (**Top**), HG₂ (**Middle**), and **1** (**Bottom**). The overlay illustrates the impurity observed in the spectra of **1** attributed to magnesium citrate, while the carbon signals attributed to HG₂ are conserved.

Figure S9. Full spectra HSQC of HG₂ (Left) and HSQC of 1 (Right) utilized to confirm the proton and carbon assignments of HG₂ and 1.

Figure S10. Full spectra HMBC of HG₂ (Left) and HMBC (Right) of 1 utilized to confirm the proton and carbon assignments of HG₂ and 1.

Analytical Report Report Number: 185635 Report Status: Final

Mg	N
8.78 %	9.85 %
	9.92 %

Figure S11. ICP analysis of 1.

Figure S12. Plot of the linear regression of magnesium assay kit standard to confirm linearity.