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Supplementary note 1: Bioinformatics analysis 
ATAC-seq data analysis 

Pre-processing, mapping and filtering of ATAC-seq reads 

Sequencing read quality was assessed with FastQC (Version 0.11.5; 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc). Nextera adapter sequences were 

removed from reads using Trimmomatic (Version 0.36 with options -phred33, seedMismatches=2, 

palindromeClipThreshold=30, simpleClipThreshold=10 and option MINLEN:36. Only reads with a 

minimum length of 36 bp were kept after trimming and were aligned against the mouse genome 

(mm10, GENCODE release M14) using STAR (Version 2.5.3 with option --alignIntronMax 1 and -

-alignMatesGapMax 1800). Reads that (1) mapped to more than one locus; (2) mapped to the 

mitochondrial genome; and (3) were read duplicates were excluded. Filtering was done with 

samtools (Version 1.4.1) and MarkDuplicates (option REMOVE_DUPLICATES=true) from Picard 

tools (Version 2.9.2) was run for the deduplication. Next, the resulting bam files were converted to 

standard bed files using bedtools (Version 2.25.0), where bam files from paired-end libraries were 

treated as single-end to combine the bed files from the two sequencing runs. Finally, the start 

position of reads was offset by +4 bp if they mapped to the positive strand and the end position of 

reads was offset by -5 bp if they mapped to the negative strand. Thereby, the 5’-end of the aligned 

reads matches the Tn5 transposase cut site. 

 
Peak calling 

The shifted bed files were used as input for the ENCODE ATAC-seq analysis pipeline (Vs 0.3.4; 

https://www.encodeproject.org/atac-seq/; https://github.com/kundajelab/atac_dnase_pipelines). 

The pipeline uses MACS2 for peak calling and uses Irreproducible Discovery Rate (IDR) to 

compare consistency of ranks of peaks in individual replicate peak sets to identify a set of high 

confidence, reproducible set of peaks. The resulting peak files were sorted by coordinate and 

overlapping peaks were merged with bedtools merge. Peaks were annotated with 

annotatePeaks.pl script from the HOMER software package (Version 4.9.1) to identify the nearest 

transcription start site using an mm10 genome annotation file. Peaks within +/-1000 bp from the 

transcriptional start site (TSS) were defined as proximal peaks, whereas all other peaks were 

defined as distal peaks. 

Ingenuity canonical pathway analysis and transcription factor motif analysis 

First, distal ATAC-seq peaks were differentiated into peak sets that were identified as peak only 

in Daxx+/+;RosaCreER cells (closed peak set), only in DaxxF/F;RosaCreER cells (opened peak set), 

or in both Daxx+/+;RosaCreER and DaxxF/F;RosaCreER cells (unchanged peak set) for each cell type 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
https://www.encodeproject.org/atac-seq/
https://github.com/kundajelab/atac_dnase_pipelines


analyzed. Next, the closed and opened peak sets were overlaid with a set of HSC, CMP and GMP-

specific enhancer peaks 18 with bedtools intersect to obtain enhancer specific sets that closed or 

opened upon Daxx KO. In addition, enhancer overlapping accessible regions were analyzed for 

their overlap (at least 20% of their sequence) with known endogenous retroviral elements (ERVs) 

extracted from the mm10 repeatmasker file. For the Ingenuity canonical pathway analysis 

(Qiagen) enhancer specific ERV-overlapping closed and opened peak sets were first annotated 

with annotatePeaks.pl to identify the closest promoter RefSeq ID. After removal of duplicated IDs, 

IDs from the closed and opened enhancer specific peak sets for each cell type were combined in 

one file. To allow for directionality in the analysis and calculation of the Activation Z-score, IDs 

from the closed peak set were denoted a -1 and IDs from the opened peak set were denoted as 

+1. The files were uploaded to the Ingenuity platform (Qiagen) and analyzed with default settings. 

Enriched transcription factor motifs were identified in ERV-overlapping enhancer peaks open in 

Daxx KO in HSCs using the findMotifsGenome.pl script from HOMER and mm10 as genome. 

Differentially accessible regions for integration with CUT&Tag data were called by using diffreps70 

with a window size of 600 bp and p-value cut off < 0.0001. The identified regions were annotated 

using the region_analysis package based on the Ensembl mm10 gene annotation. Regions were 

separated into promoter (annotated as “ProximalPromoter” or “Promoter1K”) and distal regions (> 

+/- 1 kbp from TSS). Next, differential sites were overlaid with a set of HSC, CMP and GMP-

specific enhancer peaks 18 with bedtools intersect to obtain enhancer specific sets that closed or 

opened upon Daxx KO. In addition, enhancer overlapping accessible regions were analyzed for 

their overlap (at least 20% of their sequence) with known endogenous retroviral elements (ERVs) 

extracted from the mm10 repeatmasker file. 

Association of ATAC-seq data with TERRA binding sites 

Raw data of TERRA ChIRT-seq data and the associated input data were downloaded from the 

Sequencing Read Archive (SRR2062971 and SRR2062968). After removal of adapter sequences 

with Cutadapt (Version 1.13), paired-end reads were aligned to the mouse reference genome 

(mm10) using the software STAR (options: --alignIntronMax 1 –alignMatesGapMax 1800 –

alignEndsType EndToEnd –seedSearchStartLmax 30). Only properly paired, uniquely mapping 

reads were kept for further analysis and PCR duplicates were removed with MarkDuplicates from 

the Picard tools. Peaks were called by MACS2 software (Version 2.1.1.20160309) using 

normalization to input and filtered by 10-fold enrichment. Shifted alignment files from the 

corresponding biological replicates for Daxx+/+;RosaCreER or DaxxF/F;RosaCreER LT-HSC, CMP, 

or GMP cells were merged and converted from bed format to bam files using the bedToBam tool 

from the bedtools software package. Each of the three cell types was analyzed separately. Bam 



files were converted to coverage plot files using bamCoverage from deepTools (Version 3.0.2) 

with a bin size of 1 and option --normalizeUsingRPKM. The resulting normalized coverage tracks 

were used to compute coverage within +/-3000 bp of the identified TERRA peak centers 

(computeMatrix from deepTools package with bin size of 1). Finally, profile plots were created 

using the computed score matrix using the tool plotProfile from the deepTools package. 

Bioinformatic analysis of RNA-seq data 

Pre-processing, mapping and filtering of RNA-seq data 

FastQC was used to assess sequencing read quality. Reads were quality and adapter trimmed 

using Cutadapt. Only properly paired reads with minimum length of 30 bp were kept for further 

analysis. Reads were mapped to the mouse genome (mm10, GENCODE release M14) using 

STAR (with options --outSAMstrandField intronMotif and --outFilterIntronMotifs 

RemoveNoncanonical) with default parameters and only uniquely mapping reads were selected 

for further analysis. Ribosomal and mitochondrial reads were removed using modified scripts from 

the PORT pipeline (https://github.com/itmat/Normalization). Coverage plots for all uniquely 

mapped reads were computed using bamCoverage from the deepTools package with a bin size 

of 1 and the option --normalizeUsingRPKM to account for differences in total number of reads of 

each library. SAM files were converted to BAM files using samtools view and BAM files were 

sorted by coordinate with samtools sort. 

 

Creation of non-overlapping gene annotations 

Annotations were based on the comprehensive gene annotation file of the GENCODE Release 

M14 (mm10). The downloaded GTF file was loaded into R (Version 3.4.0; R Foundation for 

Statistical Computing, Vienna, Austria) and converted into a TranscriptDb object with the 

makeTranscriptDbFromGFF tool in the Bioconductor package GenomicFeatures (Version 1.28.3). 

From the TranscriptDb object, all annotated Ensembl genes and their exons were obtained using 

exonsBy (by=”gene”). Ensembl gene ids were replaced by official gene symbols using biomaRt 

(Version 2.32.1). Genes with several Ensembl gene IDs were combined into one record. For each 

duplicated gene, overlapping exons were combined into single exons. Thus, genes were defined 

as the sequence between the first base of the first exon and the last base of the last exon. 

Furthermore, regions shared by overlapping genes were removed as we worked with a non-

stranded RNA-seq library and wanted to count only reads mapping to one gene. 

Differential gene expression analysis 

The mapped and filtered RNA-seq reads were counted using a custom R script including the R 

packages Rsamtools (Version 1.28.0), GenomicFeatures and GenomicAlignments (Version 

https://github.com/itmat/Normalization


1.12.2). Briefly, sorted BAM files were loaded into R using readGAlignmentPairs and the number 

of reads mapping to genes was computed using findOverlaps (with options type=”within” and 

ignore.strand=TRUE) and countSubjectHits. Genes were analyzed for differential expression in 

Daxx+/+;Mx1Cre+/- GMP compared to Daxx+/+;Mx1Cre+/- KLS (differentiation), in DaxxF/F;Mx1Cre+/- 

KLS compared to Daxx+/+;Mx1Cre+/- KLS (KLS) and in DaxxF/F;Mx1Cre+/- GMP compared to 

Daxx+/+;Mx1Cre+/- GMP (GMP) using the R package DESeq2 (Version 1.16.1) and identified as 

differentially expressed if the FDR-adjusted p-value was smaller than 0.05. Differentially 

expressed genes (DEG) associated with differentiation were analyzed for overlaps with DEG 

associated with Daxx KO in KLS cells. Principle component analysis plots, Vulcano plots and 

heatmaps were plotted using R. Transcriptional regulators and marker genes of blood cell 

differentiation were selected based on literature search. Ingenuity Pathway Analysis (IPA) was 

used to identify canonical pathways, diseases and functions, as well as upstream differentially 

expressed transcriptional regulators altered due to Daxx loss. Pathways, diseases and functions 

were restricted to the top 5 enriched or depleted categories associated with immune cell function 

(pathways) or the hematologic system (diseases and functions).  

Repeat element differential expression analysis 

For the repeat element differential expression analysis trimmed and properly paired reads were 

realigned against the mouse genome (mm10) using STAR with settings that allows mapping of 

reads at up to 100 different genomic locations (options used: --outFilterMultimapNmax 100 and --

winAnchorMultimapNmax 100). Next, reads mapping to the mitochondrial genome were excluded 

and aligned reads were sorted by read name. To obtain aligned read counts for mouse repeat 

elements TEtranscripts from the TEToolkit (Version 2.0.2) was used and the required GTF file 

containing mapping information for repeat elements was downloaded from the Hammell lab 

website (http://hammelllab.labsites.cshl.edu/software/#TEToolkit). The resulting count matrix was 

loaded and differentially expressed repeat elements were identified with DESeq2 as described 

above for differentially expressed genes. Normalized counts for each TE subtype were determined 

by determining the total number reads for each subtype within each sample, dividing by the total 

number of TE reads for each sample and multiplying with 1,000,000.  

Bioinformatic analysis of CUT&Tag data 

Reads were aligned against the mouse genome (mm10, GENCODE release M14) using bowtie2 

(Version 4.8.5 with options --end-to-end --very-sensitive --no-unal --no-mixed --no-discordant --

phred33 -I 10 and -X 700). Only high quality (low number of mismatches) reads and reads not 

mapping to the mitochondrial genome were kept for further analysis. Filtering was done with 

samtools (Version 1.4.1). Coverage plots for all filtered reads were computed using bamCoverage 

http://hammelllab.labsites.cshl.edu/software/#TEToolkit


from the deepTools package with a bin size of 1 and the option --normalizeUsingRPKM to account 

for differences in total number of reads of each library. Sites differentially enriched in H3.3, 

H3K27ac, H3K9me3, H3K27me3 or Pu.1 in Daxx KO vs. WT were called by using diffreps70 with 

a window size of 600 bp and p-value cut off < 0.0001. Only differential sites with log2 fold change 

>+/-2.0 were kept for further analysis. The identified regions were annotated using the 

region_analysis package based on the Ensembl mm10 gene annotation. Regions were separated 

into promoter (annotated as “ProximalPromoter” or “Promoter1K”) and distal regions (> +/- 1 kbp 

from TSS). Next, differential sites were overlaid with a set of HSC, CMP and GMP-specific 

enhancer peaks 18 with bedtools intersect to obtain enhancer specific sets. In addition, enhancer 

overlapping differential regions were analyzed for their overlap (at least 20% of their sequence) 

with known endogenous retroviral elements (ERVs) extracted from the mm10 repeatmasker file.  

 

18 Lara-Astiaso, D. et al. Immunogenetics. Chromatin state dynamics during blood formation. 
Science 345, 943-949, doi:10.1126/science.1256271 (2014). 

70 Shen, L. et al. diffReps: detecting differential chromatin modification sites from ChIP-seq data 
with biological replicates. PLoS One 8, e65598, doi:10.1371/journal.pone.0065598 (2013). 

 
  



Supplementary Code 1: Rscript for counting paired-end RNA-seq reads 
 
#!/usr/bin/env Rscript 
 
#Requires Rsamtools, GenomicFeatures and GenomicAlignments 
library("Rsamtools") 
library("GenomicFeatures") 
library("GenomicAlignments") 
 
#Load sample table to obtain sample names and bam file information 
file <- "171027_sampleTableFull.txt" 
sampleTable <- read.table(file,header=TRUE,sep="\t") 
filenames <- paste0(sampleTable$SampleName, "_tr.f.u.s.bam") 
 
#Load GRanges datasets for which we get counts 
load("171027_mm10_Genes_Exons_Introns.rda") 
 
#Create count matrices to store counts into 
counts.g <- matrix(nrow=length(genes1),ncol=length(filenames)) 
colnames(counts.g) <- sampleTable$SampleName 
rownames(counts.g) <- names(genes1) 
read.stats <- matrix(nrow=4,ncol=length(filenames)) 
rownames(read.stats) <- c("Total","MappingGenes","MappingWithinGenes","Non-overlapping") 
colnames(read.stats) <- sampleTable$SampleName 
save(counts.g, read.stats,file="171027_Counts_Statistics.rda") 
for(i in 1:length(filenames)) { 
 load("171027_Counts_Statistics.rda") 
 print(filenames[i]) 
 bam <- readGAlignmentPairs(filenames[i], use.names=TRUE) 
 read.stats[1,i] <- length(bam) 
 ov <- findOverlaps(bam,genes1, ignore.strand=TRUE) 
 read.stats[2,i] <- length(unique(queryHits(ov))) 
 ov.g <- findOverlaps(bam, genes1, type="within",ignore.strand=TRUE) 
 read.stats[3,i] <- length(unique(queryHits(ov.g))) 
 reads_to_keep <- which(countQueryHits(ov.g)==1L) 
 read.stats[4,i] <- length(reads_to_keep) 
 ov.g <- ov.g[queryHits(ov.g) %in% reads_to_keep] 
 counts.g[,i] <- countSubjectHits(ov.g) 
 save(counts.g, read.stats,file="171027_Counts_Statistics.rda") 
} 
 
#Save count matrices and statistics 
save(counts.g, read.stats,file="171027_Counts_Statistics.rda") 
 
  



Supplementary Code 2: Rscript for counting single-end RNA-seq reads 
 

#!/usr/bin/env Rscript 
 
#Requires Rsamtools, GenomicFeatures and GenomicAlignments 
library("Rsamtools") 
library("GenomicFeatures") 
library("GenomicAlignments") 
 
#Load sample table to obtain sample names and bam file information 
file <- "SE_sampletable.txt" 
sampleTable <- read.table(file,header=TRUE,sep="\t") 
filenames <- paste0(sampleTable$SampleName, ".a.f.s.bam") 
 
#Load GRanges datasets for which we get counts 
load("/vol002/Jenny/RNAseq/190530_GeneAnnotationForCounting.rda") 
 
#Create count matrices to store counts into 
counts.g <- matrix(nrow=length(geneinfo),ncol=length(filenames)) 
colnames(counts.g) <- sampleTable$SampleName 
rownames(counts.g) <- names(geneinfo) 
read.stats <- matrix(nrow=4,ncol=length(filenames)) 
rownames(read.stats) <- c("Total","MappingGenes","MappingWithinGenes","Non-overlapping") 
colnames(read.stats) <- sampleTable$SampleName 
save(counts.g, read.stats,file="201122_Counts_Statistics.rda") 
for(i in 1:length(filenames)) { 
 load("201122_Counts_Statistics.rda") 
 print(filenames[i]) 
 bam <- readGAlignments(filenames[i], use.names=TRUE) 
 read.stats[1,i] <- length(bam) 
 ov <- findOverlaps(bam,geneinfo, ignore.strand=TRUE) 
 read.stats[2,i] <- length(unique(queryHits(ov))) 
 ov.g <- findOverlaps(bam, geneinfo, type="within",ignore.strand=TRUE) 
 read.stats[3,i] <- length(unique(queryHits(ov.g))) 
 reads_to_keep <- which(countQueryHits(ov.g)==1L) 
 read.stats[4,i] <- length(reads_to_keep) 
 ov.g <- ov.g[queryHits(ov.g) %in% reads_to_keep] 
 counts.g[,i] <- countSubjectHits(ov.g) 
 save(counts.g, read.stats,file="201122_Counts_Statistics.rda") 
} 
 
#Save count matrices and statistics 
save(counts.g, read.stats,file="201122_Counts_Statistics.rda") 
 

 


