
Web Material 

Matched Versus Unmatched Analysis of Matched Case-Control Studies 

Fei Wan, Graham A. Colditz, and Siobhan Sutcliffe 

Contents 

Web Appendix 1: Derivation of logistic regression model in the matched case-control data. 

Web Appendix 2: The potential bias of ULR+L in matched case-control data.  

Web Appendix 3: The bias of CLR vs. adjusted ULR when matching is not exact 

Web Table 1: Validating the derived closed form expression of 𝒄(𝒙𝒋 )

Web Figure 1: The functional form of 𝑿𝟏 in the matched data with changing caliper size in 
scenario (3)  

Web Figure 2: The functional form of 𝑿𝟏 in the matched data with changing caliper size in 
scenario (6)  



 

 

Web Appendix 1: Derivation of logistic regression model in the matched case-control data.  

For the simplicity of demonstration, we assume the confounder terms in the outcome model (1) 

and the exposure model (2) have linear main effect terms only. That is, 𝑓(𝑿) = 𝛽2
′ 𝑿, 𝑔(𝑿) =

𝛼1
′ 𝑿 

1.1) When the disease outcome is rare event 

In a matched case control study, we match the cases and the same number of controls using 

confounder 𝑋. We let 𝑥1, 𝑥2, … . , 𝑥𝑘  be the unique matching values of 𝑿. We assume there are 

𝑛1𝑗cases and 𝑛0𝑗 controls having the same value of 𝑥𝑗  (𝑗 = 1,2, … , 𝑘). For simplicity, we assume 

𝑛1𝑗 ≪ 𝑛0𝑗 for a rare disease outcome. Within this matching stratum, we let 𝑆 denote the selection 

process with 𝑆 = 1 for a subject being selected into the matched case control data and 𝑆 = 0 for 

not being selected. Then, we can derive the conditional probability of having a disease outcome 

for a subject selected into the matched set.  

𝑃(𝑌 = 1|𝑿, 𝐸, 𝑆 = 1) =
𝑃(𝑌 = 1, 𝐸, 𝑿 = 𝑥𝑗 , 𝑆 = 1)

𝑃(𝐸, 𝑋 = 𝑥𝑗 , 𝑆 = 1)
 

=
𝑃(𝑌 = 1, 𝐸, 𝑿 = 𝑥𝑗 , 𝑆 = 1)

𝑃(𝑌 = 1, 𝐸, 𝑿 = 𝑥𝑗 , 𝑆 = 1) + 𝑃(𝑌 = 0, 𝐸, 𝑿 = 𝑥𝑗 , 𝑆 = 1)
 

=
1

1 +
𝑃(𝑌 = 0, 𝐸, 𝑿 = 𝑥𝑗 , 𝑆 = 1)
𝑃(𝑌 = 1, 𝐸, 𝑿 = 𝑥𝑗 , 𝑆 = 1)

 



=
1

1 +
𝑃(𝑆 = 1|𝑌 = 0, 𝐸, 𝑿 = 𝑥𝑗)𝑃(𝑌 = 0|𝐸, 𝑿 = 𝑥𝑗)
𝑃(𝑆 = 1|𝑌 = 1, 𝐸, 𝑿 = 𝑥𝑗)𝑃(𝑌 = 1|𝐸, 𝑿 = 𝑥𝑗)

 

=  
1

1 +
𝑃(𝑆 = 1|𝑌 = 0, 𝐸, 𝑿 = 𝑥𝑗)
𝑃(𝑆 = 1|𝑌 = 1, 𝐸, 𝑿 = 𝑥𝑗)

𝑒−𝛽0−𝛽1𝐸−𝛽2
′ 𝑥𝑗

 

Within the stratum formed by 𝑥𝑗, we will select all cases (selection probability=1) and select the 

equal number of controls. Of note, this selection probability does not depend on individual’s 

exposure status. Thus, we have 

                                        𝑃(𝑆 = 1|𝑌 = 1, 𝐸, 𝑿 = 𝑥𝑗) = 𝑃(𝑆 = 1|𝑌 = 1, 𝑿 = 𝑥𝑗) = 1 

and  

𝑃(𝑆 = 1|𝑌 = 0, 𝐸, 𝑿 = 𝑥𝑗) = 𝑃(𝑆 = 1|𝑌 = 0, 𝑿 = 𝑥𝑗) 

                                                                               =
𝑃(𝑌 = 1|𝑿 = 𝑥𝑗)

𝑃(𝑌 = 0|𝑿 = 𝑥𝑗)
 

The last equation holds because 𝑃(𝑆 = 1|𝑌 = 0, 𝑿 = 𝑥𝑗) is estimated by 
𝑛1𝑗

𝑛0𝑗
, which is equivalent 

to 
𝑛1𝑗

𝑛0𝑗+𝑛1𝑗
 /

𝑛0𝑗

𝑛0𝑗+𝑛1𝑗
 .  The proportion of cases in the stratum 

𝑛1𝑗

𝑛0𝑗+𝑛1𝑗
 converges to 𝑃(𝑌 = 1|𝑿 = 𝑥𝑗)  and the proportion of controls 

𝑛0𝑗

𝑛0𝑗+𝑛1𝑗
 converges to 𝑃(𝑌 = 0|𝑿 = 𝑥𝑗)  asymptotically as the sample size in this stratum 

increases.  The other way is  

𝑃(𝑆 = 1|𝑌 = 0, 𝐸, 𝑿 = 𝑥𝑗)

𝑃(𝑆 = 1|𝑌 = 1, 𝐸, 𝑿 = 𝑥𝑗)
=

𝑃(𝑆 = 1|𝑌 = 0, 𝑿 = 𝑥𝑗)

𝑃(𝑆 = 1|𝑌 = 1, 𝑿 = 𝑥𝑗)
 



=
𝑃(𝑌 = 0|𝑆 = 1, 𝑿 = 𝑥𝑗)𝑃(𝑆 = 1, 𝑿 = 𝑥𝑗)/𝑃(𝑌 = 0, 𝑿 = 𝑥𝑗)

𝑃(𝑌 = 1|𝑆 = 1, 𝑿 = 𝑥𝑗)𝑃(𝑆 = 1, 𝑿 = 𝑥𝑗)/𝑃(𝑌 = 1, 𝑿 = 𝑥𝑗)
 

  =
𝑃(𝑌 = 1|𝑿 = 𝑥𝑗)

𝑃(𝑌 = 0|𝑿 = 𝑥𝑗)
 

The last equation holds because 𝑃(𝑌 = 0|𝑆 = 1, 𝑿 = 𝑥𝑗) = 𝑃(𝑌 = 1|𝑆 = 1, 𝑿 = 𝑥𝑗) when we 

select the same number of cases and controls in each matched stratum.  

Next, we have  

𝑃(𝑌 = 1|𝑿 = 𝑥𝑗)

𝑃(𝑌 = 0|𝑿 = 𝑥𝑗)
=

𝑃(𝑌 = 1, 𝐸 = 1|𝑿 = 𝑥𝑗) + 𝑃(𝑌 = 1, 𝐸 = 0|𝑿 = 𝑥𝑗)

𝑃(𝑌 = 0, 𝐸 = 1|𝑿 = 𝑥𝑗) + 𝑃(𝑌 = 0, 𝐸 = 0|𝑿 = 𝑥𝑗)
 

=
𝑃(𝑌 = 1|𝐸 = 1, 𝑿 = 𝑥𝑗)𝑃(𝐸 = 1|𝑿 = 𝑥𝑗) + 𝑃(𝑌 = 1|𝐸 = 0, 𝑿 = 𝑥𝑗)𝑃(𝐸 = 0|𝑿 = 𝑥𝑗)

𝑃(𝑌 = 0|𝐸 = 1, 𝑿 = 𝑥𝑗)𝑃(𝐸 = 1|𝑿 = 𝑥𝑗) + 𝑃(𝑌 = 0|𝐸 = 0, 𝑿 = 𝑥𝑗)𝑃(𝐸 = 0|𝑿 = 𝑥𝑗)
 

The explicit form of 
𝑃(𝑌=1|𝑿=𝑥𝑗)

𝑃(𝑌=0|𝑿=𝑥𝑗)
 can be derived by substituting the conditional probability of 

having an event or exposure based on the outcome model (1) and the exposure model (2). If we 

have rare event, the logistic outcome model (1) can be approximated by a log linear model 

𝑒𝛽0+𝛽1𝐸+𝛽2
′ 𝑥𝑗 and then we have the following: 

𝑃(𝑌 = 1|𝑿 = 𝑥𝑗)

𝑃(𝑌 = 0|𝑿 = 𝑥𝑗)
≈

𝑒𝛽1
𝑒𝛼0+𝛼1𝑥𝑗

1 + 𝑒𝛼0+𝛼1𝑥𝑗
+

1
1 + 𝑒𝛼0+𝛼1𝑥𝑗

𝑒𝛼0+𝛼1𝑥𝑗

1 + 𝑒𝛼0+𝛼1𝑥𝑗
+

1
1 + 𝑒𝛼0+𝛼1𝑥𝑗

𝑒𝛽0+𝛽2
′ 𝑥𝑗 

Next, it follows 

𝑃(𝑌 = 1|𝑿, 𝐸, 𝑆 = 1) =  
1

1 +
𝑃(𝑌 = 1|𝑿 = 𝑥𝑗)
𝑃(𝑌 = 0|𝑿 = 𝑥𝑗)

𝑒−𝛽0−𝛽1𝐸−𝛽2
′ 𝑥𝑗

 

=  
1

1 + 𝑒𝑐(𝑥𝑗)−𝛽1𝐸
 



Where 𝑐(𝑥𝑗) = log (
𝑒𝛽1−1

1+𝑒
−𝛼0−𝛼1

′ 𝑥𝑗
+ 1). The last equation shows that the logit model for the matched 

case control data does not have 𝛽2𝑥𝑗  from the logit model for the source study population. 

Intuitively it is because of exact matching on 𝑋 for cases and controls essentially removes the 

association between 𝑋 and the outcome. It should be emphasized that even without assuming the 

disease is uncommon and the logit outcome model (1) cannot be approximated by a log linear 

model, 𝛽2𝑥𝑗  will still be cancelled out. However, because of over-sampling cases and under-

sampling controls (selection bias), we have this additional term 𝑐(𝑥𝑗) of 𝑋 and 𝑐(𝑥𝑗) consists of 

conditional probabilities of being exposed and not being exposed. Essentially, if 𝑐(𝑥𝑗) is not 

approximately linear in  , a logit model including 𝐸 and a linear term of 𝑋 will be a mis-specified 

model and fitting this mis-specified model could result in biased estimate of 𝛽1. In this study, 

𝑃(𝑌=1|𝑿=𝑥𝑗)

𝑃(𝑌=0|𝑿=𝑥𝑗)
 is derived based on known population outcome and exposure models.  

We also designed a simulation study to validate the derived closed form expression of 𝑐(𝑥𝑗). 

The detailed simulation algorithm is outlined in the main text. We set 𝛼0 = 0, 𝛼1 = 2,  𝛽0 = −5, 

and 𝛽1 = 1. Thus, ~56% of subjects are exposed to the exposure and ~4% have disease. The 

matching variable X is a categorical variable with 4 levels: (-2, -1, 1, 2) that follows a uniform 

discrete distribution with probabilities of (0.25, 0.25, 0.25, 0.25). Therefore, we have four 

matching strata formed at each level of  𝑋 and each stratum will have stratum specific intercept. 

We generated 10000 subjects and performed 1:1 case-control matching.  For each simulated 

matched case control data set, we fit an unconditional logistic regression including exposure E and 

three dummy variables:  𝑋1 (1 if X = −1, 0 otherwises),  𝑋2(1 if X = 1, 0 otherwises),   and 

 𝑋3(1 if X = 2, 0 otherwises). We repeated the process 10000 times and averaged the estimates 



of intercepts. The results in the Web Table 1 show that derived expression 𝑐(𝑥𝑗) =

log (
𝑒𝛽1−1

1+𝑒
−𝛼0−𝛼1

′ 𝑥𝑗
+ 1) give very similar results to the simulated results 

Web Table 1: Validating the derived closed form expression of 𝑐(𝑥𝑗) 

Intercept parameter for 

matching stratum 

True intercept:  

-𝑐(𝑥𝑗) 
Simulated estimates 

𝑋 = −2 -0.6201145 -0.62064563 

𝑋 = −1 -0.7227731 -0.7105566 

𝑋 = 1 -0.5751923 -0.5716599 

𝑋 = 2 -0.7914948 -0.7956336 

 

1.2) When the disease outcome is not rare.  

When the outcome is not rare, in the stratum formed by 𝑥𝑗 where the number of cases 𝑛1𝑗  is less 

than the number of controls 𝑛0𝑗, we will select all cases (selection probability=1) and select the 

equal number of controls. Thus, we have 

                                        𝑃(𝑆 = 1|𝑌 = 1, 𝐸, 𝑿 = 𝑥𝑗) = 1 

and  

𝑃(𝑆 = 1|𝑌 = 0, 𝐸, 𝑿 = 𝑥𝑗) 

=
𝑃(𝑌 = 1|𝑿 = 𝑥𝑗)

𝑃(𝑌 = 0|𝑿 = 𝑥𝑗)
 



In the stratum formed by 𝑥𝑗  where the number of cases  𝑛1𝑗  is larger than the number of 

controls 𝑛0𝑗, we will select all controls (selection probability=1) and select the equal number of 

cases. Thus, we have 

                                        𝑃(𝑆 = 1|𝑌 = 0, 𝐸, 𝑿 = 𝑥𝑗) = 1 

and  

𝑃(𝑆 = 1|𝑌 = 1, 𝐸, 𝑿 = 𝑥𝑗) =
𝑃(𝑌 = 0|𝑿 = 𝑥𝑗)

𝑃(𝑌 = 1|𝑿 = 𝑥𝑗)
 

Regardless of the relative size of 𝑛1𝑗  verse 𝑛0𝑗, we always have  

𝑃(𝑆 = 1|𝑌 = 0, 𝐸, 𝑿 = 𝑥𝑗)

𝑃(𝑆 = 1|𝑌 = 1, 𝐸, 𝑿 = 𝑥𝑗)
=

𝑃(𝑌 = 1|𝑿 = 𝑥𝑗)

𝑃(𝑌 = 0|𝑿 = 𝑥𝑗)
 

Since the outcome is not rare, the outcome model is logit form  
𝑒

𝛽0+𝛽1𝐸+𝛽2
′ 𝑥𝑗

1+𝑒
𝛽0+𝛽1𝐸+𝛽2

′ 𝑥𝑗
, not log-linear form. 

𝑒𝛽0+𝛽1𝐸+𝛽2𝑥𝑗:  

𝑃(𝑌 = 1|𝑿 = 𝑥𝑗)

𝑃(𝑌 = 0|𝑿 = 𝑥𝑗)
=

𝑒𝛽1

1 + 𝑒𝛽0+𝛽1+𝛽2
′ 𝑥𝑗

𝑒𝛼0+𝛼1
′ 𝑥𝑗

1 + 𝑒𝛼0+𝛼1
′ 𝑥𝑗

+
1

1 + 𝑒𝛽0+𝛽2
′ 𝑥𝑗

1

1 + 𝑒𝛼0+𝛼1
′ 𝑥𝑗

1

1 + 𝑒𝛽0+𝛽1+𝛽2
′ 𝑥𝑗

𝑒𝛼0+𝛼1
′ 𝑥𝑗

1 + 𝑒𝛼0+𝛼1
′ 𝑥𝑗

+
1

1 + 𝑒𝛽0+𝛽2
′ 𝑥𝑗

1

1 + 𝑒𝛼0+𝛼1
′ 𝑥𝑗

𝑒𝛽0+𝛽2
′ 𝑥𝑗 

=  ( 

𝑒𝛽1

1 + 𝑒𝛽0+𝛽1+𝛽2
′ 𝑥𝑗

𝑒𝛼0+𝛼1
′ 𝑥𝑗

1 + 𝑒𝛼0+𝛼1𝑥𝑗
−

1

1 + 𝑒𝛽0+𝛽1+𝛽2
′ 𝑥𝑗

𝑒𝛼0+𝛼1
′ 𝑥𝑗

1 + 𝑒𝛼0+𝛼1
′ 𝑥𝑗

1

1 + 𝑒𝛽0+𝛽1+𝛽2
′ 𝑥𝑗

𝑒𝛼0+𝛼1
′ 𝑥𝑗

1 + 𝑒𝛼0+𝛼1
′ 𝑥𝑗

+
1

1 + 𝑒𝛽0+𝛽2
′ 𝑥𝑗

1

1 + 𝑒𝛼0+𝛼1
′ 𝑥𝑗

+ 1)𝑒𝛽0+𝛽2
′ 𝑥𝑗 

=  ( 
𝑒𝛽1 − 1

1 +
1 + 𝑒𝛽0+𝛽1+𝛽2

′ 𝑥𝑗

1 + 𝑒𝛽0+𝛽2
′ 𝑥𝑗

1

1 + 𝑒−𝛼0−𝛼1
′ 𝑥𝑗

+ 1)𝑒𝛽0+𝛽2
′ 𝑥𝑗 



=  ( 
𝑒𝛽1 − 1

1 + (1 +
𝑒𝛽1 − 1

1 + 𝑒−𝛽0−𝛽2
′ 𝑥𝑗

)𝑒−𝛼0−𝛼1
′ 𝑥𝑗

+ 1)𝑒𝛽0+𝛽2
′ 𝑥𝑗 

   Next, it follows 

𝑃(𝑌 = 1|𝑿, 𝐸, 𝑆 = 1) =  
1

1 +
𝑃(𝑌 = 1|𝑋 = 𝑥𝑗)
𝑃(𝑌 = 0|𝑋 = 𝑥𝑗)

𝑒−𝛽0−𝛽1𝐸−𝛽2
′ 𝑥𝑗

 

=  
1

1 + 𝑒𝑐(𝑥𝑗)−𝛽1𝐸
 

Where the nuisance term 𝑐(𝑥𝑗) = ( 
𝑒𝛽1−1

1+(1+
𝑒𝛽1−1

1+𝑒
−𝛽0−𝛽2

′ 𝑥𝑗
)𝑒

−𝛼0−𝛼1
′ 𝑥𝑗

+ 1). 

Thus, whether the outcome is rare or not, the main effect confounding term 𝛽2
′ 𝑥𝑗 will be removed 

from the logit outcome model for the matched sample. When the outcome is not rare, the 

nuisance term 𝑐(𝑥𝑗) becomes more complex and involves the confounding term from both the 

population outcome and exposure models. If 𝑓(𝑿) and 𝑔(𝑿) take more complex forms (e.g., 

non-linear terms and interaction terms, the nuisance term 𝑐(𝑥𝑗) will become even more complex.  

In this study we revisit the case-control matching design from a perspective of a stratified 

sampling design and derive the corresponding correct ULR from the pre-specified population 

outcome and exposure models. Thus, the complexity of fitting a correct ULR for matched data can 

be clearly revealed. This same technique has been used by Qian et al. [1] to develop a two-stage 

variable selection procedure and prediction rule for a nested, matched case-control study. 

 

Web Appendix 2: The potential bias of ULR+L in matched case-control data.  



We assume (𝑋) = 𝜌𝑋 + 𝜔 , where 𝜔 is some random error and when we fit a ULR with linear 

term of matching variable in the matched case control data, the model (3) becomes 

𝑃(𝑌 = 1|𝑋, 𝐸, 𝑆 = 1) =  
1

1 + 𝑒𝜌𝑋+𝜔 −𝛽1𝐸
, (4) 

Since we cannot include 𝜔 in the model (4), omitting 𝜔 will change the coefficients of remaining 

variables including 𝛽1 because the logit model is not collapsible. Large variance of 𝜔- 𝑣𝑎𝑟(𝜔), 

and large bias we have for estimating 𝛽1 using adjusted ULR. There are two factors could impact 

the size of 𝑣𝑎𝑟(𝜔): variance and non-linearity of 𝑐(𝑋). Larger variance of 𝑐(𝑋) and more severe 

deviation from linearity, 𝑣𝑎𝑟(𝜔) becomes larger.  

 

Web Appendix 3: The bias of CLR vs. adjusted ULR when matching is not exact 

In practice, we often select controls within a certain range of the matching variable values 

of the cases. Failing to control for this matching variable in CLR as a covariate in non-exact 

matched case-control data or failing to control for this matching variable correctly in adjusted ULR 

could potentially result in biased estimates of 𝛽1, particularly if the matching variable is a strong 

confounder. Similar to described above for adjusted ULR in the exact matched setting, this bias 

can be interpreted as the omitted variable bias problem in the non-collapsible logit model14,15. To 

show this heuristically, we let 𝑃𝑖 denote the 𝑖th matched pair indicator (𝑃𝑖 = 1 if the participant is 

in the 𝑖th matched pair; 0 otherwise), and let 𝑋𝑖0 and 𝑋𝒊𝟏denote the matching variable for the case 

(j=1) and control (j=0), where |𝑋𝑖1 − 𝑋𝑖0| < 𝑑 and 𝑑 is the caliper size for matching. Thus, we 

assume that 𝑋𝑖𝑗 = 𝑘𝑃𝑖 + 𝜀𝑖𝑗 , where 𝜀𝑖𝑗 measures the deviation from the pair mean for the case and 

control in the 𝑖th matched pair and 𝑘 is a constant. The variability of 𝜀𝑖𝑗 is also expected to increase 



with increasing caliper size.  By assuming that cases and controls in the same matched set have 

the same 𝑃𝑖 and by omitting 𝜀𝑖𝑗 in the likelihood function, CLR  fails to account for the fact that 

cases and controls have different matching values and thus different risks of developing the 

outcome. When matching is not exact, CLR may also result in a biased estimate because of the 

non-collapsibility of the odds ratio and the residual confounding arising from not accounting for 

𝜀𝑖𝑗 in the logit model. The resulting bias is expected to increase with increasing caliper size.  

 

 

 

 

 

 

 

Web Figure 1- The functional form of 𝑿𝟏 in the matched data with changing caliper size in 

scenario (3)  



 

Web Figure 1: The first figure presents the functional form of the association between 𝑋1 and the 

outcome in the simulated unmatched source population from the scenario (3) where  𝑋1 in the 

outcome model has a linear term. The other figures presents the functional forms of the association 

between  𝑋1 and the outcome in the 1:1 matched samples given different matching calipers. As 

caliper size increases, the functional form of 𝑋1 in the matched sample is getting closer and closer 

to the true shape. 

 



Web Figure 2-The functional form of 𝑿𝟏 in the matched data with changing caliper size in 

scenario (6) 

 

Web Figure 2: The first figure presents the functional form of the association between 𝑋1 and the 

outcome in the simulated unmatched source population from the scenario (6) where  𝑋1 in the 

outcome model has a quadratic term. The other figures presents the functional forms of the 

association between  𝑋1 and the outcome in the 1:1 matched samples given different matching 



calipers. As caliper size increases, the functional form of 𝑋1 in the matched sample is getting closer 

and closer to the true shape.  
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